

Reche Spreading Grounds Recharge Feasibility Study

February 2011

Reche Spreading Grounds Recharge Feasibility Study

Prepared for:

622 S. Jemez Trail
Yucca Valley, California 92284

Prepared by:

Todd Engineers

2490 Mariner Square Loop, Suite 215

Alameda, CA 9501-1080

February 2011

Table of Contents

		<u>Page</u>
1.	INTRODUCTION 1.1 Background 1.2 Hydrogeologic Setting 1.3 Study Objectives 1.4 Scope of Work	1 1 3
2.	WELL DRILLING, CONSTRUCTION AND DEVELOPMENT 2.1 Pre-Drilling Activities 2.2 Technical Approach 2.3 Drilling 2.4 Subsurface Lithology 2.5 Hydraulic Properties of Selected Soil Samples 2.6 Well Construction 2.7 Well Development 2.8 Hydrogeologic Cross Section	5 6 6 8
3.	AQUIFER TESTING 3.1 Technical Approach 3.2 Well Construction of HDWD 24 3.3 Step-Drawdown Pumping Test Details 3.4 Constant-Discharge Pumping Test 3.5 Results	10 11 11
4.	GROUNDWATER MODELING AND ANALYSIS	14 14 15
5.	WATER QUALITY EVALUATION 5.1 Water Quality Sampling and Analysis for BDVWA MW1 and MW2 5.2 Impacts of Mixing SWP Water and Native Groundwater 5.2.1 SWP Water Quality 5.2.2 Groundwater Quality in the Reche Subbasin 5.3 Impacts from Percolation of SWP Water 5.4 Impacts from Groundwater Mounding	16 17 18 20
6.	REGULATORY PERMIT REQUIREMENTS	22
7.	CONCLUSIONS	25
8.	REFERENCES	26

List of Tables

Table 1	BDVWA MW1 Soil Sample Hydraulic Properties
Table 2	Monitoring Well Construction Details
Table 3	HDWD Well No. 24 Aquifer Test Results
Table 4	Groundwater Quality Sampling Results Summary
Table 5	SWP Water Quality Summary
Гable 6	Comparison of SWP and Groundwater Quality

List of Figures

Figure 1	DWR and USGS Basins and Subbasins
Figure 2	Faults and Hydraulic Barriers
Figure 3	Watershed and Drainages
Figure 4	Groundwater Levels
Figure 5	Water Providers and Morongo Basin Pipeline
Figure 6	Reche Spreading Grounds and Well Locations
Figure 7	Groundwater Flow Model Area
Figure 8	Sonic Drilling Rig Setup
Figure 9	Exploratory Boring/Well Log for BDVWA MW1
Figure 10	Exploratory Boring/Well Log for BDVWA MW2
Figure 11	Cross Section A-A'
Figure 12	Drawdown and Recovery over Time in Observation Well BDVWA MW2
Figure 13	Drawdown over Log Time in Observation Well BDVWA MW2
Figure 14	Recovery over Dimensionless Time in Observation Well BDVWA MW2
Figure 15	Simulated Water Table Mounding after Recharge of 1,500 AF after 6 Months
Figure 16	Simulated Water Table Elevations over Time in Response to Recharge
Figure 17	Simulated Flow Paths from Recharge of 1,500 AF in Alternating Years
Figure 18	Cation/Anion Composition of Groundwater and SWP Water

List of Appendices

Appendix A Drilling Permits

Appendix B Soil Hydraulic Property Laboratory Report

Appendix C Well Development Forms

Appendix D Aquifer Testing Data

Appendix E Groundwater Flow Model

Appendix F Water Quality Laboratory Report

Appendix G Regulatory Permits and Permit Applications

1. INTRODUCTION

1.1 Background

The Bighorn-Desert View Water Agency (BDVWA) is located in the western Mojave Desert of San Bernardino County (also known as the High Desert). Groundwater is the primary source of water supply in the region, but increasing water demand is expected to stress limited groundwater resources in the future. BDVWA's service area includes most of the Pipes and Reche groundwater subbasins (Study Area), two of seventeen subbasins that comprise the greater USGS Morongo Groundwater Basin and are also included in the DWR Ames Valley Groundwater Basin.

During 2007 and in cooperation from Mojave Water Agency (MWA), BDVWA completed a comprehensive evaluation of hydrogeologic conditions and an assessment of water supply and demand for three High Desert groundwater basins, including the Ames Valley Groundwater Basin (Kennedy/Jenks/Todd LLC, 2007). The scope of the 2007 study was divided into two interrelated tasks: 1) the development of a basin conceptual model describing the basin geology and geometry, groundwater recharge and discharge sources, aquifer parameters, and groundwater occurrence, flow, and quality over time; and 2) an assessment of current and future water supply and demand under varying future climatic conditions. The combination of these two components provided the scientific basis to support future groundwater management decisions.

Results of the 2007 regional study demonstrated the need to augment the water supply of the Ames Valley Basin to satisfy future water demands. Specifically, the study identified an opportunity for a conjunctive use project in the Reche Subbasin involving surface recharge of imported State Water Project (SWP) water delivered through the Morongo Basin Pipeline within Pipes Wash, a dry alluvial wash that traverses the Study Area.

BDVWA initiated the Reche Spreading Grounds Recharge Feasibility Study (Study) to further evaluate the feasibility of implementing a conjunctive use project at the proposed Pipes Wash recharge area, herein referred to as the Reche Spreading Grounds.

1.2 Hydrogeologic Setting

The Pipes and Reche subbasins represent two of seventeen subbasins that comprise the greater USGS Morongo Groundwater Basin (Stamos et al., 2004). The two subbasins are also included in the DWR Ames Valley Groundwater Basin (DWR, 2004) (Figure 1). The region is tectonically active and is characterized by numerous primarily northwest-trending geologic faults that serve as partial barriers to groundwater flow. As shown in Figure 2, the Pipes Subbasin is separated from the neighboring Reche Subbasin to the east by two geologic faults, the Johnson

Valley Fault in the north and inferred Pipes Barrier in the south. Bedrock outcrops of the Little San Bernardino Mountains form the western and southern boundaries of the Pipes Subbasin. The Reche Subbasin is separated from neighboring subbasins by the Johnson Valley Fault and inferred Pipes Barrier to the west, the Kickapoo Fault to the north, and Homestead Valley Fault to the east. A groundwater divide forms the southern subbasin boundary, while bedrock outcrops represent the remaining boundaries.

Consolidated, pre-Tertiary rocks comprise the bedrock underlying the basin fill deposits of the Pipes and Reche subbasins. Bedrock is generally considered to be non water-bearing and constitutes the basin floor. As a result of historical faulting in the area, the elevation of bedrock across the subbasin is highly variable but generally ranges from 300 to 600 feet below ground surface (bgs). Basin fill deposits are represented by Tertiary and Quaternary alluvial and fluvial deposits, including interbedded layers of unconsolidated to semi-consolidated gravel, sand, silt, and clay.

Natural recharge to the Pipes and Reche subbasins is represented primarily by subsurface inflow fed by runoff generated in the upland areas of the adjacent San Bernardino Mountains, where average annual precipitation ranges from 6 to 16 inches. Runoff percolates through the permeable alluvial sediments to the water table and enters the Pipes Subbasin as groundwater. Subsurface inflow is concentrated beneath three dry washes – Pipes Wash, Whalen's Wash, and an unnamed wash associated with Ruby Mountain Creek (Figure 3). Recharge from precipitation that falls directly on the groundwater basin area is considered negligible due to low precipitation (about 4 inches per year) and high evaporation rates.

Groundwater flows in an east/northeast direction across the Pipes and Reche subbasins and exits through specific areas along the Homestead Valley Fault to the Giant Rock Subbasin (Figures 2 and 4). Clay gouge and low permeability zones associated with the Johnson Valley Fault and Pipes Barrier impede groundwater flow from Pipes Subbasin to Reche Subbasin, although groundwater does seep through these partial barriers. The Homestead Valley Fault similarly impedes groundwater flow from the Reche Subbasin to the Giant Rock Subbasin.

Groundwater has served as the sole source of water supply historically in the Study Area. Service areas for three water agencies overlie portions of the Pipes and Reche subbasins, including BDVWA, HDWD, and CSA 70 W-1 (Figure 5). In addition to the water service providers, a small amount of groundwater is pumped from private wells. Several commercial water haulers purchase water from BDVWA and serve outlying areas. Also shown on Figure 5 is the Morongo Basin Pipeline, which conveys SWP water through the High Desert region.

For the past several decades, groundwater pumping has been the major outflow of groundwater from the Pipes and Reche subbasins. BDVWA is the only major pumper in the Pipes Subbasin, while BDVWA, HDWD, and CSA 70 W-1 represent the major pumpers in the Reche Subbasin. Since routine groundwater level monitoring began in 1990, groundwater level declines have

been observed in municipal production wells. Most of the total groundwater level decline in the subbasin occurred from 1993 to 1999 due to increased groundwater production during those years. Since 1999, the average rate of groundwater level declines has decreased in response to decreased groundwater production.

Groundwater quality in the Reche Subbasin is generally high, as represented by average total dissolved solids (TDS) concentrations of less than 300 milligrams per liter (mg/L). No elevated concentrations of inorganic or organic constituents above drinking water standards were identified from available groundwater quality data prior to this Study.

1.3 Study Objectives

The primary purpose of this Study was to evaluate the feasibility of recharging up to 1,500 acrefeet per year (AFY) of imported SWP water through the Reche Spreading Grounds. The 1,500 AFY represents the maximum amount of SWP water likely to be available for recharge in the Reche Subbasin. Specific project objectives included the following:

- Characterize subsurface conditions beneath the Reche Spreading Grounds to determine the feasibility of long-term infiltration of SWP water
- 2. Evaluate the hydraulic impacts of recharge operations at various rates and schedules, including water table mounding beneath the spreading grounds and groundwater flow to downgradient discharge points
- Characterize groundwater quality establishing baseline conditions to evaluate future water quality impacts from recharge operations
- 4. Identify regulatory permit requirements to construct and operate the Reche Spreading Grounds

1.4 Scope of Work

The scope of work for this Study was divided into the following tasks: 1) conduct a field investigation to characterize the geologic and groundwater conditions in the vicinity of the Reche Spreading Grounds and 2) develop a numerical groundwater flow model to evaluate potential groundwater impacts from recharge operations, including identification of groundwater flow paths and fate of recharged water, and 3) communicate with regulatory agencies having oversight responsibilities for the proposed recharge project to identify permitting requirements.

The field investigation task was comprised of the following technical components:

 Drill two deep exploratory soil borings and complete each soil boring as a 4-inch diameter, PVC groundwater monitoring well for future monitoring of water levels and quality.

- 2. Record lithology of formation samples collected during drilling and laboratory analyze selected formation samples to estimate hydraulic properties of the vadose zone beneath the proposed Reche Spreading Grounds.
- 3. Perform aquifer pumping tests on water supply well HDWD 24 (using one of the new monitoring wells as an observation well) to confirm hydraulic properties including aquifer transmissivity, hydraulic conductivity, and storativity.
- 4. Collect and analyze groundwater quality samples from both monitoring wells to establish baseline groundwater quality conditions

Figure 6 shows the locations of the two soil borings/monitoring wells (BDVWA MW1 and MW2) and HDWD 24 in relation to the proposed Reche Spreading Grounds. Also shown on the figure are the limits of environmental and biological surveys performed previously in support of this Study.

BDVWA MW1 was drilled primarily to identify the lithologic and hydraulic properties of the vadose zone in beneath the Reche Spreading Grounds. Selected formation samples were submitted to a laboratory for hydraulic testing, and the soil boring was subsequently completed as a monitoring well to confirm the current depth to groundwater and to allow for future monitoring of groundwater levels and water quality. An initial water quality sample was obtained from BDVWA MW1 and laboratory analyzed to characterize the ambient groundwater quality and establish baseline conditions to evaluate potential water quality impacts of recharge operations.

BDVWA MW2 was drilled and installed approximately 38 feet west of HDWD 24, an active water supply well located approximately 4,300 feet northeast (downgradient) of the Reche Spreading Grounds. BDVWA MW2 was drilled in close proximity to HDWD 24 to serve as an observation well during aquifer testing of HDWD 24. A water quality sample was obtained from BDVWA MW2 and analyzed to characterize the water quality at this location.

Results of the field investigation were evaluated and incorporated with other hydrogeologic information in a numerical groundwater flow model of the Pipes and Reche subbasins constructed using the MODFLOW code to complete the recharge feasibility analysis. The model area is shown on Figure 7. The groundwater flow model includes variable aquifer thickness and hydraulic conductivity, hydraulic barriers represented by faults, and time-varying subsurface inflow, septic return flow, production well pumping, and outflow from the Pipes and Reche subbasins. The model was calibrated to steady-state and transient flow conditions and then used to predict water table mounding response to different recharge volumes. Groundwater flowpaths from the recharge site to downgradient areas including local water supply wells were simulated to assess fate of the recharged water.

2. WELL DRILLING, CONSTRUCTION AND DEVELOPMENT

To characterize the geologic and groundwater conditions in the vicinity of the Reche Spreading Grounds, two deep exploratory soil borings were drilled and completed as 4-inch diameter groundwater monitoring wells (BDVWA MW1 and MW2). Selected formation core samples were submitted to a laboratory for analysis of hydraulic properties relevant to the recharge feasibility analysis. Well drilling, construction, and development activities, as well as subsurface conditions encountered and results of hydraulic property testing are described in this section.

2.1 Pre-Drilling Activities

On Monday August 2, 2010, preliminary well drilling sites were verified in the field by staff from Todd Engineers, BDVWA's biological consultant, Circle Mountain Biological Consultants, Inc., BDVWA, and HDWD. Final drilling sites were chosen based on geologic and hydrogeologic criteria, property access, and biological considerations. Final locations for BDVWA MW1 and MW2 are shown on Figure 6. BDVWA MW1 is located approximately 150 feet from the southeastern edge of Pipes Wash. BDVWA MW2 is located approximately 35 feet due west from HDWD 24.

Prior to field mobilization, drilling permits were obtained from San Bernardino County Health Department (Appendix A), and land access was granted by the U.S. Department of the Interior, Bureau of Land Management.

The Study Area includes critical habitat of the endangered Desert Tortoise. As such, protective measures described in the Technical Memorandum *Biological monitoring during well exploratory activities* (Circle Mountain Biological Consultants, Inc., August, 2010) were also taken to ensure no harm to habitat or animals during the field investigation. Protective measures included installation and maintenance of a tortoise fence around each drilling site, and protocol for entry to and exit from the drilling site. All onsite workers reviewed the technical memorandum and attended a protective measures training workshop on August 16, 2010, prior to commencing field activities.

2.2 Technical Approach

The sonic method was chosen to drill the two deep soil borings and install the monitoring wells. The sonic drilling method is known by several names including Rotasonic, Rotosonic, Sonicore, Vibratory, or Resonant Sonic drilling. Sonic drilling is a "dry" drilling method, meaning no materials (air, fluid, or additives) are added to the borehole during drilling. Sonic drilling is a dual-cased drilling system that uses high frequency mechanical vibrations to advance flush-threaded casing while collecting continuous, relatively undisturbed core samples. An added benefit of the sonic drilling method is that there are very few waste products to be disposed of at the completion of the project as nearly all the subsurface materials are preserved in the inner

core casing. Because it does not require the use of downhole drilling muds or other fluids, the sonic method also minimizes the time needed for well development.

During sonic drilling for this investigation, an 8-, 9-, or 10-inch diameter outer casing (i.e., drill string) was vibrated into the ground using a sonic drill head to stabilize and hold open the borehole. An inner casing (i.e., 6-inch core casing) was vibrated ahead of the outer casing to collect undisturbed formation materials as the core sample. At 10-foot intervals, the core barrel was brought up to the surface to retrieve the core sample, which was extruded into visqueen sleeves.

2.3 Drilling

On August 16, 2010, Boart-Longyear Drilling Company, Inc. (Upland, CA) mobilized a track-mounted sonic drill rig and support vehicles to the BDVWA MW1 site. The track-mounted rig was necessary to negotiate the soft terrain of Pipes Wash. Initial drilling was conducted between August 16 and August 22, 2010 to a total depth of about 250 feet. However, while placing the cement seal, attempts to remove the 8-inch diameter casing were unsuccessful, and the PVC well casing eventually broke at about 20 feet above the top of the well screen (at a depth of 210 feet). The entire 8-inch diameter casing could not be removed from the borehole even after over-drilling using 9-inch and 10-inch diameter drill casings. Therefore, on September 7, 2010, the soil boring was abandoned and grouted to the surface. Prior to abandonment a borehole destruction permit was obtained from the San Bernardino County Health Department, along with a new drilling permit for the replacement soil boring/monitoring well. BDVWA MW1 was drilled approximately 20 feet northeast of the original location. BDVWA MW1 was drilled and completed to a total depth of 256 feet (and screened from 236 to 256 feet) between September 7 and 11, 2010.

On September 7, 2010, a second truck-mounted sonic drill rig was mobilized to the BDVWA MW2 site. BDVWA MW2 was drilled to a total depth of 348.5 feet and completed to 348.5 feet (and screened from 298 to 348 feet) between September 7 and 16, 2010.

Figure 8 shows the sonic drilling rig setup at both monitoring well locations.

2.4 Subsurface Lithology

The lithology of each section of core sample was recorded and classified according to the Unified Soil Classification System (USCS) Visual Method by a Professional Geologist.

Figure 9 shows the lithologic log for BDVWA MW1, drilled at the site of the proposed Reche Spreading Grounds. Based on collected continuous core samples, subsurface lithology beneath the proposed recharge site is comprised predominantly of clean fine- to coarse-grained sand. Well- to poorly-graded sand (USCS classifications SW and SP) was logged from the ground surface to a depth of 226 feet bgs. A seven-foot thick low-plasticity silt layer (USCS

classification ML) was logged from 226 to 232, which was underlain by a 3.5-feet thick silty sand layer (USCS classification SM). Well- to poorly-graded sand was logged from 236 to 256.5 feet bgs, the total depth of the well. The water table in BDVWA MW1 was encountered at 236 feet bgs.

Based on the lithology encountered during drilling, no continuous fine-grained soil layers are present in the upper portions of the vadose zone that could significantly impede vertical infiltration beneath the proposed spreading grounds. Minor pooling of recharge water could occur above the finer-grained silt layer at 226 feet bgs, but recharge water would subsequently infiltrate (albeit at a slower rate) through the silt and/or flow sub-horizontally along the top of the silt before ultimately reaching the water table.

Figure 10 shows the lithologic log for BDVWA MW2, located adjacent to HDWD 24. Similar to BDVWA MW1, subsurface lithology in BDVWA MW2 is also predominantly coarse-grained well-to poorly-graded sand (USCS classifications SW and SP) in the upper 206 feet of the vadose zone. Several thin silty sand and low-plasticity silt layers (USCS classifications SM and ML) were logged in the intervals between 206 and 211 feet bgs (SM), 223 and 227 feet bgs (ML), 255 and 262 feet bgs (ML) and 292 and 303 feet bgs (ML-SM). Well- to poorly-graded sand (USCS classifications SW and SP) was logged from 303 to 348.5 feet bgs, the total depth of the well. The water table in BDVWA MW2 was encountered at 298 feet bgs. Well BDVWA MW2 monitors the uppermost 50 feet of the aquifer under semi-confined conditions.

2.5 Hydraulic Properties of Selected Soil Samples

Selected formation sample cores from BDVWA MW1 were sealed in their respective plastic sleeves and transported under chain-of-custody to Keantan Laboratories (Diamond Bar, CA) for analysis of hydraulic properties relevant to the recharge feasibility analysis, including total and effective porosities and vertical hydraulic conductivity (K_V). Core samples were partially remolded in the laboratory and, therefore, are not considered undisturbed. However, the laboratory measurements of total and effective porosity and K_V are reasonable estimates. Saturated K_V tests were conducted in accordance with ASTM Standard D 5084 using a permeameter in combination with a constant-head system. Total and effective porosity tests were conducted using the ASTM D 854/2937 and SWRCB test methods, respectively. Prior to performing the measurements, Modified Proctor Compaction tests were performed in accordance with the American Society for Testing and Materials (ASTM) Procedure D 1557.

Selected core samples were chosen to ensure representative subsurface lithologies observed during drilling were characterized. In total, six 2.5-foot sample cores from BDVWA MW1 ranging from 10 to 245 feet were selected for laboratory analyses. Vadose zone samples included the following depth intervals: 10-12.5 feet, 25-27.5 feet, 50-52.5 feet, 100-102.5 feet, and 150-152.5 feet. One sample core (242.5-245 feet) just below the water table was also analyzed.

The results of the laboratory analyses of the six core samples are summarized in Table 1. The laboratory report is presented in Appendix B. As shown in the table, the total and effective porosities and vertical hydraulic conductivity of the six samples are relatively uniform. Total porosity ranges from 41 to 45 percent. Effective porosity ranges from 22 to 23 percent. Vertical hydraulic conductivity ranges from 1.60 to 6.21 feet/day with a mean value of 4.13 feet/day. The lowest hydraulic conductivity value was measured for the deepest sample tested (242.5-245 feet). Overall, the physical property values are consistent with the identified soil types of well- to poorly-graded sand.

2.6 Well Construction

BDVWA MW1 and MW2 were constructed using four-inch diameter, flush-threaded, Schedule 80 PVC casing with 0.020-inch slotted screen. Equipment, well materials, and tools that entered the borehole were steam cleaned by a pressure washer before use. No glues or adhesives were used to connect the casing sections or screen. PVC slip caps were used to cover the top of the well and the bottoms of wells. Filter pack material (washed, graded Monterey No.2/12 Lapis Lustre silica sand) was tremied through the annulus between the drill casing and the well casing as the drill casing was lifted. The filter pack extended five feet above the top of the screen. The level of filter pack in the annulus was verified by tag-line measurement during placement.

The well seal consisted of bentonite pellets and cement-bentonite grout. A three-foot bentonite pellet seal was placed directly above the filter pack. The level of the top of the bentonite seal was verified by tag-line measurement. Adequate time for hydration of the pellets was allowed prior to sealing the remaining annulus with cement-bentonite grout. A tremie pipe was used to slowly emplace the cement-bentonite grout seal in 50-foot lifts while the drive casing was removed. Sealing was continued until grout returned to the ground surface. The seal was allowed to cure for at least 24 hours prior to well development. After the grout had set, it was inspected for shrinkage and additional grout was added, as necessary. Monitoring wells were sealed to the ground surface, and a concrete well pad and locking enclosure was constructed at each well head.

Table 2 summarizes the well construction details for BDVWA MW1 and MW2. As shown in the table, BDVWA MW1 was drilled to a total depth of 257 feet bgs. The groundwater level in BDVWA MW1 was estimated at 236 feet based on the water content of formation samples and observation by the geologist and sounding of the water level in the open borehole. The completed total depth of monitoring well BDVWA MW1 is 256 feet, with a screened interval of 236 to 256 feet. For BDVWA MW1, a three-foot above grade stand pipe was set in a 36-inch square by 6-inch thick concrete pad, surrounded by four steel pipe bollards constructed for protection of the wellhead.

BDVWA MW2 was drilled to a total depth of 348.5 feet. The groundwater level in BDVWA MW2 was estimated at 298 feet based on the water content of formation samples and observation by

the geologist and sounding of the water level in the open borehole. The completed total depth of the well was 348 feet, with a screened interval of 298 to 348 feet. BDVWA MW2, was completed at-grade using a flush-mounted well vault set in a 36-inch square by 6-inch thick concrete pad.

2.7 Well Development

The monitoring wells were developed on September 23 and 24, 2010 using a combination of bailing, swabbing, and pumping. Water bailed and pumped from the wells was transported to the BDVWA office in Landers for disposal. Well development records are included in Attachment C. A Smeal Rig with a wire-line winch was used to rapidly bail the wells using a 4-inch diameter by 8- or 5-foot long PVC bailer and swab the wells using a 4-inch diameter surge block. For each well, multiple cycles of bailing and swabbing were performed prior to pumping with a submersible pump. During development of BDVWA MW1, a total of 38 gallons of groundwater were removed by bailing and 200 gallons were removed by pumping. During development of BDVWA MW2, a total of 35 gallons of groundwater were removed by bailing and 338 gallons were removed by pumping. During pumping, water quality parameters including temperature, pH, conductivity, turbidity, dissolved oxygen, and oxidation-reduction potential were monitored. In general, the field-measured water quality parameters stabilized rapidly indicating representative water quality samples could be obtained. Water quality samples were obtained from each monitoring well after development and submitted to an analytical laboratory as described in Section 2.5.

2.8 Hydrogeologic Cross Section

Figure 11 shows a hydrogeologic cross-section through the Pipes and Reche subbasins and the proposed Reche Spreading Grounds, including the well profiles of BDVWA MW1 and MW2, HDWD 24, and other wells in the vicinity (the location of the cross section is shown on Figure 6). The cross-section shows the spatial relationship between the alluvial aquifer in the vicinity of the Reche Spreading Grounds, bedrock, the Pipes Barrier, and the water table. As illustrated on the cross-section, the spreading grounds are located downgradient of the Pipes Barrier (a significant barrier to groundwater flow) and significant storage capacity (greater than 200 feet) exists beneath and adjacent to the proposed spreading grounds.

3. AQUIFER TESTING

Aquifer pumping tests, including a step-drawdown test and constant-discharge test, were performed on HDWD 24 to confirm aquifer hydraulic parameters. These parameters were used to estimate the travel time and ultimate fate of recharged SWP water through the saturated zone (see Section 4 Groundwater Flow Analysis). Although a constant-discharge pumping test conducted for HDWD 24 in 1988 provided some useful information on well specific capacity, time-drawdown data were of poor quality and consequently did not allow for reliable estimation of aquifer parameters. The installation of BDVWA MW2 close to HDWD 24 and subsequent observation of water level drawdown in BDVWA MW2 during the constant-discharge pumping test allowed for a more reliable estimation of aquifer hydraulic parameters.

3.1 Technical Approach

Pumping tests were conducted on HDWD 24 using the existing well pump, wellhead appurtenances, and water conveyance system features. The water generated during the pumping tests was discharged to HDWD's existing conveyance system. Discharge rates were controlled with an in-line gate valve, while discharge measurements were recorded with an inline totalizing flow meter down-stream from the gate value. A pressure gauge was installed upstream from the gate value to evaluate pump back-pressure during restricted and reduced flows. The flow meter provided both an odometer (cumulative volume) and instantaneous discharge reading from 0 to 3,000 gpm in 50 gpm increments.

Water level measurements on the pumping well and observation well were made before during and after the pumping tests. Water levels were recorded manually in HDWD 24 with an airline installed to a depth of 438 feet (as reported by HDWD). An example of how airline water level measurements are computed follows: a measurement of 62.5 psi represents a water column of 144 feet (62.5 psi x 2.31 feet/psi) above the bottom (438 feet) of the airline tubing and corresponds to a water level depth of 294 feet (438 feet - 144 feet). The airline measurements could not be calibrated since direct water level measurements with an electric sounder was not possible. The airline pressure gauge was divided into increments of one pound per square inch (psi) from 0 to 300 psi; the gauge accuracy is +/- 0.5 psi, or 1.15 feet. Compressed nitrogen gas was used to pressurize the airline.

The water level in BDVWA MW2 was monitored continuously using a Level TROLL 700, 30 psi gauge pressure transducer and data logger (In-Situ, Inc., Fort Collins, CO). Transducer accuracy was confirmed with an electric sounder.

HDWD was requested not to operate HDWD 24 for at least 72 hours prior to testing. On the morning of October 4, 2010, the static water level in HDWD 24 was 294 feet below the top of the pressure gauge. The static water level for BDVWA MW2 was 287.63 feet below the top of

the PVC well casing. The difference in height between the pressure gauge at HDWD 24 and the top of the casing at BDVWA MW2 was approximately 6 feet.

3.2 Well Construction of HDWD 24

HDWD 24 was installed in 1988 by Hacker Drilling, Inc., Hemet, California. A 30-inch diameter surface casing was installed to 50 feet, cemented in place, and serves as the sanitary well seal (DWR Water Well Completion Report No. 192872). A 24-inch diameter boring was drilled to 604 feet by reverse rotary drilling methods. Geophysical logging was conducted on the boring, but the logs are not available. The 14-inch diameter well was constructed with 360 feet (between 220 and 580 feet) of louver-type perforations with 3/32-inch aperture size or slots (GSI/Water, November 30, 2000). The non-pumping or static water level at the time of well construction was about 252 feet below ground surface. Based on the static water level measurement of 294 feet on October 4, 2010, the saturated thickness of the alluvial aquifer adjacent to HDWD 24 is about 290 feet. Other single well pumping tests have been conducted on HDWD 24 but have not generated sufficient information on the well and aquifer parameters (see GSI/Water, November 30, 2000).

BDVWA MW2 is located about 38 feet from HDWD 24. BDVWA MW2 is screened between 298 and 348 feet bgs (50 feet in length) and overlaps about 17 percent of the submerged screened interval of HDWD 24.

3.3 Step-Drawdown Pumping Test Details

On October 4, 2010, a step-drawdown test was performed, during which the well was pumped at rates of between 600 and 800 gallons per minute (gpm). The pump was turned on at 11:51AM PST with the discharge valve wide open. The pumping rate was about 800 gpm. The pumping water level (PWL) in HDWD 24 stabilized at about 302 feet corresponding to a water level drawdown of 8 feet (302 feet - 294 feet). The control valve was throttled down to about 600 gpm, resulting in substantial back-pressure. The pumping water level in HDWD 24 at this reduced rate was about 299 feet, equivalent to about 5 feet of drawdown. The pump was turned off at 2:30 PM. The elapsed time of pumping was 159 minutes. The average pumping rate during the step-drawdown test was 671 gpm. The maximum drawdown observed in BDVWA MW2 during the step-drawdown test was 1.62 feet.

3.4 Constant-Discharge Pumping Test

A 24-hour constant-discharge pumping test was performed on HDWD 24 between 8:00 AM October 5, 2010 and 8:00 AM October 6, 2010. Prior to the test, static water levels in HDWD 24 and BDVWA MW2 were measured at 293 feet and 287.60 feet, respectively. The average discharge rate during the test was 759 gpm. Water level recovery measurements were collected in HDWD 24 and BDVWA MW2 for four hours after the pump was turned off. Water levels in the

pumping well were periodically measured with the airline during the pumping test but were not very useful in estimating well or aquifer parameters. The maximum drawdown in the pumping well was 11 feet at 469 minutes (the accuracy of airline measurements in the pumping well was insufficient to measure water level changes after 469 minutes), and the specific capacity (SC) was 69 gallons per minute per foot of water level drawdown (gpm/ft of dd) after about 8 hours of pumping. The SC provides a normalized measurement of the productivity of a pumping well and is calculated by dividing the discharge in gpm by the feet of drawdown. The SC varies with time and discharge. In general, the greater the elapsed time of pumping the smaller the SC and similarly, the greater the discharge the smaller the SC.

The SC is also related to the aquifer transmissivity and the well efficiency. The transmissivity can be estimated by multiplying the SC at 24-hours by 1,500 for an unconfined aquifer or 2,000 for a confined aquifer (Driscoll, 1986). Estimated transmissivities based on a SC of 69 gpm/ft of dd range between 103,500 and 138,000 gallons per day per foot (gpd/ft), or 13,800 to 18,500 square feet per day (ft²/day). These values suggest a very productive and prolific aquifer. Using these transmissivities and a saturated thickness of 290 feet, the estimated aquifer hydraulic conductivity ranges between 48 and 64 feet per day (ft/day).

3.5 Results

Plots of drawdown and recovery over time in BDVWA MW2 are presented on Figures 12 through 14. The aquifer test data were analyzed using well hydraulic equations, and estimates were computed for the transmissivity and hydraulic conductivity. Pumping test results also provided an indication of the overall well efficiency of HDWD 24 and distance to hydraulic boundaries.

Figure 12 shows an arithmetic plot of drawdown in observation well BDVWA MW2 during the constant-discharge pumping and recovery test. The test is divided into two parts, the pumping period from 0 to 1,440 minutes and the recovery period between 1,440 minutes and 1,680 minutes. The manually measured data (red) are super-imposed on the continuous transducer/data logger measurements (black). Note that within the first 30 seconds of pumping the water level in BDVWA MW2 declined by one foot. In addition (because of the lack of a foot valve in the pump column), the water in the pump column discharged into the well resulting in a rapid rise of the water level when the pump was turned off. These higher water levels during the recovery period equilibrated quickly to resume the expected recovery trend. Typically, the shape of the pumping period curve is a mirror image of the recovery period curve. The maximum drawdown in BDVWA MW2 during the constant discharge test was about 2.76 feet. After four hours of recovery, the water level had recovered to within 0.87 feet from the initial static water level, or 68 percent recovery.

The drawdown and recovery data for BDVWA MW2 are plotted on semi-logarithmic charts as shown in Figures 13 and 14, respectively. The data were used to estimate aquifer hydraulic

properties using the modified non-equilibrium equation referred to as the Cooper-Jacob method (Driscoll, 1986). Figure 13 shows drawdown during the pumping period. The figure shows that instead of the linear relationship expected for a homogeneous aquifer of infinite lateral extent, the drawdown curve continues to steepen with time. This steepening suggests that the cone of depression has encountered multiple barrier boundaries. The barrier boundaries define the areal extent of the aquifer. This response is consistent with the hydrogeologic conceptual model of this area of the Reche Subbasin, where the alluvial aquifer is unsaturated (i.e., no-flow boundary) both southeast of HDWD 24 beneath the Mesa and to the east, where bedrock is encountered. Casing storage (Schafer, 1978 and Driscoll, 1986) of the pumping well can affect observation well data and was estimated to occur prior to 5 minutes. In addition, the pumping discharge fluctuated during the first few minutes of pumping due to the reduced pressure in the conveyance system. Because of these limitations, early time-drawdown data prior to 10 minutes was not used in the pumping test analysis.

A relatively short and linear segment between 10 and 100 minutes of pumping suggests that the transmissivity is 489,000 gpd/ft, or 65,400 ft²/day (Figure 13). The period between 40 and 400 minutes indicates a transmissivity of 334,000 gpd/ft, or 44,700 ft²/day. Using these transmissivities and a saturated thickness of 290 feet, the hydraulic conductivity ranges from 154 to 226 ft/day. The Theis method analysis of the pumping period data indicates that the transmissivity is 300,000 gpd/ft, or 40,100 ft²/day. Based on the transmissivity estimated using the Theis method and a saturated thickness of 290 feet, the hydraulic conductivity is 138 ft/day.

Analysis of recovery period data (Figure 14) plotted as elapsed time since pumping began divided by the elapsed time since pumping stopped suggests a similar transmissivity of 466,000 gpd/ft or 62,300 ft²/day. Using this transmissivity and a saturated thickness of 290 feet, the hydraulic conductivity is 215 ft/day. Note that the early recovery data (right side of Figure 14), after the pump was turned off, shows the systematic effect of the water released from the pump column due to the lack an effective foot valve; this recovery anomaly lasted for about 10 minutes.

The well efficiency of the pumping well can be estimated by dividing the transmissivity derived from the actual SC of the pumping well (13,800 to 18,500 ft²/day) by the transmissivity derived from time-drawdown analysis methods (40,100 ft²/day [Theis method] to 65,400 ft²/day [Cooper-Jacob method]). Comparison of the estimated transmissivity suggests that HDWD 24 is between 30 and 50 percent efficient. However, it is noted that well efficiencies are probably underestimated due to the influence of the hydraulic barriers on actual SC data.

Note that a reliable storage coefficient could not be estimated from this pumping test because of the early time- drawdown limitations and boundary conditions encountered. The aquifer tapped by HDWD 24 is probably unconfined with a specific yield between 10 and 15 percent.

4. GROUNDWATER MODELING AND ANALYSIS

A water balance and numerical groundwater flow model was constructed and used to assist in characterization of groundwater flow conditions and recharge basin feasibility. The analysis was conducted using the MODFLOW and MODPATH models. The objectives of the modeling were to evaluate hydraulic impacts associated with future operation of the Reche Spreading Grounds, including prediction of water table mounding beneath the recharge site and groundwater flow paths from the site to downgradient discharge locations.

Complete documentation of the model input, construction, calibration process, and results is included in Appendix E. The model area is shown on Figure 7. The model area includes key portions of the Pipes and Reche groundwater subbasins encompassing the spreading grounds, and active water supply wells, including HDWD Well 24, BDVWA Wells 2, 3, 4, 6, 7, 8, and 9, and CSA 70 W-1 Wells 1, 2, and 3. Aquifer properties including heterogeneous aquifer permeability, thickness, and storage coefficients were simulated appropriately across the model area, and appropriate boundary conditions were also developed. The model was calibrated to observed water levels between 1995 and 2009. Once calibrated, planned recharge operations were simulated using the flow model. Water table mounding heights over time and flow paths and travel times between the recharge site and wells were simulated using anticipated recharge and pumping rates and schedules.

4.1 Spreading Basin Size and Capacity

The infiltration rate needed to accept 1,500 AF over a six-month recharge period via a surface spreading grounds area of five acres was compared with the estimated vertical hydraulic conductivity of selected vadose zone soil samples. For a five-acre spreading basin area recharging 1,500 AF/six months, the estimated infiltration rate is 1.64 feet/day. Hydraulic conductivities of the vadose zone soil samples averaged 4.13 feet/day (Table 2). Under a hydraulic gradient of 1 (which is likely to occur for ponded water conditions), the infiltration capacity is equivalent to the hydraulic conductivity. Therefore, the infiltration capacity of the soil materials beneath the proposed recharge site exceeds the planned operational infiltration rate of the five-acre recharge site, and the site is capable of accepting 1,500 AF over a period of six months.

4.2 Flow Modeling Results

Details of the construction, calibration, and results of the Pipes and Reche groundwater basin MODFLOW model are presented in Appendix E. The final model was developed after preliminary and intermediate calibration runs, based on the initial results and modified based on observed model response to input parameter changes. In summary, good calibration quality was achieved with relatively small differences between observed and simulated heads in space

and time. The final calibrated steady state models simulate flows within and between the Pipes and Reche subbasins, which are consistent with observed conditions.

The model was subsequently used to predict the mound heights, flow paths, and travel times of recharged water under a 1,500 AF/six month operational scenario. A five-acre recharge area was simulated in Pipes Wash, and transient flow was simulated in response to multiple recharge events. The initial operational scenario simulated was four 1,500 AF/six-month recharge events over alternate years. Groundwater elevations and flowpaths were simulated over time and used to assess performance of the recharge facility and groundwater basin response.

4.3 Groundwater Mounding

For a surface recharge project, water levels rise beneath the recharge area creating a groundwater mound. The height and extent of this mound varies over time with hydraulic properties of the aquifer and the amount of water being recharged. The development of a groundwater mound beneath the spreading grounds was evaluated using the MODFLOW model. The model estimates the groundwater elevations and corresponding height of the groundwater recharge mound as a function of time and distance from the recharge area.

The calculated heights and distribution of the mound at the end of the first six-month recharge period is illustrated on Figure 15. The mound height over time directly beneath the spreading basin is illustrated on Figure 16. As shown on the figures, the maximum mound height beneath the spreading basin is approximately 19 feet after the first six-month recharge period, 20 feet after the second six-month recharge period, and 22 feet after the third six-month recharge period. Groundwater levels are expected to increase 1 foot or more up to 8,000 feet to the northwest of the spreading grounds. As shown on Figure 15, water levels contours stack up against Pipes Barrier due to the low permeability of the fault zone. The predicted maximum groundwater level rise is approximately 5 feet at HDWD 24 (4,300 feet from the center of the spreading grounds).

4.4 Groundwater Flowpaths

Figure 17 shows the simulated groundwater flowpaths from the Reche Spreading Grounds during and after three 6-month recharge events. As shown on the figure, recharge water diverges radially away from the recharge area before trending northeast in the general direction of HDWD 24. The travel time between the recharge site and HDWD 24 is approximately 2 to 3 years.

5. WATER QUALITY EVALUATION

Potential impacts to groundwater quality from proposed recharge of SWP water at the Reche Spreading Grounds were evaluated for this Study. The process of mixing imported SWP water with native groundwater could potentially impact groundwater quality in the Reche Subbasin by introducing contaminants in SWP water to groundwater and/or inducing geochemical reactions in the subsurface that precipitate or dissolve minerals present in the aquifer formation, groundwater, or recharge water. In addition, as imported SWP water percolates through the base of the spreading grounds, recharged SWP water may initially mobilize and transport any soluble salts and/or contaminants in the underlying unsaturated zone to the water table. Finally, as observed in the Warren Subbasin south of the Study Area (Nishikawa et al., 2003), rising groundwater due to enhanced recharge (groundwater mounding) can also entrain naturally occurring or anthropogenic contaminants in the unsaturated zone (e.g., nitrate) or cause migration of low quality water away from the spreading grounds.

This section presents the water quality results for samples collected from BDVWA MW1 and MW2 for this Study. These results, in combination water quality data for BDVWA MW1 and MW2 and major production wells in the Reche Subbasin, were used to evaluate each of the potential water quality impacts from recharging SWP water.

5.1 Water Quality Sampling and Analysis for BDVWA MW1 and MW2

After installation and development of the monitoring wells, groundwater quality samples were obtained from BDVWA MW1 and MW2 on September 23 and 24, 2010, respectively. The sample from monitoring well BDVWA MW1 was analyzed for the following water quality parameters:

- General Chemicals (inorganic parameters and major anions)
- Metals (heavy metals and major cations)
- Volatile Organic Compounds (VOCs)
- Semi-volatile Organic Compounds (SVOCs)
- Pesticides and Herbicides
- Radionuclide's including Gross Alpha and Beta Radiation, Uranium, Radium 226 and 228, Strontium, and Tritium

The sample from monitoring well BDVWA MW2 was analyzed for general chemicals, metals, and gross alpha radiation only. The water samples were transported under chain-of-custody to Clinical Laboratory San Bernardino (Grand Terrace, CA).

Table 4 summarizes the water quality sampling results for BDVWA MW1 and MW2; the Certified Analytical Laboratory Report is included as Attachment F. Ambient groundwater quality beneath the proposed spreading grounds as measured in the water quality samples from

BDVWA MW1 and MW2 is generally good, with relatively low TDS, nitrates, and heavy metals. TDS concentrations in BDVWA MW1 and MW2 are 270 and 320 milligrams per liter (mg/L), respectively. Low concentrations of two volatile organic compounds TCE and PCE were detected in the sample from BDVWA MW1 but the concentrations were below State and Federal MCLs. Detectable concentrations of uranium and gross alpha radiation were also measured in the water quality samples, but the concentrations were below State and Federal MCLs.

5.2 Impacts of Mixing SWP Water and Native Groundwater

The predominant beneficial use of groundwater in the Study Area is municipal water supply. Therefore, the significance of potential impacts is defined by drinking water standards, including maximum contaminant levels (MCLs) and health advisory levels. Primary MCLs are enforceable standards based on potential impacts to human health; secondary MCLs are associated with aesthetic impacts such as taste, color, or odor, but are not considered to be a risk to human health.

For an assessment of the potential groundwater quality impacts associated with mixing SWP water and native groundwater, SWP water quality data were obtained, evaluated, and compared to current groundwater quality in the Reche Subbasin.

5.2.1 SWP Water Quality

The quality of SWP water was evaluated using analytical results from discrete monthly grab samples and continuous automated station water quality data downloaded from the California Department of Water Resources Division of Operations and Maintenance State Water Project website. Based on communications with MWA, it was determined that the Check 41 water quality monitoring station located on the California Aqueduct is representative of current SWP water quality for the Morongo Basin Pipeline.

Inorganic and Physical Water Quality

Table 5 summarizes the inorganic water quality data for monthly grab water quality samples collected at SWP Check 41 from January 2008 through September 2009. As shown in the table, detected concentrations of constituents in SWP water analyzed at Check 41 are generally below their respective primary or secondary MCL. Manganese was detected in one month above its secondary MCL, but for the other 18 months was not detected above its reporting limit. In addition, turbidity in SWP water is consistently detected above the secondary MCL; however, turbidity is not expected to impact groundwater quality, as any suspended solids in SWP water will be filtered out by the aquifer formation prior to reaching the groundwater table. The average TDS concentration and specific conductance (or electrical conductivity (EC)) of SWP from

January 2008 to September 2009 was 286 milligrams per liter (mg/L) and 495 microSiemens per centimeter (µS/cm), respectively.

To characterize the inorganic water chemistry for SWP, major cation and anion data are plotted on a Trilinear Diagram, shown on Figure 18. Data from separate samples are grouped together in the yellow highlighted fields on the three portions of the plot. These data provide information on the general water chemistry of SWP and indicate that SWP water is generally neutral and can be categorized as sodium/chloride-type water.

In addition to monthly grab samples, DWR also continuously monitors for several physical properties in SWP water, including EC and pH. Using a conversion factor, EC values can also be used to estimate TDS, providing data to supplement the measured TDS concentrations in the monthly grab samples. Figure 6 shows the daily EC data and estimated TDS values for SWP water at Check 41 from January 2000 to December 2009. As shown on the figure, the EC varied during this period generally between 300 and 700 μ S/cm, with an average of 452 μ S/cm, similar to average EC in 2008 and 2009. The average EC value equates to a TDS concentration of 262 mg/L (based on the average conversion factor of 0.58 EC (μ S/cm) = TDS (mg/L) derived from monthly grab sample data). The average pH value of SWP water at Check 41 from January 2000 to December 2009 was 8.05.

Organic Water Quality

DWR routinely monitors SWP water for over 150 organic compounds, including pesticides, herbicides, and volatile organic compounds (VOCs). Grab samples are collected and analyzed in March, June, and September of each year. Based on water quality results obtained from eight quarterly sampling events from March 2007 through September 2009, only two organic contaminants (the herbicide simazine and the pesticide diuron) were detected in four of the eight quarterly sampling events of SWP water at Check 41. Detected concentrations of simazine were 0.03, 0.05, 0.1, and 3.35 micrograms per liter (μ g/L), which are below the MCL for simazine of 4 μ g/L. Currently, no MCL has been established for diuron; detected concentrations of diuron in SWP water at Check 41 were 0.25, 0.99, 1.65 and 7.72 μ g/L, which are below the USEPA maximum health advisory level of 10 μ g/L.

5.2.2 Groundwater Quality in the Reche Subbasin

Groundwater quality in the Reche Subbasin was characterized from water quality samples collected from BDVWA MW1 and MW2 for this Study and from 2008 and 2009 groundwater quality data for the seven major water supply wells located in the subbasin. Water supply wells include those operated by BDVWA, CSA 70 W-1, and HDWD.

Inorganic and Physical Water Quality

Table 6 summarizes the most recent inorganic and physical water quality data from BDVWA MW1 and MW2 and for major production wells in the Reche Subbasin. The table shows that inorganic and physical water quality in BDVWA MW1 and MW2 and in major water supply wells in the Reche Subbasin are very similar. Overall, groundwater quality in the Reche Subbasin is high, with all constituents meeting primary and secondary drinking water standards. TDS concentrations in all wells range from 180 to 320 mg/L, with an average TDS concentration of 253 mg/L. Based on the comparison of TDS concentrations for SWP water in the Morongo Basin Pipeline (average TDS concentration of 262 mg/L since 2000) and native groundwater, recharge of SWP water is not expected to significantly increase the concentration of soluble salts in the Reche Subbasin. These findings are in agreement with a recent study completed by MWA (2007) that evaluated the effect of importing 1,000 AFY of SWP water on TDS concentrations in the Ames Valley Basin and found that there would be effectively no change in TDS concentrations in the Ames Valley Basin from importation of SWP water. In addition, the pH of native groundwater in the Reche Subbasin ranges from 7.8 to 8.1, similar to the average pH of SWP water (8.05). Therefore, recharge of SWP water is not expected to change the pH of native groundwater significantly.

Figure 18 shows the inorganic water quality data for production wells in the Reche Subbasin compared with SWP water on a Trilinear Diagram. The figure shows that although the inorganic composition of native groundwater and SWP water are slightly different, mixing of the two waters will result in a relatively neutral water type and, as such, is not expected to degrade groundwater quality in the Reche Subbasin (a neutral water type is indicated by water chemistry that plots in the central portion of the center diamond on Figure 18). Water chemistry resulting from the mixing of SWP water and local groundwater will plot along the mixing lines in between the two water signatures). Collectively, these data do not indicate a significant impact to groundwater quality from the mixing of SWP water in the Reche Subbasin.

Organic Water Quality

Based on results of 2008 and 2009 water quality results from major water supply wells, no organic compounds, including VOCs, pesticides, and herbicides, have been detected in groundwater. Low concentrations of two volatile organic compounds (TCE and PCE) were detected in the sample collected from BDVWA MW1, but concentrations are below State and Federal MCLs.

As described in Section 5.2.1, only two organic constituents (simazine and diuron) have been detected during four of last eight quarterly sampling events of SWP water at Check 41. However, in each case, detected concentrations are below respective MCL and health advisory levels and are not expected to significantly impact groundwater quality.

Radionuclide Water Quality

Detectable concentrations of uranium and gross alpha radiation were also measured in water quality samples from BDVWA MW1 and MW2, but concentrations are below State and Federal MCLs.

5.3 Impacts from Percolation of SWP Water

Previous studies have demonstrated that soils in environments with limited areal recharge like the High Desert may contain naturally elevated concentrations of salts (Graham et al., 2008, Izbicki, 2008). Naturally-occurring nitrate in soil is a concern in some High Desert environments. These constituents and others can be leached by artificially recharged water and transported to groundwater (Izbicki, 2008). Previous researchers have identified such conditions in areas capped by desert pavement (Graham et al., 2008) or where geomorphic process lead to channel abandonment and stranding of infiltrated water in the unsaturated zone (Izbicki, 2007). Although the possibility of naturally occurring salts including nitrate in the unsaturated zone beneath Pipes Wash is not precluded, desert pavement does not occur within Pipes Wash, and Pipes Wash is deeply incised through the landscape, indicating that the wash has not migrated significantly from its current position in a relatively long time. In addition, this leaching process is most likely to occur during the initial period (or first flush) of recharge water through the unsaturated zone and would not represent a sustained source of constituents, even if present. Monitoring wells BDVWA MW1 and MW2 have also been installed to monitor changes in groundwater quality in the future.

Previous studies have also found that concentrated anthropogenic contaminants in the unsaturated zone (e.g., septic tank return flows) can be leached by artificially recharged water to groundwater (Umari, et al., 1993). The potential for recharge water percolating through the unsaturated zone to leach anthropogenic contaminants, such as nitrate, beneath the proposed spreading basin is likely to be low, because there is no development within Pipes Wash. Results of queries from the State Water Resources Control Board (SWRCB) *Geotracker* and Department of Toxic Substances Control (DTSC) *Envirostor* databases also show that there are currently no active regulated environmental contamination facilities within the entire Ames Valley Groundwater Basin. Historically, there have been two minor soil contamination cases located more than 2 miles west of the proposed spreading grounds: 1) a diesel tank leak at Hero Market located at 1160 Old Woman Springs Road in 2004, and 2) a gasoline spill as a result of vandalism at the BDVWA maintenance yard in 2009. In both instances, contamination was limited to shallow soils and immediately remediated. Based on these findings, the potential for groundwater impacts related to mobilized subsurface contamination from industrial facilities is considered insignificant.

In addition to the potential leaching of constituents in the vadose zone, percolation of constituents in SWP water could result in higher dissolved organic carbon (DOC) in

groundwater. If sufficiently high, this condition could result in elevated trihalomethanes (TTHMs), a by-product of drinking water chlorination, once groundwater is extracted and treated. DOC values for SWP water are shown on Table 5 and average 2.3 mg/L, a value typical for surface waters. These concentrations are expected to decline prior to reaching groundwater due to bacterial assimilation of DOC in the relatively thick vadose zone. In addition, HDWD has been recharging SWP water in the nearby Warren Valley Subbasin since 1995, and TTHM concentrations in HDWD's water supply have always met drinking water standards (HDWD, 2009).

5.4 Impacts from Groundwater Mounding

Nishikawa et al. (2003) found that high nitrate concentrations in groundwater following recharge of SWP water through spreading basins in the Warren Subbasin were caused by the entrainment of septic tank return flows (septage) by a rising groundwater table. Groundwater elevations adjacent to spreading basins in the Warren Subbasin were found to have increased as much as 250 feet.

To evaluate the potential for such rising groundwater associated with recharge operations to entrain contaminants in the unsaturated zone, the MODFLOW model was used to predict the height of the groundwater mound over time, as described in Section 4.3. Conceptually, the imported SWP water percolates through the unsaturated zone to the water table, resulting in a rise in water levels beneath and in the vicinity of the spreading grounds, creating a groundwater mound. Once recharge is halted, the groundwater mound will dissipate. Based on the results of recharge model, only a few feet of mounding are predicted for recharge of 1,500 AF over six months. In comparison to observed groundwater level declines in some wells within the Reche Subbasin over the past 20 years (greater than 25 feet in some areas), recharge operations are not expected to raise groundwater levels even above historical elevations. As such, entrainment of constituents that have not been saturated in the past is not likely to occur.

A review of a recent aerial photograph of the Project area indicates less than about 10 parcels on the outer edge of the potential zone of influence that may have a septic tank. Additionally, as mentioned previously, there are no regulated environmental sites within the Ames Valley Groundwater Basin. Thus, the risk of industrial contamination becoming entrained or mobilized as a result of proposed recharge operations is judged to be insignificant. However, it may be prudent to conduct a septic tank survey in the immediate Project area to provide baseline conditions prior to recharge.

6. REGULATORY PERMIT REQUIREMENTS

6.1 Regulatory Agencies

Todd Engineers and Kennedy/Jenks contacted the local, State, and Federal Regulatory Agencies with oversight responsibilities for the Reche recharge project to inventory and itemize the permits from each Agency required to construct and operate the Reche Spreading Grounds. The following summarizes the required or potentially required permits by agency. Some of this information was previously provided to BDVWA in a Memorandum dated April 29, 2010 and subsequent emails.

County of San Bernardino

The County of San Bernardino has several agencies that may have regulatory oversight responsibilities for this project. If construction of a pipeline will be necessary along the right-of-way of any county dedicated road, then the County of San Bernardino, Public Works Department, Transportation Operations Division, Transportation Permit Section will be responsible for issuing a permit. However, in Township 2 N, Range 5 E, Section 24, the road identified as Winters Road, is not fully dedicated to the County of San Bernardino. This means that the County has only limited jurisdiction over this road. The letter requesting a "no objection permit" was submitted to the County.

The County of San Bernardino, Public Works Department, Transportation Operations Division, Flood Control District was contacted regarding any rights-of-way that might be impacted by the construction of an infiltration basin within Pipes Wash. The County Flood Control District does not have any rights-of-way in the Pipes Wash area and as such they do not require any permits for work within the Pipes Wash.

The County of San Bernardino, Planning Department, Land Development, was contacted. They indicated that they had no additional comments except to ensure that adequate provisions should be made to intercept and conduct the tributary off-site and on-site drainage flows around and though the site in a manner that will not adversely affect adjacent or downstream properties at the time the site is developed.

Mojave Desert Air Quality Management District

The Mojave Desert AQMD is responsible for any projects that may generate or control air pollutants. Since this project may generate dust during the construction of a surface impoundment, the District was contacted to see what requirements may be applicable. If the surface impoundment is greater than 100 acres, then a Dust Control Plan will be required for the project. Otherwise, the project is exempt from specific regulations although the construction may be subject to general best management practices to reduce air pollution affecting neighboring properties.

California Department of Public Health

This Agency regulates the treatment of drinking water once it is removed from the groundwater basin. It does not regulate the discharge into the groundwater recharge basin. No permits are required from the Department of Public Health to construct or operate the spreading grounds.

California Department of Fish and Game

This Agency regulates activities that may impact the fish and game resources of the State of California. As such, they will issue a "stream bed alteration" permit for any work in Pipes Wash, and potentially "take" permits for plants and desert tortoise, if required.

California Regional Water Quality Control Board (Region 7, Colorado River)

The Colorado River RWQCB will be responsible for issuing a permit to discharge water to either Pipes Wash or to the land. During the construction of monitoring wells, if any dewatering activities resulted in the discharge of well purge water to the land, a RWQCB permit would have been required. Such a discharge did not occur during well construction, as water was contained and discharged offsite, so no permit was needed. For future discharges into the Pipes Wash, the General Order No. R7-2009-0300 issued by the RWQCB may be applicable. The Mojave Water Agency may obtain a general permit on behalf of BDVWA for recharge operations.

U.S. Army Corps of Engineers (ACOE)

The ACOE suggested that a request be sent to them asking whether Pipes Wash lies within the "Jurisdictional Waters of the Corps" or whether they are "isolated waters". If Pipes Wash is subject to the Corps "Jurisdictional Waters", then any activity such as constructing an infiltration basin will be subject to the Corps Nationwide 404 permit. If Pipes Wash is determined to be an "isolated water", then the ACOE does not have any jurisdiction unless the project involves filling more than ½ acre of land. Then an individual 404 permit would be required.

U.S. Fish and Wildlife Service

The U.S. Fish and Wildlife Service office responsible for the Study Area is the Ventura Office. They believe that the Desert Tortoise is the major endangered species that may be present in the area. Another threatened species is the Parish's Daisy, a plant that is associated with carbonate formation and that may be washed down the various washes. The Agency indicated that once the project is authorized to proceed, a formal request of the presence of Endangered and Threatened Species within the project area should be submitted to their office. If this project proceeds on BLM land, the BLM must request a Section 7 Consultation with the US Fish and Wildlife Service. One of their concerns will be with the potential impact to wildlife species from the construction of this project.

U.S. Bureau of Land Management

This agency was not contacted by Todd Engineers or Kennedy/Jenks because BVWDA directly communicated with the U.S. Bureau of Land Management. Todd Engineers did comply with the desert tortoise mitigation measures during field investigation activities as required by BLM.

6.2 Regulatory Permit Status

US Army Corps of Engineers

The US ACE has been requested to make a determination as to whether Pipes Wash is a "jurisdictional water" under the Corps authority. On November 5, 2010 ACOE staff indicated they would be providing a letter within 21 days indicating the area is "non jurisdictional".

U.S. Fish and Wildlife Service and U.S. Bureau of Land Management

A Federal Endangered Species "Take" permit (A Section 10 permit) is required for any activity that occurs on Federal Lands (e.g., Bureau of Land Management) and that involves the destruction or "taking" of an endangered or threatened species (Desert Tortoise, etc.). This permit is called a Consultation Permit. BDVWA is directly negotiating this permit with the Bureau of Land Management.

Final permits or confirmations that permits will not be required will be obtained from agencies after design specifications are completed.

7. CONCLUSIONS

The following conclusions can be made based on the assessment of soil and aquifer properties, evaluation of water quality, performance of a preliminary field investigation, development of a site conceptual model and numerical groundwater flow model, and analysis of available storage and groundwater mounding.

- The vadose (unsaturated) and saturated zones beneath the proposed Reche Spreading Grounds are comprised primarily of sand and sufficiently permeable to provide for surface recharge. No significant low-permeability layers appear to be present in the vadose zone that would impede the percolation of recharge water to the water table.
- The current thickness of the vadose zone (determined by depth to water) is about 230 feet beneath the recharge site, providing sufficient vadose zone capacity for recharge and increased water table elevations.
- Measured soil and aquifer hydraulic properties including porosity and hydraulic conductivity indicate that recharge of 1,500 AF over six months is feasible.
- Analyses of water table mounding using the MODFLOW model indicate that more than 1,500 AF could potentially be stored on a seasonal basis for recovery.
- Ambient groundwater quality beneath the proposed spreading grounds as measured in
 the water quality samples from BDVWA MW1 and MW2 is generally good, with relatively
 low TDS nitrates and heavy metals. Low concentrations of two volatile organic
 compounds TCE and PCE were detected in the sample from BDVWA MW1, but
 concentrations were below State and Federal MCLs. Detectable concentrations of
 uranium and gross alpha radiation were also measured in the water quality samples, but
 the concentrations were below State and Federal MCLs.
- Based on a water quality evaluation comparing native groundwater and SWP water quality and potential impacts associated with groundwater mounding, recharge of SWP water at the Reche Spreading Grounds is not expected to degrade groundwater quality in the Reche Subbasin.
- Local, state, and federal regulatory agencies were contacted to identify permitting requirements for construction and operation of the recharge project. The recharge facility is located on Federal land under BLM jurisdiction. Permits will not be required by local county regulatory agencies. A general discharge permit may be required by the RWQCB, and a consultation permit may be required by BLM. Final permits or confirmations that permits will not be required will be obtained from agencies after design specifications are completed.

8. REFERENCES

American Society of Testing and Materials (ASTM). Standard D 2325 - Standard Test Method for Capillary-Moisture Relationships for Coarse- and Medium-Textured Soils by Porous-Plate Apparatus.

American Society of Testing and Materials (ASTM). Standard D 5084-03 - Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter.

California Department of Water Resources (DWR) (2004) Bulletin 118 Groundwater Basin descriptions, Ames Valley Groundwater Basin, Update February 27, 2004.

Driscoll, Fletcher G (editor) (1986) Groundwater and Wells (second edition), published by Johnson Division, St. Paul, Minnesota.

Graham, R. C., Hirmas, D. R., and Wood, Y. A. (2008) *Large near-surface nitrate pools in soils capped by desert pavement in the Mojave Desert, California*. Geology, 36(3), pp. 259-262, March 2008.

GSI/Water (2000) Investigations of possible effects of pumping Hi-Desert Water District Well 24 in the Reche Subbasin on water level changes in Big Horn Desert View Water Agency Wells 2, 3, 4, and USGS monitoring well 02N/05E-27A in the Flamingo Heights area of Pipes Subbasin. November 30.

Hi-Desert Water District (HDWD) (2009) *Annual Water Quality Report*, water testing performed in 2008.

Izbicki, J. A. (2008) *Artificial Recharge through a Thick, Heterogeneous Unsaturated Zone*. Ground Water, 46(3), pp. 475-488.

Izbicki, J. A. (2007) *Physical and Temporal Isolation of Mountain Headwater Streams in the Western Mojave Desert, Southern California*. Journal of the American Water Works Association, 43(1), pp. 26-40.

Kennedy/Jenks/Todd LLC Consultants (2007) Basin Conceptual Model and Assessment of Water Supply and Demand for the Ames Valley, Johnson Valley, and Means Valley Groundwater Basins. April.

Mojave Water Agency (2007) Groundwater Quality Analysis Technical Memorandum / Phase 1 between Mojave Water Agency and Schlumberger Water Services, May 7, 2007.

Nishikawa, T., Densmore, J.N., Martin, P., Matti, J. (2003) Wvaluation of the Source and Transport of High Nitrate Concentrations in Ground Water, Warren Subbasin, California, USGS Water-Resources Investigations Report 03-4009.

Ruekert & Mielke, (R&M) (2007), Report on the Geophysical Investigations for the Ames, Means, and Johnson Valleys, near Yucca Valley California. March 2007.

Schafer, David C. (1978) Casing storage can affect pumping test data, The Johnson Drillers Journal. January-February.

Stamos, C.L., Huff, J.A., Predmore, S.K., and Clark, D.A. (2004) Regional Water Table (2004) and Water-Level Changes in the Mojave River and Morongo Ground-Water Basins, Southwestern Mojave Desert, California.

Umari, A. M., Martin, P., and Schroeder, R. A. (1993) Potential for Ground-Water Contamination from Movement of Wastewater through the Unsaturated Zone.

Tables

Table 1
BDVWA MW1 Soil Sample Hydraulic Properties
Reche Spreading Grounds Recharge Feasibility Study
Bighorn Desert View Water Agency

Sample Depth feet	Lithology	Moisture Content %	Dry Density (pcf)	Total Porosity %	Effective Porosity %	Hydraulic Conductivity (cm/sec)	Hydraulic Conductivity (feet/day)
10.0 - 12.5	Well-Graded SAND (SW)	7.9	98.19	45	23	1.42E-03	4.03
25.0 - 27.5	Well-Graded SAND (SW)	7.8	101.88	43	22	1.43E-03	4.05
50.0 - 52.5	Well-Graded SAND (SW)	7.6	99.48	44	22	2.19E-03	6.21
100.0 - 102.5	Well-Graded SAND (SW)	9.8	104.36	41	22	1.76E-03	4.99
150.0 - 152.5	Well-Graded SAND (SW)	10.0	99.82	44	23	1.37E-03	3.88
242.5 - 245	Poorly-Graded SAND (SP)	10.4	103.12	42	23	5.63E-04	1.60
A	verage Value	8.9	101.14	43	23	1.46E-03	4.13

Samples analyzed by Keantan Testing Laboratories (Diamond Bar, California)

Table 2
Monitoring Well Construction Details
Reche Spreading Grounds Recharge Feasibility Study
Bighorn Desert View Water Agency

Well Name	UTM 83 Northing ¹	UTM 83 Easting ¹	Monitoring Well Casing Elevation ¹	Date Completed	Well Depth	Screen Interval	Filter Pack Interval	Seal Interval	Water Level Date	Depth to Groundwater	Groundwater Elevation
	feet	feet	feet msl		feet	feet	feet	feet		feet	feet msl
BDVWA MW1	553813	3788804	3240	9/11/2010	256.5	236 - 256	231 - 256.5	0 - 231	9/23/2010	236	3004
BDVWA MW2	554669	3789565	3282	9/16/2010	348.5	298 - 348	293 - 348.5	0 - 293	9/23/2010	298	2984

¹Northing and easting coordinates and elevations were obtained from GPS and are approximate; survey to be perfromed in the future.

Table 3 HDWD Well No. 24 Aquifer Test Results Reche Spreading Grounds Recharge Feasibility Study Report Bighorn-Desert View Water Agency

HDWD 24 Constant-Rate Pumping	յ Test		
Test Date	5-Oct-10		
Test Duration	1440 minutes		
Average Pumping Rate	759 gpm		
Drawdown in Pumping Well	11 feet (approximate)		
Specific Capacity	69 gpm/foot		
Radial Distance to Observation Well BDVWA MW2	35 feet		
Drawdown in Observation Well at end of test	2.76 feet		
Aquifer Saturated Thickness	290 feet		
Aquifer Transmissivity from Specific Capacity	13,800 to 18,500 feet ² /day		
Hydraulic Conductivity from Specific Capacity	48 to 64 feet/day		
Aquifer Transmissivity from Drawdown in BDVWA MW2	44,700 feet ² /day		
Hydraulic Conductivity from Drawdown in BDVWA MW2	154 feet/day		
Aquifer Transmissivity from Recovery in BDVWA MW2	62,300 feet ² /day		
Hydraulic Conductivity from Recovery in BDVWA MW2	215 feet/day		

Table 4
Groundwater Quality Sampling Results Summary
Reche Spreading Grounds Recharge Feasibility Study
Bighorn-Desert View Water Agency

		Reporting Limit and	BDVWA MW1	BDVWA MW2	
Analyte	Test Method	Units ¹	Result	Result	
General Chemical Analytes					
Alkalinity Total as CaCO3	SM2320 B	5.0 mg/L	190	170	
Bicarbonate	SM2320 B	5.0 mg/L	230	210	
Calcium	SM3500CaD	1.0 mg/L	49	43	
Carbonate	SM 2320 B	5.0 mg/L	ND 17	ND	
Chloride	EPA 300.0	1.0 mg/L	17	34 NT	
Langelier Index at Source Temp Langelier Index at 60 C	SM 203 SM 203	NA NA	0.11 0.81	NT NT	
Aggressive Index	SM 203	NA NA	12.06	NT	
Cyanide	SM 4500 CNF	100 ug/L	ND	ND	
Specific Conductance	SM 2510 B	2.0 umhos/cm	530	440	
Fluoride	EPA 300.0	0.10 mg/L	0.83	1.1	
Total Hardness as CaCO3	SM 2340 C	5.0 mg/L	140	130	
Hydroxide	SM 2320 B	5.0 mg/L	ND	ND	
MBAS	SM 5540 C	0.10 mg/L	ND	ND	
Nitrate	EPA 353.2	2.0 mg/L	2.5	2.2	
Nitrate + Nitrite as N	EPA 353.2	10,000 ug/L	580	500	
Nitrite as N	EPA 353.2	1,000 ug/L	ND	ND	
Perchlorate	EPA 314	4.0 ug/L	ND	ND	
pH Lab	SM 4500HB	NA, pH units	7.7	7.9	
Sulfate	EPA 300.0	0.50 mg/L	21	35	
TFS/Total Dissolved Solids	SM5440 C	5.0 mg/L	270	320	
Metals					
Aluminum	EPA 200.7	50 ug/L	400	610	
Antimony	SM 3113 B	6.0 ug/L	ND	ND	
Arsenic	SM 3113 B	2.0 ug/L	ND	ND	
Barium	EPA 200.7	100 ug/L	ND	ND	
Beryllium	SM 3113 B	1.0 ug/L	ND	ND	
Boron	EPA 200.7	100 ug/L	180	160	
Cadmium	SM 3113 B	1.0 ug/L	ND	ND	
Chromium (Total)	SM 3113 B	10 ug/L	ND ND	ND ND	
Copper	EPA 200.7 EPA 200.7	50 ug/L 100 ug/L	300	490	
Lead	SM 3113 B	5.0 ug/L	ND	ND	
Magnesium	EPA 200.7	1.0 mg/L	9.3	8.8	
Manganese	EPA 200.7	20 ug/L	220	110	
Mercury	EPA 245.1	1.0 ug/L	ND	ND	
Nickel	SM 3113 B	10 ug/L	ND	ND	
Potassium	EPA 200.7	1.0 mg/L	4.6	4.8	
Selenium	SM 3113 B	5.0 ug/L	ND	ND	
Silver	SM 3113 B	10 ug/L	ND	ND	
Sodium	EPA 200.7	1.0 mg/L	63	45	
Thallium	EPA 200.7	1.0 ug/L	ND	ND	
Vanadium	EPA 200.7	3.0 ug/L	4.2	3.1	
Zinc	EPA 200.7	50 ug/L	ND	ND	
Radiochemistry					
Gross Alpha	EPA 900.0	3.0 pCi/L	11	7.3	
Gross Alpha Counting Error	EPA 900.0	pCi/L	2.3	1.7	
Gross Alpha Min Detection Activity	EPA 900.0	pCi/L	1.4	1.0	
Gross Beta	EPA 900.0	4.0 pCi/L	ND	NA	
Gross Beta Counting Error	EPA 900.0	pCi/L	1.5	NA	
Gross Beta Min Detection Activity	EPA 900.0	pCi/L	1.3	NA	
Uranium	EPA 900.0	1.0 pCi/L	14	NA	
Uranium Counting Error	EPA 900.0	pCi/L	1.6	NA	
Uranium Min Detection Activity	EPA 900.0	pCi/L	0.87	NA NA	
Total Alpha Radium 226	EPA 903.0	0.549 pCi/L	0.000 +/- 0.340	NA NA	
Radium 228	Ra - 05 EPA 905.0	0.279 pCi/L 1.06 pCi/L	0.000 +/- 0.653 1.33 +/- 0.747	NA NA	
Strontium 90					

Table 4 **Groundwater Quality Sampling Results Summary Reche Spreading Grounds Recharge Feasibility Study Bighorn-Desert View Water Agency**

Analyte	Test Method	Reporting Limit and Units ¹	BDVWA MW1 Result	BDVWA MW2 Result
Volatile Organic Compounds				
Trichloroethene (TCE)	EPA 524.2	0.5 ug/L	0.57	NA
Tetrachloroethene (PCE)	EPA 524.2	0.5 ug/L	3.5	NA
All other EPA 524.2 analytes	EPA 524.2	0.5 - 5.0 ug/L	ND	NA
VOC Pesticides				
Ethylene Dibromide (EDB)	EPA 504.1	0.05 ug/L	ND	NA
Dibromochloropropane (DBCP)	EPA 504.1	0.2 ug/L	ND	NA
Semi-Volatile Organic Compounds				
All EPA 508.1 analytes	EPA 508.1	0.01 - 25 ug/L	ND	NA
•	-	•		•
Other Pesticides				
Endothall	EPA 548.1	45 ug/L	ND	NA
Diquat	EPA 549.2	4.0 ug/L	ND	NA
2,3,7,8-TCDD	EPA 1613 B	5.0 pg/L	ND	NA
,,,_				
Other Analytes				
Asbestos	EPA 600/R-94/134	0.19 million fibers/L	ND	NA

Explanations

NA - Not analyzed

ND - Not detected above reporting limit

mg/L - milligrams per liter ug/L - micrograms per liter

pg/L - picograms per liter
MBAS - Methyl blue active substances
1 - Reporting Limit includes miniumum detectable activity for radionucleides

Table 5 SWP Water Quality Summary Reche Spreading Grounds Recharge Feasibility Study Bighorn-Desert View Water Agency

	Drinking Water	SW	P Water Quality D	ata
	Standards	Mininum	Maximum	Average
	(all valu	ies in mg/L unles:	s designated othe	rwise)
MAJOR IONS		1	,	
Calcium		15	34	27
Magnesium		5	15	10
Potassium Sodium		 24	 71	
			111	59
Bicarbonate ¹ Chloride	a=ah	64	-	96 74
	250 ^b	28	100	
Sulfate MINOR IONS	250 ^b	19	81	48
	1	0.4	0.0	0.0
Boron Bromide		0.1 0.10	0.3 0.37	0.26
Iron	0.3 ^b	ND	0.010	0.20
Manganese		ND ND	0.010	0.007 ND
Nitrite and Nitrate, as N	0.050 ^b		1.80	
PHYSICAL PARAMETERS AND OT	10 ^a	0.10	1.80	0.93
Specific Conductance (uS/cm)	900 ^b	233	600	495
Total Dissolved Solids (TDS)	500 ^b	152	350	286
pH (units)	500			
Alkalinity, as CaCO ₃		 52	91	
				78
Hardness, as CaCO ₃		70	138	108
Turbidity (NTU)	5 ^b	1	18	5
Organic Carbon, Dissolved		1.0	3.7	2.3
Organic Carbon, Total		1.0	3.9	2.5
Phosphate, Ortho, as P Phosphorus, Total		0.01 0.02	0.10 0.15	0.04 0.06
TRACE METALS		0.02	0.15	0.00
Aluminum	0.1 ^a			
Antimony	0.006 ^a			
Arsenic	0.008 0.010 ^a	0.002	0.006	0.004
Barium	0.010			
Beryllium	0.004 ^a	ND	ND	ND
Cadmium				
Chromium	0.005 ^a	0.001	0.005	0.002
	0.050 ^a	0.001	0.003	0.002
Copper		0.001 ND	0.003 ND	0.002 ND
Lead	0.015 ^a	+		
Mercury	0.002 ^a			
Nickel	0.1 ^a			
Selenium	0.050 ^a	0.001	0.002	0.001
Silver	0.1 ^b			
Thallium	0.002 ^a			
Zinc	5.0 ^b	ND	ND	ND

Notes:

mg/L = milligrams per liter

uS/cm = microSiemens per centimeter

NTU = nephelometric turbidity units

-- = Not Analyzed

ND = Not detected above reporting limit

¹ Calculated bicarbonate concentration: Alkalinity x 1.2192

^a Primary Maximum Contaminant Level (MCL)

^b Secondary MCL

Table 6
Comparison of SWP and Groundwater Quality
Reche Spreading Grounds Recharge Feasibility Study
Bighorn-Desert View Water Agency

	Drinking	MONITORI					DUCTION W			
	Water	BDVWA	BDVWA	BDVWA	BDVWA	BDVWA	HDWD	CSA W-70	CSA W-70	
	Standards	MW1	MW2	6	7	9	24	1	2	3
	(MCLs)	09/23/10	09/24/10	12/08/08	12/08/08	07/27/09	11/24/09	11/06/08	11/06/08	11/06/08
				(values in	mg/L unless	designated o	therwise)			
MAJOR IONS				10		00		00	00	0.5
Calcium		49	43	42	40	39	45	26	33	35
Magnesium		9 5	9 5	7	7	66 3	8 2	2	5 2	5 3
Potassium Sodium		63	45	49	<u> </u>		37	43	46	42
Bicarbonate ¹		230	210	190	200	170	210	140	160	170
Chloride	250 ^b	230 17		190	18	24	12	140	20	170
Sulfate	250 ^b	21	34 35	34	33	48	22	28	30	28
MINOR IONS	250	21	35	34	33	48	22	28	30	28
Boron		0.18	0.16	0.15	0.13	0.12		ND	ND	0.15
Bromide										
Iron	0.3 ^b	0.3	0.5	ND	ND	ND	ND	ND	ND	ND
Manganese	0.050 ^b	0.3	0.3	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
- J	0.030 10 ^a	0.2	0.1	1.5	1.6	2.3	1°	1.4	1.6	1.4
Nitrite and Nitrate, as N PHYSICAL PARAMETERS AND O			0.5	1.5	1.0	2.5	ı	1.4	1.0	1.4
Specific Conductance (mS/cm)	900 ^b	530	440	440	450	480	440	350	390	390
Total Dissolved Solids (TDS)	500 ^b	270	320	280	290	290	250	180	200	200
pH (units)	6.5-8.5 ^b	7.7	7.9	7.9	7.9	8.1	7.8	8	8	7.9
Alkalinity, as CaCO ₃	0.5-6.5	190	170	160	160	140	170	110	130	140
Hardness, as CaCO ₃		140	130	130	130	120	150	80	110	110
,	- b	140	130			-				
Turbidity (NTU)	5 ^b			0.1	0.3	ND	ND	ND	ND	ND
Organic Carbon, Dissolved Organic Carbon, Total										
Phosphate, Ortho, as P										
Phosphorus, Total										
TRACE METALS										
Aluminum	0.1 ^a	0.4	0.61	ND	ND	ND	ND	ND	ND	ND
Antimony	0.006 ^a	ND	ND	ND	ND	ND	ND	ND	ND	ND
Arsenic	0.010 ^a	ND	ND	ND	ND	ND	0.0034	0.0041	0.0041	0.039
Barium	1 ^a	ND	ND	ND	ND	ND	ND	ND	ND	ND
Beryllium	0.004 ^a	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium	0.005 ^a	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chromium (total)	0.050 ^a	ND	ND	ND	ND	ND	0.0068	ND	ND	ND
Copper	1 ^b	ND	ND	ND	ND	ND	ND	ND	ND	ND
Lead	0.015 ^a	ND	ND	ND	ND	ND	ND	ND	ND	ND
Mercury	0.013	ND	ND	ND	ND.	ND	ND	ND	ND	ND
Nickel	0.1 ^a	ND	ND	ND	ND	ND	ND	ND	ND	ND
Selenium	0.050 ^a	ND	ND	ND	ND	ND	ND	ND	ND	ND
Silver	0.1 ^b	ND	ND	ND	ND	ND	ND	ND	ND	ND
Thallium	0.002 ^a	ND	ND	ND	ND.	ND	ND	ND	ND	ND
Zinc	5.0 ^b	ND	ND	ND	ND.	ND	ND	ND	ND	ND

Notes:

Data are from most recent water quality sample available for each well

mg/L = milligrams per liter

mS/cm = microSiemens per centimeter

NTU = nephelometric turbidity units

-- = Not Analyzed

ND = Not detected above reporting limit

¹ Calculated bicarbonate concentration: Alkalinity x 1.2192

^a Primary Maximum Contaminant Level (MCL)

^b Secondary MCL

^c Calculated from nitrate (as NO₃) result

Figures

February 2011

TODD ENGINEERS Alameda, California Figure 8 Sonic Drilling Rig Setup

TODD ENGINEERS

Alameda, California

FIGURE 9 EXPLORATORY BORING/WELL LOG FOR BDVWA MW1

PROJECT NO.: 62602 HOLE NO.: BDVWA MW1 ELEVATION: 3,230 (approx.) DATE STARTED: 8/17/2010 Lat 34'14.336" Long 116'24.941" DATE FINISHED: 9/11/2010

PROJECT LOCATION: BDVWA - Reche Recharge FS HOLE LOCATION: Pipes Wash LOGGED BY: Ryan Strandberg

DRILLING AGENCY: Boart Longyear DRILLER: Ken DRILLING EQUIPMENT: Track-mounted Sonic DRILLING METHOD: Sonic DRILLING METHOD: Sonic DRILL BIT: 8-inch SAMPLE TYPE: Core SAMPLES TAKEN: Continuous FIRST WATER: 236 feet TOTAL DEPTH (FEET) DEPTH (FEET) LITHOLOGIC DESCRIPTION Well graded Sand (SW) 2.5YR 6/3 Fine to coarse with trace pea gravel, subangular to subrounded, loose, dry. Trace Coarse Sand CASING SIZE & TYPE: 4-inch PVC Schedule 80 CASED INTERVAL: 0 - 236 feet SCREEN SIZE AND TYPE: PVC Schedule 80 0.020 slot SCREEN SIZE AND TYPE: Port Schedule 80 0.020 slot SCREEN SIZE AND TYPE: Port Schedule 80 0.020 slot SCREEN SIZE AND TYPE: Port Schedule 80 0.020 slot SCREEN SIZE AND TYPE: Port Schedule 80 0.020 slot SCREEN SIZE AND TYPE: Port Schedule 80 0.020 slot SCREEN SIZE AND TYPE: Port Schedule 80 0.020 slot SCRE	S
DRILLING EQUIPMENT: Track-mounted Sonic DRILLING METHOD: Sonic DRILLING METHOD: Sonic DRILL BIT: 8-inch SAMPLES TAKEN: Continuous FIRST WATER: 236 feet TOTAL DEPTH; 257 feet DEPTH (FEET) DRILL BIT: LITHOLOGIC DESCRIPTION CASED INTERVAL: 0 - 236 feet SCREEN SIZE AND TYPE: PVC Schedule 80 0.020 slot SCREEND INTERVAL: 236 - 256 feet SCREEN BIZE AND TYPE: PVC Schedule 80 0.020 slot SCREEN SIZE AND TYPE: PVC Schedule 80 0.020 slot SCHEDULE 80 0.020 slot SCHEDULE 80 0.020 slot SCHEDULE 80 0.020 slot SCHEDULE 80 0.020	S
DRILLING METHOD: Sonic DRILL BIT: 8-inch SAMPLES TAKEN: Continuous FIRST WATER: 236 feet TOTAL DEPTH: 257 feet DEPTH (FEET) Well graded Sand (SW) 2.5YR 6/3 Fine to coarse with trace pea gravel, subangular to subrounded, loose, dry. FILTER PACK: #2/12 Lapus Lustre Sand PACKED INTERVAL: 231 - 256.5 Feet SEAL/BUFFER TYPE: Enviroplug Medium SEAL/BUFFER INTERVAL: 228 - 231 feet SURFACE SEAL TYPE: Cement - bentonite SURFACE SEAL INTERVAL: 0 - 228 feet WELLHEAD: Above Grade Riser 3' stovepipe CABORATORY SAMPLES INTERVAL A BORATORY SAMPLES INTERVAL A COMPLETION REMARI	S
DRILLING METHOD: Sonic DRILL BIT: 8-inch SAMPLES TAKEN: Continuous FIRST WATER: 236 feet TOTAL DEPTH: 257 feet DEPTH (FEET) Well graded Sand (SW) 2.5YR 6/3 Fine to coarse with trace pea gravel, subangular to subrounded, loose, dry. FILTER PACK: #2/12 Lapus Lustre Sand PACKED INTERVAL: 231 - 256.5 Feet SEAL/BUFFER TYPE: Enviroplug Medium SEAL/BUFFER INTERVAL: 228 - 231 feet SURFACE SEAL INTERVAL: 0 - 228 feet WELLHEAD: Above Grade Riser 3' stovepipe GRAPHIC LOG LTHOLOGY WELL COMPLETION LABORATORY SAMPLES INTERVAL A.A. A. A.A. A. A.A. A.	S
DRILL BIT: SAMPLE TYPE: Core SAMPLES TAKEN: Continuous FIRST WATER: 236 feet TOTAL DEPTH: 257 feet DEPTH (FEET) LITHOLOGIC DESCRIPTION Well graded Sand (SW) 2.5YR 6/3 Fine to coarse with trace pea gravel, subangular to subrounded, loose, dry. SEAL/BUFFER TYPE: Enviroplug Medium SEAL/BUFFER TYPE: Enviroplug Type SUFFACE SEAL TYPE: Cement - bentonite SUFFACE SEAL TYPE: Cement - bentonite SUFFACE SEAL TYPE: Cement - bentonite SUFFACE SEAL TYPE: Coment - bentonite SUFFACE SEAL	S
FIRST WATER: 236 feet TOTAL DEPTH: 257 feet DEPTH (FEET) LITHOLOGIC DESCRIPTION LITHOLOGY WELL COMPLETION LITHOLOGY WELL COMPLETION LITHOLOGY WELL COMPLETION LITHOLOGY WELL COMPLETION LITHOLOGY SAMPLES INTERVAL REMARK REMARK Fig. 236 feet WELLHEAD: Above Grade Riser 3' stovepipe REMARK LABORATORY SAMPLES INTERVAL REMARK REMARK Sand (SP) 10YR 5/3 Fine with trace medium subangular	S
FIRST WATER: 236 feet TOTAL DEPTH: 257 feet SURFACE SEAL INTERVAL: 0 - 228 feet WELLHEAD: Above Grade Riser 3' stovepipe GRAPHIC LOG LITHOLOGIC DESCRIPTION LITHOLOGY WELL COMPLETION LABORATORY SAMPLES INTERVAL REMARI LABORATORY SAMPLES INTERVAL REMARI	S
DEPTH (FEET) LITHOLOGIC DESCRIPTION LITHOLOGY WELL COMPLETION LABORATORY SAMPLES INTERVAL REMARK Well graded Sand (SW) 2.5YR 6/3 Fine to coarse with trace pea gravel, subangular to subrounded, loose, dry. Sand (SP) 10YR 5/3 Fine with trace medium subangular	S
DEPTH (FEET) LITHOLOGIC DESCRIPTION LITHOLOGY WELL COMPLETION LABORATORY SAMPLES INTERVAL REMARI Pea gravel, subangular to subrounded, loose, dry. Sand (SP) 10VR 5/3 Fine with trace medium, subangular	S
(FEET) LITHOLOGIC DESCRIPTION LITHOLOGY WELL COMPLETION SAMPLES INTERVAL REMARK Well graded Sand (SW) 2.5YR 6/3 Fine to coarse with trace pea gravel, subangular to subrounded, loose, dry. Sand (SP) 10YR 5/3 Fine with trace medium subangular	S
pea gravel, subangular to subrounded, loose, dry.	
Sand (SP) 10YR 5/3 Fine with trace medium, subangular to subrounded, medium dense, damp. Trace Coarse Sand Trace Coarse Sand	
to subrounded, medium dense, damp. Trace Coarse Sand Trace Coarse Sand	
Trace Coarse Sand	l l
Trace Coarse Sand	
10 + Sand (SW) 10YR 5/4 Fine to coarse, subangular to	
T subrounded, dense, damp to dry.	
Trace Fine to coarse Gravel	
l 후	
‡ Trace Cobbles (3"), subrounded, dry	
25 + No trace Gravel/Cobbles. Few Silt (10 to 15%)	
‡	
30 	
	<u> </u>

FIGURE 9 EXPLORATORY BORING/WELL LOG FOR BDVWA MW1

PROJECT NO.: 62602
HOLE NO.: BDVWA MW1
HOLE LOCATION: Pipes Wash
ELEVATION: 3,230 (approx.)
DATE

PROJECT LOCATION: BDVWA - Reche Recharge FS
HOLE LOCATION: Pipes Wash
LOGGED BY: Ryan Strandberg
DATE 9/11/2010

	DAIL STATE	GRAPI	ng I		
DEPTH (FEET)	LITHOLOGIC DESCRIPTION	LITHOLOGY	WELL MPLETION	LABORATORY SAMPLES INTERVAL	REMARKS
40 -	Tough Drilling (large rock fragments in core barrel) Sand (SW) 10YR 5/4 Fine to Coarse with trace of fine gravel, subangular to subrounded, very dense, dry. Sand (SP) 10YR 6/3 Fine to medium with trace of coarse,				
45 —	Sand (SW) 10YR 6/3 Fine to coarse with gravel, subangular to subrounded, medium dense, dry. Sand (SW) 10YR 6/3 Fine to coarse with gravel, subangular to subrounded, medium dense, dry.				
50 -	Few gravel (10 - 15%) from 50' to 55' bgs			= = = =	50 - 52.5
55 -	Sand (SP) 10YR 6/3 Fine to medium with trace coarsw, subangular to subrounded, dense, dry.			= = = = = =	
60	Trace fine gravel			<u>=</u> <u>=</u> = <u>=</u>	
70 —	1" silty SAND, dense, fine, very dense, damp to dry. Sand (SW) 10YR 6/4 Fine to coarse with trace fine to coarse gravel, subangular to subrounded, very dense, damp.				
75 —	- - - - - - - -			<u>-</u> 	

FIGURE 9 EXPLORATORY BORING/WELL LOG FOR BDVWA MW1

PROJECT NO.: 62602

HOLE NO.: BDVWA MW1

HOLE LOCATION: Pipes Wash

ELEVATION: 3,230 (approx.) LOGGED BY: Ryan Strandberg

DATE

8/17/2010

DATE FINISHED: 9/11/2010

DEDTIL		GRAPHI	CLOG		
DEPTH (FEET)	LITHOLOGIC DESCRIPTION	LITHOLOGY	WELL COMPLETION	LABORATORY SAMPLES INTERVAL	REMARKS
90 - 100 - 110 -	10YR 5/4. No trace fine to coarse gravel 10YR 6/1. 4" dense (same as above) with few (10%) silt Sand (SW) 10YR 6/4 Fine to coarse with fine gravel, subangular to subrounded, very dense, dry to damp. Fine to coarse gravel. Cobbles up to 5" from 93' to 95'. 6" cobbles at 98.5' bgs. Trace fine to coarse gravel Sand (SW) 10YR 5/4 Fine to medium with few (10-15%) coarse and trace fine gravel, subangular to subrounded, very dense, dry to damp. Sand (SW) 10YR 7/2 Fine to coarse with fine to coarse gravel subangular to subrounded, very dense, dry.		<u> </u>		100 - 102.5

FIGURE 9 EXPLORATORY BORING/WELL LOG FOR BDVWA MW1

PROJECT NO.: 62602
HOLE NO.: BDVWA MW1
HOLE LOCATION: Pipes Wash
ELEVATION: 3,230 (approx.)
DATE

PROJECT LOCATION: BDVWA - Reche Recharge FS
HOLE LOCATION: Pipes Wash
LOGGED BY: Ryan Strandberg
DATE FINISHED: 9/11/2010

		GRAPHIC	CLOG		
DEPTH (FEET)	LITHOLOGIC DESCRIPTION	LITHOLOGY	WELL COMPLETION	LABORATORY SAMPLES INTERVAL	REMARKS
_	Higher % coarse sand at 120' bgs			_	
]				=	
-	Degraded cobble at 122.5'				
-				=	
			FaA	=	
125 -	-				
:	<u>+</u>			=	
-	Sand (SW) 10YR 6/4 Fine to medium with trace coarse, subangular to subrounded, dense, dry.	-			
130 –	Slightly cemented material from 129.5' to 130' bgs			<u>=</u>	
-				=	
] -				=	
-				_	
-	 -			=	
135 –	-			_	
				=	
:				=	
l -			had lad		
1 -	<u> </u>		169 KM	=	
140	Trace fine to coarse gravel and cobbles (~4")			_	
140 -	Trace line to coarse graver and cobbles (4)		kad laa	_	
-				=	
-	_			<u> </u>	
-			<u> </u>	=	
	 			=	
145 -	Sand (SW) 10YR 6/4 Fine with trace fine to coarse gravel,			_	
-	subangular to subrounded, very dense, dry to damp.			=	
_	_			_	
:				=	
:				=	
150 –	-			-	
-	_			=	150 - 152.5
]				Ξ	
] -	+			_]
-	Sand (SW) 10YR 6/4 Fine to medium with trace coarse,			=	
155 –	subangular to subrounded, very dense, dry to damp.		gad (bal	_	
:	 -			=	
:				= = = = = = =	
-	-			_	
-	<u> </u>		Radi Had	=	
160 -	<u>L</u>			<u>=</u>	
-	<u> </u>				
-	F			=	
	Γ				
				0	ET 4 OF 7

FIGURE 9 EXPLORATORY BORING/WELL LOG FOR BDVWA MW1

PROJECT NO.: 62602
HOLE NO.: BDVWA MW1
HOLE LOCATION: Pipes Wash
ELEVATION: 3,230 (approx.)
DATE
PROJECT LOCATION: BDVWA - Reche Recharge FS
HOLE LOCATION: Pipes Wash
ELEVATION: 3,230 (approx.)
DATE FINISHED: 9/11/2010

	DATE OF THE	GRAPHI	CLOG	<u> </u>	
DEPTH (FEET)	LITHOLOGIC DESCRIPTION	LITHOLOGY	WELL	LABORATORY SAMPLES INTERVAL	REMARKS
165 –				= =	
-	Sand (SW) 10YR 6/4 Fine to coarse with trace fine gravel, subangular to subrounded, very dense, damp.			= =	
170 –	-			= =	
- - -				= =	
175 –	T 				
- - -	3" silty clayey Sand (same as above), dense at 178" bgs.			= =	
180 – - - - -	 				
185 –	-			= = = = = = = = = = = = = = = = = = = =	
- - -	Sand (SW) 10YR 6/4 Fine to coarse with trace fine to coarse gravel, subangular to subrounded, very dense, damp.			= =	
190 -	4" cobble observed in sample.			= =	
<u>-</u> -	- - -			= = =	
195 –				= = =	
<u>-</u>	± - -				
200 <u>-</u> - - - -	 - - - -			= = = = = = = = = = = = = = = = = = = =	
-	Sand (SP) 10YR 5/3 Fine to medium, subangular to subrounded, medium.				5 05 7

TODD ENGINEERS

Alameda, California

FIGURE 9 EXPLORATORY BORING/WELL LOG FOR BDVWA MW1

PROJECT NO.: 62602
HOLE NO.: BDVWA MW1
HOLE LOCATION: Pipes Wash
ELEVATION: 3,230 (approx.)
DATE

PROJECT LOCATION: BDVWA - Reche Recharge FS
HOLE LOCATION: Pipes Wash
ELEVATION: 3,230 (approx.)
DATE FINISHED: 9/11/2010

	DATE GITTE	GRAPHI	E FINISHED:	3/11/2010	
DEPTH (FEET)	LITHOLOGIC DESCRIPTION	LITHOLOGY	WELL COMPLETION	LABORATORY SAMPLES INTERVAL	REMARKS
210 —	Sand (SW) 10YR 6/4 Fine to coarse with fine to coarse gravel and trace cobbles (up to 5"), subangular to subrounded, very dense, dry to damp.				
215 —	Sand (SP) 10YR 6/2 Fine to medium with trace coarse, and trace fine gravel, subangular to subrounded, dense, damp.			- 	
220 -	Sand (SW) 10YR 6/2 Fine to coarse with fine to coarse gravel and cobbles (up to 4"), subangular to subrounded, very dense, damp.			- - - - - -	
225	Very tough drilling conditions. Large boulder. Driller estimates ~3' thick. Sandy Silt (ML) 10YR 4/3 Fine to medium Sand, medium stiff,			- 	
230 -	very low plasticity, damp.			— — — — —	
235 —	Silty Sand (SM) 10YR 5/3 Fine to medium, subangular to subrounded, medium dense, damp. Trace gravel (fine to coarse) from 235' - 236' Sand (SP) 10YR 5/3 Fine to medium, subangular to subrounded, very dense, wet.		_	= = = =	
240 —	6" Fine to coarse Sand, dense, 239' - 239.5' Slight Silt component 240.5' - 241'				
245	Sand (SW) 10YR 5/3 Fine to coarse with trace fine to coarse gravel, subangular to subrounded, dense, wet.			= = = = = = = = = = = = = = = = = = = =	242.5 - 245

FIGURE 9 EXPLORATORY BORING/WELL LOG FOR BDVWA MW1

PROJECT NO.: 62602

HOLE NO.: BDVWA MW1

HOLE LOCATION: BDVWA - Reche Recharge FS

HOLE VATION: 3,230 (approx.)

DATE

PROJECT LOCATION: BDVWA - Reche Recharge FS

HOLE LOCATION: Pipes Wash

ELEVATION: 3,230 (approx.)

DATE FINISHED: 9/11/2010

	DATE 8/1/12		E FINISHED:	9/11/2010	
DEPTH		GRAPHIC	CLOG	LABORATORY	
(FEET)	LITHOLOGIC DESCRIPTION	LITHOLOGY	WELL COMPLETION	LABORATORY SAMPLES INTERVAL	REMARKS
250 	Silty Sand dense (same as above) from 253' - 253.5' bgs.				
= = = = = = = = = = = = = = = = = = = =	-			=	
-	Total Depth = 256.5' bgs			<u>-</u> -	
260 -	+ - -			=	
	<u> </u>			=	
=	- -			=	
=	<u> </u>			=	
:	- - -			=	
-				<u>-</u> -	
-	<u> </u>			<u>-</u> =	
_	- -			<u>=</u>	
	-			=	
					
=	 - -			= =	
	‡ <u>+</u>			<u>=</u>	
:	+ + +				
=					
] =	<u>+</u>			<u>=</u>	
	- -			= =	
-	_			=	
	I			=	

TODD ENGINEERS

Alameda, California

FIGURE 10 EXPLORATORY BORING/WELL LOG FOR BDVWA MW2

PROJECT NO.: 62602 HOLE NO.: BDVWA MW2 ELEVATION: 3,307 (approx.) DATE STARTED: 9/08/2010

PROJECT LOCATION: BDVWA - Reche Recharge FS HOLE LOCATION: Pipes Wash adazcent to HDWD 24 LOGGED BY: Ryan Strandberg Lat 34'14.700" Long 116'24.380" DATE FINISHED: 9/16/2010

	Editor Times Long Troll Times					
	DRILLING INFORMATION	COMPLETION/INFORMATION				
DRILLEF DRILLIN DRILLIN DRILL BI SAMPLE FIRST W	GAGENCY: Boart Longyear R: Ken G EQUIPMENT: Truck-mounted Sonic G METHOD: Sonic IT: 8-inch SAMPLE TYPE: Core STAKEN: Continuous VATER: 298 feet DEPTH: 348.5 feet	CASING SIZE & TYPE: 4-inch PVC Schedule 80 CASED INTERVAL: 0 - 298 feet SCREEN SIZE AND TYPE: PVC Schedule 80 0.020 slot SCREENED INTERVAL: 298 - 348 feet FILTER PACK: #2/12 Lapus Lustre Sand PACKED INTERVAL: 293 - 348.5 Feet SEAL/BUFFER TYPE: Enviroplug Medium SEAL/BUFFER INTERVAL: 288 - 293 feet SURFACE SEAL TYPE: Cement - bentonite SURFACE SEAL INTERVAL: 0 - 228 feet WELLHEAD: At grade Christy box				
DEPTH (FEET)	LITHOLOGIC DESCRIPTION	GRAPHIC LOG LITHOLOGY WELL SAMPLES REMARKS				

TOTAL DEPTH: 348.5 feet	WELLHEAD: At grade Crinisty box			
	GRAPHIC LOG			
DEPTH (FEET) LITHOLOGIC DESCRIPTION	LITHOLOGY	WELL COMPLETION	LABORATORY SAMPLES INTERVAL	REMARKS
Sand (SP) 10YR 5/4 Fine to medium, subangular to subrounded, dense, dry. 10 20 Trace coarse grains Sand (SW) 10YR 5/6 Fine to coarse with trace fine gravel, subangular to subrounded, very dense, dry.				ET_1_OF_9_

FIGURE 10 EXPLORATORY BORING/WELL LOG FOR BDVWA MW2

PROJECT NO.: 62602

HOLE NO.: BDVWA MW2

HOLE LOCATION: BDVWA - Reche Recharge FS

HOLE VATION: 3,307 (approx.) LOGGED BY: Ryan Strandberg

DATE

9/08/2010

DATE FINISHED: 9/16/2010

DEPTH (IFEET) LITHOLOGIC DESCRIPTION ITHER OFF THE SAME SHEET STATES AND SHEET SHEET STATES AND SHEET SHEET STATES AND SHEET SHEET STATES AND SHEET STATES AN
65 — — — — — — — — — — — — — — — — — — —

FIGURE 10 EXPLORATORY BORING/WELL LOG FOR BDVWA MW2

PROJECT NO.: 62602
HOLE NO.: BDVWA MW2
ELEVATION: 3,307 (approx.)
DATE
PROJECT LOCATION: BDVWA - Reche Recharge FS
HOLE LOCATION: Pipes Wash
LOGGED BY: Ryan Strandberg
DATE FINISHED: 9/16/2010

		GRAPHIC LOG		GRAPHIC LOG	
DEPTH (FEET)	LITHOLOGIC DESCRIPTION	LITHOLOGY	WELL COMPLETION	LABORATORY SAMPLES INTERVAL	REMARKS
80 - - - - - - -					
85 –	Sand (SP) 10YR 6/4 Fine to medium, subangular to subrounded, dense, dry. 1" Silt, dense @ 85.5' bgs Sand (SW) 10YR 6/4 Fine to coarse with trace fine to coarse, Gravel, subangular to subrounded, very dense, dry.				
90 -					
95					
110 -	Increased coarse Gravel from 105' - 106.5' bgs			1 =	
115 -] =	

TODD ENGINEERS

Alameda, California

FIGURE 10 EXPLORATORY BORING/WELL LOG FOR BDVWA MW2

PROJECT NO.: 62602
HOLE NO.: BDVWA MW2
ELEVATION: 3,307 (approx.)
DATE
PROJECT LOCATION: BDVWA - Reche Recharge FS
HOLE LOCATION: Pipes Wash
LOGGED BY: Ryan Strandberg
DATE FINISHED: 9/16/2010

		GRAPHIC LOG			
DEPTH (FEET)	LITHOLOGIC DESCRIPTION	LITHOLOGY	WELL COMPLETION	LABORATORY SAMPLES INTERVAL	REMARKS
	 Sand (SP) 10YR 6/4 Fine to medium with trace coarse Sand, subangular to subrounded, dense, dry. 			=	
	Sand (SW) 10YR 6/4 Fine to coarse with fine to coarse Gravel, subangular to subrounded, very dense, dry.				
1 ±	Increased Gravel from 122.5' - 123.5 bgs			_	
125	- -			<u>=</u>	
'23	-		Fail Iac	_	
l +				=	
1 -	4" cobble observed at 127' bgs 1-foot silty Sand lens from 127' - 128' bgs			<u> </u>	
1 7	-			=	
120 7	_		Roal Iran	=	
130	_ -			_	
1 7	-		<u> </u>	=	
1 4	- -		Raal taa		
1 ‡	- -				
l ‡	- -		kaal laa	=	
135	Sand (SW) 10YR 5/4 Fine to coarse,			-	
1 ‡	_ Sand (SW) 101R 5/4 Fine to coarse, - subangular to subrounded, very dense, dry to damp.			=	
1 #	- -				
1 ±	- -		[2]	_	
1 +	- -			=	
140	-		baal Raa	_	
1 3	Fine to coarse gravels present from 141' - 143' bgs			=	
I J				=	
1 7				_	
1 7	_			=	
145	<u>-</u>		Raal baa	_	
1 7	- -			=	
1 7	- -		had lad	=	
1 7	 Trace fine Gravel present		Rod (da	_	
1 ‡	- Trace line Graver present				
150	<u>-</u> _		kaa kaa	<u> </u>	
‡	<u>-</u> -		<u> </u>	=	
‡	- -				
	─ − 3" silty Sand lens			-	
	-		had laa	=	
155	- ─4" cobble at 155' bgs		Fail tia	<u> </u>	
			[22] 22	=	
	- -		had laa		
l 寸	_		kia ka	-	
]	Sand (SW) 10YR 6/4 Fine to coarse with trace fine to coarse		Dall Han		
160	 Sand, subangular to subrounded, very dense, dry to damp. 		pag Pod	=	
-	─Cobbles (~3") at 159' bgs		kad ka	-	
I 7	_		Raal kaa	=	
	- -		koal oac		

FIGURE 10 EXPLORATORY BORING/WELL LOG FOR BDVWA MW2

PROJECT NO.: 62602
HOLE NO.: BDVWA MW2
ELEVATION: 3,307 (approx.)
DATE
PROJECT LOCATION: BDVWA - Reche Recharge FS
HOLE LOCATION: Pipes Wash
LOGGED BY: Ryan Strandberg
DATE FINISHED: 9/16/2010

		GRAPHIC LOG			
DEPTH (FEET)	LITHOLOGIC DESCRIPTION	LITHOLOGY	WELL COMPLETIO	LABORATORY SAMPLES N INTERVAL	REMARKS
, ,			COMPLETIO	INTERVAL	
-	Cobbles (~4") at 163' bgs			ial =	
_				<u></u>	
165 —	-			A -	
				<u></u>	
_	_				
_					
170	_			M =	
170 —					
_	- -			:A = =	
_	<u>-</u>			<u>-</u>	
-	E		-î.	:1 <u> </u>	
-			[2:3] h	<u> </u>	
175 -				: <u> </u>	
				M =	
	Cobbles up to 5" observed at 177' bgs				
-	Sand (SP) 10YR 6/4 Fine to medium with trace coarse,		kak la		
=	subangular to subrounded, very dense, dry to damp.			∴ <u> </u> =	
	Sand (SW) 10YR 6/4 Fine to coarse with trace fine to coarse,		-î.4	:1 =	
180 —	subangular to subrounded, very dense, dry to damp.		2 <u>0</u> 2		
-			[:0]	<u>-</u>	
-				<u>j</u> =	
_) <u> </u>	
	- -			A =	
185 -				<u>.</u>	
_				M =	
_				의 =	
_			1-24 2	A =	
_	- -		12:2 I:		
_				湖 =	
190 —	-			<u>-</u>	
				∴l I	
				:A =	
	- -		242 Ja		
			hûd lû	.a =	
195 –	<u>-</u>			<u></u>	
100 _	-				
	No trace Gravel			:1 = =	
_	<u>-</u>				
				<u>-</u>	
-	E		2001 P	<u>4</u>	
200 _	F		lyûd lû	A —	
	<u>-</u> -				
-	_				
-	E				
	Fine to coarse Gravel from 204' - 205' bgs			:	
		 Long State (Long State) 			

FIGURE 10 EXPLORATORY BORING/WELL LOG FOR BDVWA MW2

	i i	GRAPHIC LOG			
DEPTH (FEET)	LITHOLOGIC DESCRIPTION	LITHOLOGY	WELL COMPLETION	LABORATORY SAMPLES INTERVAL	REMARKS
-	_			_	
210 —	Silty Sand (SM) 10YR 5/4 Fine to coarse, subangular to subrounded, dense, dry to damp.			= = = =	
215	Sand (SW) 10YR 6/4 Fine to coarse with trace fine Gravel, subangular to subrounded, very dense, dry.				
220 -	Coarse Gravel and cabbles (up to 5") observed from			<u>=</u> = = = =	
225 -	Coarse Gravel and cobbles (up to 5") observed from 222.5' - 223' bgs Sandy Silt (ML) 10YR 5/4 Fine Sand, medium stiff, very low plasticity, damp.			= = = = = =	
230 -	Sand (SW) 10YR 6/3 Fine to coarse with trace fine to coarse Gravel, subangular to subrounded, very dense, dry.			<u>-</u>	
235 - 					
240 -	Increased fine to coarse Gravel from 238.5' - 239' bgs Higher percentage fines (~35%) at 242'				
245 <u> </u>	4" cobble observed at 246.5' bgs			_	ET 6 OF 9

FIGURE 10 EXPLORATORY BORING/WELL LOG FOR BDVWA MW2

		GRAPHI	CLOG		
DEPTH (FEET)	LITHOLOGIC DESCRIPTION	LITHOLOGY	WELL COMPLETION	LABORATORY SAMPLES INTERVAL	REMARKS
250 -	Sand (SP) 10YR 5/3 Fine to medium, subangular to subrounded, dense, damp to dry.				
255 –	Sand (SW) 10YR 6/4 Fine to coarse with fine to coarse Gravel, subangular to subrounded, very dense, dry. Sandy Silt (ML) 10YR 4/4 Fine to medium Sand, stiff, very			<u>-</u> - - - -	
260 –	low plasticity, damp. Fine to coarse Sand lens from 258.5' - 259.5' bgs. Cobble lens to large fractured rock from 261' - 262.5' bgs.				
265 –	Sand (SW) 10YR 6/3 Fine to coarse with trace fine Gravel, subangular to subrounded, very dense, dry. Sand (SP) 10YR 7/3 Fine to medium with trace coarse,			= = = = = = = = = = = = = = = = = = = =	
270	subangular to subrounded, dense, dry. Slightly Silty from 269 - 270' bgs. Sand (SW) 10YR 7/3 Fine to coarse with fine to coarse			= = = = = = = = = = = = = = = = = = = =	
275	GraveÌ, subangular to subrounded, very dense, dry.			= = = = = = = = = = = = = = = = = = = =	
280 –	Sand (SP) 10YR 7/2 Fine to medium with fine to coarse Gravel, trace coarse grains, subangular to subrounded, very dense, dry.			= = = =	
:	Sand (SW) 10YR 6/3 Fine to coarse with fine to coarse Gravel, subangular to subrounded, very dense, dry. Medium Sand lens from 281' - 282' bgs. Silt lens from 282.5' - 283' bgs.				
285 - - - - - -	Sand (SP) 10YR 6/4 Fine to medium with trace coarse grains and trace fine to coarse Gravel, subangular to subrounded, very dense, dry. Silty Sand (SM) 10VR 5/4 Fine to medium with trace coarse.			- 	
	Silty Sand (SM) 10YR 5/4 Fine to medium with trace coarse, subangular to subrounded, dense, moist to wet.				ET 7 OF 9

FIGURE 10 EXPLORATORY BORING/WELL LOG FOR BDVWA MW2

	DATE STOOLS	D/ (1	E FINISHED:	3/10/2010	
DEPTH (FEET)	LITHOLOGIC DESCRIPTION	GRAPHI	WELL COMPLETION	LABORATORY SAMPLES INTERVAL	REMARKS
295 –	Sandy Silt (ML) 10YR 4/3 Fine to coarse Sand, medium stiff, low plasticity, moist. 6" cobble observed at 294' bgs.				
-	Silty Sand (SM) 10YR 5/3 Fine to coarse, subangular to subrounded, dense, moist to wet. Wet.		<u></u>	= = = =	
300 -	6" fine to medium Sand and lense from 300.5' - 301' bgs.				
305 – 	Sandy Silt to Silty Sand (ML/SM) 10YR 5/4 Fine to coarse Sand, medium stiff, low plasticity, moist to wet. Fine to coarse Gravel observed at 306' bgs Silty Sand at 306.5 bgs				
310 -	Sand (SW) 10YR 5/3 Fine to coarse with trace fine to coarse Gravel, subangular to subrounded, very dense, wet.				
315					
320 -	Sand (SP) 10YR 5/3 Fine to medium, subangular to subrounded, dense, wet.				
325 -	Sand (SW) 10YR 5/3 Fine to coarse with trace fine to coarse Gravel, subangular to subrounded, very dense, wet.				
330 -	± - - - - - -				
	<u>+</u>			_	FT 8 OF 9

FIGURE 10 EXPLORATORY BORING/WELL LOG FOR BDVWA MW2

		GRAPHIC	GRAPHIC LOG		
DEPTH (FEET)	LITHOLOGIC DESCRIPTION	LITHOLOGY	WELL COMPLETION	LABORATORY SAMPLES INTERVAL	REMARKS
340	- 4" cobble observed at 248' bgs - Sand (SP) 10YR 5/3 Fine to medium, subangular to subrounded, dense, wet. - Silty Sand lens from 344' - 345' bgs. - Trace fine Gravel present from 345' - 352' bgs.				
350					

Figure 16
Simulated Water Table
Elevations over Time
in Response to
Recharge

LEGEND

- BDVWA #6 12/8/08
- O BDVWA #7 12/8/08
- ▲ BDVWA #9 7/12/09
- □ HDWD #24 11/30/09
- HDWD #24 11/24/09
- ♦ HDWD #6 7/18/97
- O CSA 70 W-1 2/16/05
- ♦ CSA 70 W-2 2/16/05
- CSA 70 W-3 2/16/05
- BDVWA MW1 8/23/10
- BDVWA MW2 9/24/10
- SWP Water

February 2011	Figure 18
TODD ENGINEERS Alameda, California	Cation/Anion Composition of Groundwater and SWP Water

Appendix A
Drilling Permits

County of San Bernardino
Department of Public Health
Division of Environmental Health Services
385 N. Arrowhead Avenue
San Bernardino, CA 92415-0160

FAX

Date	8/9/2010	-		
Number of p	pages including cover sheet _5	-		
To: Bigh	orn Desert View Water		From:	Marvyn Cerdenio
Division		-		
Phone Fax Phone	(760) 364-3412		Phone	(909) 387-4666
CC:			Fax Phone	(909) 387-4323
REMARKS:	☐ Urgent ⊠ For you	ur review [Reply ASA	
Copy of appro-	ved well permits for 2 monitor			

DO NOT FILL IN	DEPARTMENT O ENVIRONMENTAL 385 N. Arrowher San Bernardin (909) 8 www.sbcoo	## Bernardino ## PUBLIC HEALTH ## HEALTH ## HEALTH Date
1. OWNER: Name BIGHORN DESE Site Address 6 22 S. JE City YUCCA VALLEY Zip Malling Address SAME City Zip Telephone Number (760) 364	MEZ TRAIL 92284	Jiems 6 through 9 to be estimated for new wells, exact for all other wells 5. ANNULAR SEAL: Seal Depth 175 ft. Furnished by: Owner Contractor Driven Comductor Dia. in., Wall (Gage) Sealing Material GROUT, Thickness 3 in. 6. DEPTH OF WELL (feet): Proposed 200 Existing DIAMETER OF BORE (in.): 10
And the second second	NEAR S Neme J 6 M ST 26, 2010 Completion Date	7. CASING INSTALLED: U Steel X Plastic U Other From (ft.) To (ft.) Dia. (in.) Wall (Gage) O 150 4 S.CH. 30
3. INTENDED WELL USE (check): Agricultural		Gravel Pack: A Yes No From 175 to 200 ft. 8. PERFORATIONS (if applicable): From 180 to 200 ft. Pumping rate (gpm) 9. SEALED ZONES (if applicable): Fromtoft.
SECTION MAP - DO NOT FILL IN WAY AND 1/4 PARCEL OI SEC	Scale; 1 inch > ½ mile	10. LOCATION INFORMATION TC# 4747 H5-7 (a) TOWNSHIP: Tier 2 (N)S Range 5 (E)W Section 244 (b) Assessor's Parcel No. 6297270 (c) Latitude and Longitude Lat: 34 °, 14 ', 22 ° N/S Long: 116 °, 24 ', 55 " N/S (d) Solid or Liquid Disposal Site within Two Miles 11 Yes (No) Location
SW 1/4	SE 1/4	DO NOT FILL IN Seal

Asses:	sor's Parcel No. 6 29 27	N Veff · Site	11. PLOT	In perspective to the following items: we abandoned wells), septic tanks, lead takes and ponds, and indicate the distant are within 500 ft. of	he well site, sketch an ell fot property lines, of sewage disposal system of leds, seepage pit watercourses and ening feet, of any of the well site: Other Sewers Septic tanks Leaching fields Seepage pits Cesspools Lakes and ponds Watercourses (P10 e'5 Wash) Animal or fowl kept	lher wells (include lems (sewers, ls, cesspools), nals or fowl kept.
	inch = 100 feet	S		well site,	a above are within 500	féél af lhe
U=:	ave read this application and agree to 57 Contractor's Signature	Est Stacke		Date	7-27-10	<u>י</u>
	unty Registration No		California Licens	68 No6	94686	
☐ Wate	oved subject to the following:	Te Drinking Water Program, (string operations: space or filling of the conduct protective slab and pumping or to pouring the sealing materials (30) days after completic Bacterial Analysis	309) 387-4666 For casing.	ry of: hemical Analysis	enty-four (24) hours	
Comments		☐ General Mineral	Organic Ch	emical analysis	☐ General	Physical
					THE PARTY CONTRACTOR	

### DO NOT FILL IN Permit Number ### 20/0080397 Record ID ### P 6670 Expiration ### OZ - 06 - // FF ### FA ### SN ###############################	DEPARTMENT OF ENVIRONMENTAL 385 N. Arrowner San Bernardin (809) 6 www.sbcot	San Bernardino DF PUBLIG HEALTH L HEALTH SERVICES Date O8-06-/O Amount \$ 269 Check # 10370 Unity gov/dehs PERMIT Se Print) SC 4389/ Date O8-06-/O Amount \$ 269 Check # 10370 Paid by Blefor DESERT VIEW WE City Code 73
1. OWNER: Name BIOHORN DESE Site Address 622 S. JEN City YUCCA VALLEY Zin Malling Address SAME City Zin Telephone Number (760) 364	MEZ TRAIL 92284	Items 6 through 9 to be estimated for new wells, exact for all other wells 5. ANNULAR SEAL: Seal Depth 2.75 Fumished by: Downer Contractor Driven Comductor Dia. in., Wall (Gage) Sealing Material 4-POUT. Thickness 2.5 in 6. DEPTH OF WELL (feet): Proposed 3.00 Existing DIAMETER OF BORE (in.):
2. WELL DRILLER: BOART LON Busine AUGUST 16, 2010 Augustan Date	ss Nome	7. CASING INSTALLED: Steel M Plastic Other From (ft.) To (ft.) Dia. (in.) Wall (Gage)
3. INTENDED WELL USE (check): Agricultural	City Dother	Gravel Pack; Set Yes No From 2.15 to 300 ft. 8. PERFORATIONS (If applicable); From 280 to 300 ft. Pumping rate (gpm) 9. SEALED ZONES (if applicable):
A New Li Reconstruction	☐ Destruction	From to ft.
SECTION MAP - DO NOT FILL IN	Scale: 1 inch = 1/4 mile	10. LOCATION INFORMATION 76# 4747 J5 (a) TOWNSHIP: Tier 2 NS Range 5 EW Section 24 (b) Assessor's Parcel No. 629 2101 (c) Latitude and Longitude Lat: 34 ° 14 ', 45 "N/S Long: 116 ", 24 ', 23 "N/S (d) Solid or Liquid Disposal Site within Two Miles Yes No Location
z4 sw 1/2	SE ¼	Cap

Assessor's Parcel No. 629 2	-1101	11. PLOT			
	N	(a)	following items: wi abandoned wells), septic tanks, leach lakes and ponds, to	he well site, sketch and eil lot properly lines, oth , sewage diaposal eyele hing fields, seepage pits, watercourses and anima ice, in feet, of any of the if the well site:	er wells (include ms (sewers, , cesspools), als or fowl kent,
w	Existing Supply We to Desert Water Dis Well - Sheet No. 24	Warren Vista	Avenue = 17 00	Other (well No. 24) Sewers Septic tanks Leaching fields Seepage pils Cesspools Lakes and ponds Watercourses Animal or fowl kept	50
Scale: ½ Inch = 100 feet	S	(1	c) D None of the well site,	s above are within 500 f	eet of the
12. I have read this application and agree to C-57 Contractor's Signature K County Registration No 6	un Stack	ling the type of w	Date	ned 7-27-/0 14686	- 444
	DISPOSITION OF	PERMIT			
 □ Sent to Water Agency for review. □ Water Agency conditions or recommenda □ Denied ☑ Approved subject to the following: 	(For Depadment (iso Only)			
A. Notify the Department, Sa to make an inspection of the follow Prior to sealing of the annular After installation of the surface During destruction of wells, pri	space or filling of the conduct protective slab and pumping for to pouring the sealing mat	tor casing. Daguipmen t. Jerial.		renty-four (24) hours i	n advance
B. Submit to the Department, within the Water Well Driller's Report Radiological Analysis	hirty (30) days after completi Bacterial Analysis General Mineral	☐ Inorganic C	by of: themical Analysis emical analysis	☐ General (Physical
170-100	* * *			National Control of the Control of t	

Appendix B Soil Hydraulic Property Laboratory Report

October 27, 2010

Todd Engineer 2490 Mariner Square Loop, Suite 215 Alameda, California 94501-1080

Attn: Daniel Craig

Subject:

Report/Laboratory Test Results

Project Name: BDVWA-Reche Recharge

Project Number: N/A

KTL Project No.: 06-344-004

To Daniel Craig

Enclosed are results of the laboratory testing program conducted on samples from the above referenced project. The testing performed for this program was conducted in general accordance with testing procedures as follows:

TYPE OF TEST
Permeability
Total Porosity
Effective Porosity

TEST PROCEDURE ASTM D 5084 ASTM D 854/2937 SWRCB

Attached herewith are Summary of Permeability Test Result (6), Summary of Total Porosity Test Result (6), and Summary of Effective Porosity Test Result (6).

We appreciate the opportunity to provide testing services to Todd Engineer. If you have any questions regarding the test results, please contact us.

Very truly yours, Keantan Laboratories

Jonathan Khaw Laboratory Manager

Encls.

' Kean Tan RCE # 50498

SUMMERY OF LABORATORY TEST RESULT

For Trancas Market/61701

PROJECT NAME.:

BDVWA Reche Recharge

KTL NO.:

06-344-004

PROJECT NO.:

N/A

CLIENT.:

Todd Engineering

DATE.:

10/26/2010

SUMMARIZED BY .: K. Tan

Boring NO.	DEPTH (FT)	MOISTURE CONTENT (%) ASTM D 2937	DRY DENSITY (pcf) ASTM D 2937	TOTAL POROSITY ASTM D 2937/854	EFFECTIVE POROSITY SWRCB	HYDRAULIC CONDUCTIVITY (cm/sec) ASTM D 5084
MW-1	10-12.5	7.90	98.19	.45	.23	1.42E-03
MW-1	25-28	7.81	101.88	.43	.22	1.43E-03
MW-1	50-52.5	7.61	99.48	.44	.22	2.19E-03
MW-1	100-102	9.80	104.36	.41	.22	1.76E-03
MW-1	150-152.5	9.98	99.82	.44	.23	1.37E-03
MW-1	242-245	10.44	103.12	.42	.23	5.63E-04

Total Porosity

ASTM D 854-83

Project Number:	05-344-004	Prepared By jk	Date:	10/28/2010
Project Name:	BDVWA Reche Recharge	Tested by	Date:	10/28/2010
		Checked by	Date:	10/28/2010

Boring Number	MW-1*	MW-1*	MW-1*	MW-1*	MW-1*	MW-1*
Sample Number	1	2	3	4	5	6
Depth (ft)	10-12.5	25-28	50-52.5	100-102	150-152.5	242-245
Specfic Gravity of Soil (ASTM D 854)	2.66	2.66	2.67	2.65	2.66	2.66
Weight of Soil (Wt)+ring	516.40	530.40	520.40	547.50	530.20	545.00
Weight of Ring (Wr)	135.00	135.00	135.00	135.00	135.00	135.00
Weight of Soil (Wt)	381.40	395.40	385.40	412.50	395.20	410.00
Moisture content of soil	7.90	7.81 366.76	7.61	9.80	9.98 359.34	10.44
Weight of Soil (Dry) (Ws)	353.48		358.15	375.68		371.24
Unit weight of of water (yw) (g/cm3)	1	1	1	1	1	1
Volume of Soil (Vs)	132.89	137.88	134.14	141.77	135.09	139.56
Diameter (cm)	6.35	6.35	6.35	6.35	6.35	6.35
Height (cm)	7.62	7.62	7.62	7.62	7.62	7.62
Volume	241.20	241.20	241.20	241.20	241.20	241.20
Total Porosity	0.45	0.43	0.44	0.41	0.44	0.42

^{*} Remold Samples

Date Dale Computed By: Tested By: BDVWA Reche Recharge 06-344-004 Project Number: Project Name:

ASTM D 5084 Permeability 10/24/2010

10/24/2010

10/24/2010

Dale

Checked By:

MW1

Boring Number:

	Before Permeability	After Permeability			
BORING NUMBER	MW-1		Cell Pressure (psi):	80	
SAMPLE TYPE	Remold (80%)	1	Bottom Platen (psi):	80	
SAMPLE NUMBER	-		Top Platen (nsj):	82	
SAMPLE DEPTH (FT)	10-12.5		Average Effective Stress (psi):	ļ	
WET DENSITY (PCF)			a (sq in):	0 3685	
MOISTURE CONTENT (%)	7.90	17.39	Length (cm):	7.62	
DRY DENSITY (PCF)	98.19		radius:	1 25	
SOIL DESCRIPTION			Area:	4.91	
			change in time (sec):	45	
			Time	Top (cm)	Bottom(cm)
COLOR			0	27	` =
CONTAINER NUMBER	KB-3	KB-13	.45 sec	10.7	164
WT. WET SOIL + CONT.(gm)	1354.4	503.8		ì	
WT. DRY SOIL + CONT. (gm)	1261.5	441.6			
WT. CONTAINER (gm)	85.55	84			
TUBE NUMBER					
SPECIFIC GRAVITY					

h2 Bottom (in) 49.58

h1 Top (iii) 62.02

> Bottom (in) 0.43 6.46

> Top (in) 10.63 4.21

Length (in):

Trial # 1 1.42E-03 cm/sec

K=(((a*L)/(2*A*At))*(in(h1/h2))
a= average cross section area of tube
L= Length of sample
A= Area of sample
h1= Head loss across the permeameter
h2= head loss across the permeameter

Average Permeability 1.42E-03 cn/sec

ASTM D 5084 Permeability

10/24/2010 10/24/2010 10/24/2010 Date Date Date Computed By: Checked By: Tested By: BDVWA Reche Recharge 06-344-004 MW1 Project Number: Boring Number: Project Name:

Average Effective Stress (pai): 3 a (sqi in): 0.3685 Length (sm): 7.62 radius: 1.25 Area: 4.91 change in time (sec): 4.5 Time Top (cm) 0 26.4 .45 sec 10.4	0.3 	10.4 10.4 10.4
	T	

h2 Bottom (in) 49.46

ht Top (in)

Bottom (in) 0.59 6.73

1.43E-03 cm/sec Trial # 1

1.43E-03 cm/sec Average Permeability

h1= Head loss across the permeameter h2= head loss across the permeameter

a= average cross section area of tube

L= Length of sample

A= Area of sample

K=(((a*L)/(2*A*At))*(In(h1/h2))

ASTM D 5084 Permeability

10/24/2010 10/24/2010 10/24/2010 Dale Date Computed By: Checked By: Tested By: **BDVWA Reche Recharge** 06-344-004 MW1 Project Number: Boring Number: Project Name:

	Cell Pressure (psi);	Bottom Platen (nsi):	Top Platen (psi):	Average Effective Stress (psi):	a (an in):	Length (cm):	radius:	Area:	change in time (sec):	Time	0	30 sec					
After Permeability				3		16.42	i	i				KB-21	500.1	441.6	85.4	į	
Before Permeability	MW-1	Remold (80%)	3	50-52.5		7.61	99.48					M-500	746.9	706.9	181.61		
	BORING NUMBER	SAMPLE TYPE	SAMPLE NUMBER	SAMPLE DEPTH (FT)	WET DENSITY (PCF)	MOISTURE CONTENT (%)	DRY DENSITY (PCF)	SOIL DESCRIPTION			COLOR	CONTAINER NUMBER	WT. WET SOIL + CONT.(gm)	WT. DRY SOIL + CONT. (gm)	WT. CONTAINER (gm)	TUBE NUMBER	SPECIFIC GRAVITY

h2 Bottom (ia) 49.34

h1 Top (in) 62.10

> **Bottom (in)** 0.59 6.85

Tnp (in) 10.20 3.70

Bottom(cm) 1.5 17.4

Top (cm) 25.9 9.4

Length (in)

83 80 82 3 0.3685 7.62 1.25 4.91

K=(((a*L)/(2*A*Δt))*(ln(h1/h2))
a= average cross section area of tube
L= Length of sample
A= Area of sample
h1= Head loss across the permeameter
h2= head loss across the permeameter

2.19E-03 cm/sec

Trial#1

Average Permeability 2.19E-03 cm/sac

ASTM D 5084 Permeability

10/24/2010 10/24/2010 10/24/2010 Dale Date Date × Computed By: Checked By: Tested By: BDVWA Reche Recharge 06-344-004 MW1 Project Number: Boring Number: Project Name:

	Before Permeability	After Permeability		
BORING NUMBER	HW-1		Cell Pressure (psl):	83
SAMPLE TYPE	Remold (80%)		Bottom Platen (psi):	80
SAMPLE NUMBER	7		Top Platen (psi):	82
SAMPLE DEPTH (FT)	100-102		Average Effective Stress (psi):	
WET DENSITY (PCF)			a (sq in):	0.3685
MOISTURE CONTENT (%)	9.80	18.24	Length (cm):	7.62
DRY DENSITY (PCF)	104.36		radius:	1.25
SOIL DESCRIPTION			Area:	4.91
			change in time (sec):	45
			Time	Тор (сш)
COLOR			0	27.2
CONTAINER NUMBER	KB-9	KB-36	.45 sec	7.2
WT. WET SOIL + CONT.(gm)	541.9	499		
WT, DRY SOIL + CONT, (gm)	501.3	435,4		
WT. CONTAINER (gm)	87.02	86.7		
TUBE NUMBER				
SPECIFIC GRAVITY				

h2 Bottom (in) 48.12

h1 Top (in) 63.47

> **Bottom (in)** 0.51 7.99

> Top (in) 10.71 2.83

> **Вотом(см)** 1.3 20.3

Length (in)

Trial # 1 1.76E-03 cm/sec

Average Permeability 1.76E-03 cm/sec

K=(((a*L)/(2*A*Δt))*(In(h1/h2))
a= average cross section area of tube
L= Length of sample
A= Area of sample
h1= Head loss across the permeameter
h2= head loss across the permeameter

ASTM D 5084 Permeability

10/24/2010 10/24/2010 10/24/2010 Date Date Date × Computed By: Checked By: Tested By: BD\WA Reche Recharge 06-344-004 MW1 Project Number: Boring Number: Project Name:

	Before Permeability	After Permeability	
BORING NUMBER	MW-1		Cell Pressure (psi)
SAMPLETYPE	Remotd (80%)		Bottom Platen (rsi)
SAMPLE NUMBER	10		Top Platen (psi):
SAMPLE DEPTH (FT)	150-152.5		Average Effective Stress
WET DENSITY (PCF)			a (sa in);
MOISTURE CONTENT (%)	86.6	16.44	Length (cm):
DRY DENSITY (PCF)	99.82		radius:
SOIL DESCRIPTION			Area: change in time (sec)
			•
			Time
COLOR	•		•
CONTAINER NUMBER	M-412	KB-8	38 09
WT. WET SOIL + CDNT.(gm)	881.9	499.4	1
WT. DRY SOIL + CONT. (gm)	818.4	441.1	T
WT. CONTAINER (gm)	182	86.5	
TUBE NUMBER			
SPECIFIC GRAVITY			.
			•

! Pressure (psi):	83					
tom Platen (psi):	80					
op Platen (psi):	82					
Effective Stress (psi):	33					
s (sq io):	0.3685					
Length (cm):	7.62		Length (in)	3		
radius:	1.25					
Атев:	4.91					
ange in time (sec):	8					
					Ξ	24
Time	Top (cm)	Bottom(cm)	Top (in)	Bottom (in)	Top (in)	Bottom (in)
0	26.4	1.2	10.39	0.47		
90 sec		21	2.28	8.27	63.71	47.80

K=(((a*L)/(2*A*Δt))*(in(h1/h2))
a= average cross section area of tube
L= Length of sample
A= Area of sample
h1= Head loss across the permeameter
h2= head loss across the permeameter

1.37E-03 cm/sec

Trial # [

Average Permeability 1.37E-03 cm/sec

ASTM D 5084 Permeability

		1	:		
Project Number:	06-344-004	Tested By:	¥	Date	10/24/2010
Project Name:	BDVWA Reche Recharge	Computed By:		Date	10/24/2010
Boring Number:	WM.	Checked By:		Date	10/24/2010

	Before Permeability	After Permeability		
BORING NUMBER	MW-1		Cett Pressure (psi):	00
SAMPLE TYPE	Remold (80%)		Bottom Platen (psi):	•
SAMPLE NUMBER	9		Top Platen (psi):	•
SAMPLE DEPTH (FT)	242-245		Average Effective Stress (psi):	
WET DENSITY (PCF)			a (sq in):	0.368
MOISTURE CONTENT (%)	10.44	18.50	Length (cm):	7.6
DRY DENSITY (PCF)	103.12		radius:	1.2
SOIL DESCRIPTION			Area:	6.4
			cbange in time (sec):	15
_				
			Tine	Тор (сш)
COLOR			•	26.5
CONTAINER NUMBER	KB-6	KB-29	150 sec	5.4
WT. WET SOIL + CONT.(gm)	1237	532.9		
WT. DRY SOIL + CONT. (gm)	1128.1	462.9		
WT. CONTAINER (gm)	85.03	84.6		
TUBE NUMBER				
SPECIFIC GRAVITY	-			

Time Top (cm) Bottom(cm) Top (in) Bottom (in) Top (in) Bottom (in) 0 26.5 1 10.43 0.39 63.91 47.57	Cett Pressure (psi): Bottom Platen (psi): Top Platen (psi): a (spi in: a (spi in: Length (cm): radius: Area: change in time (sec):	83 80 82 82 3 0.3685 7.62 1.25 4.91		Length (in)	en en		
Top (cm) Bottom(cm) Top (in) Bottom (in) Top (in) 26.5 1 10.43 0.39 5.4 21.4 2.13 8.43 65.91						፫	7
5,4 21,4 2,13 8,43 63,91	Time 0	Тор (сш) 26.5	Bottom(cm)	Top (ia) 10.43	Bottom (in) 0.39	Top (in)	Bottom (in)
	150 sec	5.4	21.4	2.13	8.43	63.91	47.57

K=(((a*L)/(2*A*Δt))*(ln(h1/h2))
a= average cross section area of tube
L= Length of sample
A= Area of sample
h1= Head loss across the permeameter
h2= head loss across the permeameter

5,63E-04 cm/sec

Trial#1

Average Permeability 5.63E-04 cm/sec

Project Number:	06-344-004	Tested By:	jk	Date	10/25/2010
Project Name:	BDVWA- Reche Recharge	Computed By:	jk	Date	10/25/2010
Boring Number:	MW-1	Checked By:		Date	10/25/2010
Sample Number:	1	Sample Type:	Drive		
Sample Depth:	10-12.5	Soil Description	:		
Pore Volumn (1/10):	4.41				
Initial Bromide Concentration (M)	0.1				
Burette Area (Sq.in)	0.3685				

ſ	Time	Роге	Burette	Bromide	C/Co
		Volumn	Reading	Concrentration	
Ĺ			(CM)	(M)	
		0.00		0.000	
1		0.10		0.005	
2		0.20		0.018	
3		0.30		0.031	
4		0.40		0.038	
5		0.50		0.047	
6		0.60		0.065	
7		0.70		0.081	
8		0.80		0.092	
9		0.90		0.100	
10		1.00		0.100	

Total Porosity	0.45
Effective Porosity	0.23

Project Number:	06-344-004	Tested By:	jk	Date	10/25/2010
Project Name:	BDVWA- Reche Recharge	Computed By:	jk	Date	10/25/2010
Boring Number:	MW-1	Checked By:		Date	10/25/2010
Sample Number:	2	Sample Type:	Drive		
Sample Depth:	25-28	Soil Description:			
Pore Volumn (1/10):	4.21				· ·
Initial Bromide Concentration (M)	0.1				
Burette Area (Sq.in)	0.3685				

Time	Pore Volumn	Burette Reading (CM)	Bromide Concrentration (M)	C/Co
	0.00		0.000	
1	0.10		0.006	
2	0.20		0.015	
3	0.30		0.029	
4	0.40		0.035	-
5	0.50		0.049	
6	0.60		0.060	
7	0.70		0.081	
88	0.80		0.098	
9	0.90		0.100	
10	1.00		0.100	

Total Porosity	0.43
Effective Porosity	0.22

06-344-004	Tested By:	jk	Date	10/25/2010
BDVWA- Reche Recharge	Computed By:	jk	Date	10/25/2010
MW-1	Checked By:		Date	10/25/2010
3	Sample Type:	Drive		
50-52.5	Soil Description	:		
4.36			<u> </u>	
0.1				
0.3685			<u>.</u>	·····
	BDVWA- Reche Recharge MW-1 3 50-52.5 4.36 0.1	BDVWA- Reche Recharge Computed By: MW-1 Checked By: 3 Sample Type: 50-52.5 Soil Description 4.36 0.1	## BDVWA- Reche Recharge Computed By: jk	BDVWA- Reche Recharge

	Time	Роге	Burette	Bromide	C/Co
		Volumn	Reading	Concrentration	
		_	(CM)	(M)	
		0.00		0.000	
1		0.10		0.005	
2		0.20		0.017	
3		0.30		0.033	
4		0.40		0.041	
5		0.50		0.053	
6		0.60		0.066	
7		0.70		0.085	
8		0.80		0.096	
9		0.90		0.100	
10		1.00		0.100	

Total Porosity	0.44
Effective Porosity	0.22

06-344-004	Tested By:	jk	Date	10/25/2010
BDVWA- Reche Recharge	Computed By:	jk		10/25/2010
MW-1	Checked By:		Date	10/25/2010
4	Sample Type:	Drive		10:10:10
100-102		1:		
4.05	-			·
0.1				
0.3685				
	BDVWA- Reche Recharge MW-1 4 100-102 4.05 0.1	## BDVWA- Reche Recharge Computed By: MW-1	## BDVWA- Reche Recharge Computed By: jk jk	BDVWA- Reche Recharge

Time	Pore Volumn	Burette Reading (CM)	Bromide Concrentration (M)	C/Co
<u></u>	0.00		0.000	
I	0.10		0.008	
2	0.20		0.021	
3	0.30		0.028	
4	0.40		0.039	
5	0.50		0.045	
⁶	0.60		0.059	
7	0.70		0.071	
8	0,80		0.089	
°L	0.90	<u></u> _	0.100	
0	1.00		0.100	

Total Porosity	0.41
Effective Porosity	0.22

Project Number:	06-344-004	Tested By:	jk	Date	10/25/2010
Project Name:	BDVWA- Reche Recharge	Computed By:	jk	Date	10/25/2010
Boring Number:	MW-1	Checked By:		Date	10/25/2010
Sample Number:	5	Sample Type:	Drive		10/20/2010
Sample Depth:	150-452.5	Soil Description	n:		
Pore Volumn (1/10):	4.32	-			
Initial Bromide Concentration (M)	0.1				<u> </u>
Burette Area (Sq.in)	0.3685				

Time	Volumn	Burette Reading (CM)	Bromide Concrentration (M)	C/Co
	0.00		0.000	
1	0.10		0.005	
2	0.20		0.016	
3	0.30		0.031	
4	0.40		0.039	
5	0.50		0.048	
6	0.60		0.059	
7	0.70		0.081	
8	0.80		0.094	
9	0.90		0.100	
o <u></u>	1.00		0.100	

Total Porosity	0.44
Effective Porosity	0.23

Project Number:	06-344-004	Tested By:	jk	Date	10/25/2010
Project Name:	BDVWA- Reche Recharge	Computed By:	jk	Date	10/25/2010
Boring Number:	MW-1	Checked By:		Date	10/25/2010
Sample Number:	6	Sample Type:	Drive		10/25/2010
Sample Depth:	242-245	Soil Description			
Pore Volumn (1/10):	4.14				
Initial Bromide Concentration (M)	0.1			<u> </u>	
Burette Area (Sq.in)	0.3685				

	Time	Pore Volumn	Burette Reading (CM)	Bromide Concrentration (M)	C/C ₀
		0.00		0.000	
1		0.10		0.004	
2		0.20		0.011	
3		0.30		0.022	
4	_	0.40		0.033	
5		0.50		0.045	
6		0.60		0.053	
7		0.70		0.071	
8		0.80		0.091	
9		0.90		0.098	
0		1.00		0.100	

Total Porosity	0.42
Effective Porosity	0.23

October 27, 2010

Todd Engineer 2490 Mariner Square Loop, Suite 215 Alameda, California 94501-1080

Attn: Daniel Craig

Subject:

Report/Laboratory Test Results

Project Name: BDVWA-Reche Recharge

Project Number: N/A

KTL Project No.: 06-344-004

To Daniel Craig

Enclosed are results of the laboratory testing program conducted on samples from the above referenced project. The testing performed for this program was conducted in general accordance with testing procedures as follows:

TYPE OF TEST

Modified Proctor Compaction

TEST PROCEDURE ASTM D 1557

Attached herewith is Summary of Modified Proctor Compaction Test.

We appreciate the opportunity to provide testing services to Todd Engineer. If you have any questions regarding the test results, please contact us.

Very truly yours, Keantan Laboratories

Jenathan Khaw Laberatory Manager

Encls.

Kean Tan RCE # 50498

Modified Compaction Test Results ASTM D 1557

PROJECT NAME:BDVWA- Reche Recharge

PROJECT NO.: N/A

DATE: September 2010

BORING NO.: N/A SAMPLE NO.: N/A

METHOD: A

DROP: 18 INCHES

NUMBER OF LAYERS: 5

KTL NO.: 06-344-004 CLIENT: Todd Engineer DEPTH (ft): 10 feet USCS CLASS.: n/a

RAM WEIGHT: 10 LBS RAM TYPE: MANUAL BLOWS/LAYER: 25

Zero Void Lines

S.G. = 2.6

- S,G, = 2.7

Moisture Content (percent)

Optimum Moisture Content, %

7

Maximum Dry Density, pcf

122

Modified Compaction Test Results ASTM D 1557

PROJECT NAME:BDVWA- Reche Recharge

PROJECT NO.: N/A

DATE: September 2010

BORING NO.: N/A SAMPLE NO.: N/A

METHOD: A

DROP: 18 INCHES

NUMBER OF LAYERS: 5

KTL NO.: 06-344-004 CLIENT: Todd Engineer DEPTH (ft): 25 feet USCS CLASS.: n/a

RAM WEIGHT: 10 LBS RAM TYPE: MANUAL BLOWS/LAYER: 25

Zero Void Lines

- S.G. = 2.6

S.G. = 2.7

Moisture Content (percent)

Optimum Moisture Content, %

Maximum Dry Density, pcf

7

126

Zero Void Lines

S.G. = 2.6 S.G. = 2.7

Modified Compaction Test Results ASTM D 1557

PROJECT NAME:BDVWA- Reche Recharge

PROJECT NO.: N/A

DATE: September 2010

BORING NO.: N/A SAMPLE NO.: N/A

METHOD: A

DROP: 18 INCHES

NUMBER OF LAYERS: 5

KTL NO.: 06-344-004 CLIENT: Todd Engineer DEPTH (ft): 50 feet USCS CLASS.: n/a

RAM WEIGHT: 10 LBS RAM TYPE: MANUAL BLOWS/LAYER: 25

Moisture Content (percent)

Optimum Moisture Content, %

Maximum Dry Density, pcf

7

123.5

Modified Compaction Test Results ASTM D 1557

PROJECT NAME:BDVWA- Reche Recharge

PROJECT NO.: N/A

DATE:

September 2010

BORING NO.: N/A SAMPLE NO.: N/A

METHOD: A

DROP: 18 INCHES

NUMBER OF LAYERS: 5

KTL NO.: 06-344-004 CLIENT: Todd Engineer DEPTH (ft): 100 feet USCS CLASS.: n/a

RAM WEIGHT: 10 LBS RAM TYPE: MANUAL BLOWS/LAYER: 25

Moisture Content (percent)

Optimum Moisture Content, %

Maximum Dry Density, pcf

9.5

129.0

Modified Compaction Test Results ASTM D 1557

PROJECT NAME:BDVWA- Reche Recharge

PROJECT NO.: N/A

DATE: September 2010

BORING NO.: N/A SAMPLE NO.: N/A

METHOD: A DROP: 18 INCHES NUMBER OF LAYERS: 5 KTL NO.: 06-344-004 CLIENT: Todd Engineer DEPTH (ft): 150 feet USCS CLASS.: n/a

RAM WEIGHT: 10 LBS RAM TYPE: MANUAL BLOWS/LAYER: 25

Moisture Content (percent)

Optimum Moisture Content, %

Maximum Dry Density, pcf

9.0

124.0 PLATE CM-5

Zero Void Lines

S.G. = 2.6 S.G. = 2.7

Modified Compaction Test Results ASTM D 1557

PROJECT NAME:BDVWA- Reche Recharge

PROJECT NO.: N/A

DATE:

September 2010

BORING NO.: N/A SAMPLE NO.: N/A

METHOD: A

DROP: 18 INCHES

NUMBER OF LAYERS: 5

KTL NO.: 06-344-004 CLIENT: Todd Engineer DEPTH (ft): 245 feet USCS CLASS.: n/a

RAM WEIGHT: 10 LBS RAM TYPE: MANUAL BLOWS/LAYER: 25

Moisture Content (percent)

Optimum Moisture Content, %

Maximum Dry Density, pcf

9.5

127.5 PLATE CM-6

Appendix C Well Development Forms

Job Tille Bignam DOSCA VICW Water Agency Job No. 0989068.00
Job Title Bignam DOSCA VICW Water Agency Job No. 0989068.00 Date 913/10 Sheet 1 0 f 1
0530 DM Kaves lavine - Amic in Yucca Valley
PICK up ICE for samples . Head to MW-Z.
0755 DM & MW-Z
0015 BOART AMVES TOADISC Awareness + Tailgate
mtg. Head are to MW-1. While Blast begin
to set up @ MW-1. DM gogs to BDVWA office
to get sample containers for MW-2 from
michelle per Michelle, dump water Mext to
their office (40 mires from MW-1). Boart
SU-UP @ MW-1.
1950 and 4in x 18 ft bailer dun-at ~40ft bloc
it got stuck Pull it out Sind dain shofter
Baiter (4in x5ft)-gets down Bend in PVC?
Bogin to ball MW-1. Balling: Suging finished
1404 Begin to pury MW-1.
1410 correct sample MW-1. Stop pumping. Begin to
1410 correct sample MW-1. Stop pumping Begin to pull act pump. Demos & MW-1. Marc to MW-2.
1555 916 × 10 4 100 100 500 100 (0) 101 14 1000 200
baller (4in XST+) Stapped @ 120 T+ brock MW-Z.
Reached bottom uy Binx 5ft bailer MW-1 funce
Sluvid.
1600 Pagin to bail MW-2. DM takes Don to Dump Drums
by BOWA office while operator Dan hail Surges
MW - 2.
no Stop surging-will resume tomarow marning. Load up phyword: drums on to Dan's mick to take back
up plyword: arims onto Den's frick to take back
10 Shur. (Usca 5 arunis).
1725 DV + BOUR Off-SHU Fenced Scienced @ MW-2-

D-Marino

JOB TITLE BY HOYN DESCA VICW WATER AGENCY JOB NO. 0989008.00
Job Title By horn Desert Vrew Water Agency Job No. 0989000.00 Date 9124/10 Sheet 1 of
0700 DM = BOAN an-site Tailgate Mtg-
1010 Begin to bail MW-Z.
1205 COLLECT SUMPLE MW 2. Brain to pull pump. 1250 Attempted to get water rever @ Well NO. 24
but phops won't ap past 5ft. 1345 Days -fences secured need to BDVWA office.
1345 Done-fonces secured need to BDVWA other. Give Michael Gips unit Keys, + Turke Awareness
Signature Sheet Dump purge water. 1425 Pam + Don Off site DM heads to lab.
ENGINEER THE WHITE SERVICE REPORTED IN THE SERVICE STATE OF THE SERVICE STATE OF THE SERVICE STATE STA

GROUNDWA' MONITORING WELL DEVELOPMENT DATA

Project Number: 099 9000 FCO	Date: 012310
	General Information
Water-Level Meter: Soliast Laterface Probe meter.	Decontamination Process:
Water Quality Meter: YST 6620	- MARIO
Purging Equipment:	Personnel: D MCW1V10
)	250

				Well Deve	elopment Data	for Monitorin	ıg Well:					٦
Well Number:	MW-1	9	Initial d	epth to water:	231.93	e TOC	- Water	Column (feet):			4	
Casing Diameter:			Pre-developme			@ toc	Minimum F	Purge Volume: _	13	<- 3.35 X WC		
Start	End Time	Volume (gal)	pH°	Conductivity* (mS/cm)	Turbidity* (NTU)	O2 (mg/l)	Temperature (C)	Solinity ORP(%)	Surge	Activity Bail		
0950	1020	15	Pi	<i>ymoromy</i>		B 8				X	C	259
1020	1040	VI E A							X			\dashv
1.040	105%	~25			120				×	×		-
1050	1117	20)			X		
1744	1132	~32	7.06	705	2142.7	2.09	26.76	1720	DTU	v-23i.93	Xen-	ft
1249	1254	~ 53	7.64	1020	1575.6	2.72	28.04	139[-]		23235	X	your th
1254	1304	~78	7.74	588	138.9	4.19	28.44	107.0		23242	<u> </u>	-
1304	1314	~ 100	773	583	57.3	4.65	29.17	77.6		23230	_X	-
1314	1324	-120	7.75	580	322	4.90	26.10	720		23235	X	-
1324	1334	12140	7.80	511	20.0	5.10	29.00	70.91		232.36		-
Post-developmen Post-developr	it depth to water: ment total depth:	See pg.		i otal voi	ume Removed	ac py	4	-				

Notes/Comments: + Drw Taken e time in Start time column

GROUNDWA) MONITORING WELL DEVELOPMENT DATA

Pr	oject Number:	0989	0.00 KO	0			Date:_	9123/1	0		
Wat Wate	er-Level Meter: Quality Meter: ing Equipment:	Solinst Interfact VS1_682	H Env		General Info		ntion Process:_ Personnel:_	DIMar	tno		n
				Well Deve	elopment Data	for Monitorin	g Well:				
Well Number: Casing Diameter:	MW-1 4in		Initial d Pre-developme	epth to water: _ nt total depth: _	259.7	OTOC	Water C	Column (feet): _ urge Volume: _	93	<< 3.35 X WC (for a 4-inch c	
Start	End	Volume		Conductivity	Turbidity *	02	Temperature	-Salinity OAB	Surge	Activity Bail	Pump
Time	Time	(gal)	pH '	(mS/cm)	(NTU)	(mg/l)	(C)	77.0	*prw		X
1334	1344	~160	7.77	572	14.6	5.27	27.63	60.5		23240	\propto
1344	1354	~ 180	7.01	560	129	5.49	27.60	64.4		23239	X
1354	1359	~190	7-83	568	12.5		27.70	56.9		232.39	×
1359	404	~200	7.83	568	11-8	550	21.10	Jeri		23235	
Ti .										2 3	
						01					
			8								
		22.60	a luce	Total Vol	ume Removed	-200 be	fore conve	ching sam	ple MW-1		(4)
Post-developmen	t depth to water	2507	@ TOU	-	TO THE STREET			7			

Notes/Comments: collect Sample MW-1 & 1410

Pg. 2 & 2

GROUNDWAL. MONITORING WELL **DEVELOPMENT DATA**

Wa Wate	roject Number: ter-Level Meter: er Quality Meter: ging Equipment:	Geotul Solinst Interfact YSI GO	t Env.		<u>General Inf</u>		ation Process:	9/23/1 D-Mar			(8)
Well Number:	MW-2 Hin		Pre-developme	leath to water	268 9 347.3	53@to	← Water	Column (feet): _ Purge Volume: _	59.77	<< 3.35 X W	/C = 5 volumes a diameter well)
Start	End	Volume	pH f	Conductivity (mS/cm)	Turbidity* (NTU)	O2 (mg/l)	Temperature (C)	Salinity (CP(%)	Surge	Activity Bail	Pump
Time	Time 1030	(gal) -	Pi1	(moroniy		1.00				X	
1030	100			B:		4	290		_X		- 15:
	0745	~25								Χ	TD-318.101
0715	0815								X_	3.0	2.0
0020	0942	135								X	TD-318.
1010	1015	~ 50	7.90	430	2094-7	5.42	24.15	1202	+ Drw	-290.15	
1015	1025	~72	7.83	434	2125.4	697	25.97	87.2		29030	
1078	1035	2100	7-90	437	162-1	5.52	25.13	97.0		289.28	
1025	1045	-128	798	436	30.3	5.73	25,10	48.4		289.30	X
1046	1055	- 150	7.98	435	24.6	5.83	25.00	39.7		289.6	X @ 329
1058	1105	194	7.92	434	171.7	5.90	25.03	53.8		289.15	X 6 32
Post-development Post-development		Su po	2	Total Vo	ume Removed	See y	72	-			

Notes/Comments:

9/23/10 1630-1700 Surged whole screen (2910-3410) for 5min. Then bottom 25ft for 10min

9/24/10 0745-0815 same surge method as 423/10 then entire screen again for somin

Date: 9/23/10 = 9/24/10

* Dru taken @ time is star time column.

GROUNDWATE. "ONITORING WELL DEVELOPMENT DATA

Pr	oject Number:	0989	068 R	00		12	Date:	9/24	110		
Water	er-Level Meter: Quality Meter: ing Equipment:	45168	20	/ .	General Inf		ation Process: Personnel:	D.Mar	anio		E.
				Well Dev	elopment Data	a for Monitorin	ıg Well:		-4.00		
Well Number:	MW-2		Initial o	lepth to water:	208.5	3 CTOL	Water	Column (feet):	50.11		
Casing Diameter:	Yin		Pre-developme	ent total depth:	317.30	enc	Minimum P	urge Volume:	197	< 3.35 X W (for a 4-inch	C = 5 volumes diameter well)
Start	End	Volume		Conductivity	Turbidity	02	Temperature	- Salinity OCA(%)	Surge	Activity Bail	Pump
Time	Time	(gal)	pH	(mS/cm)	(NTU)	(mg/l)	(C)		Suige	Daii	×
1105	1115	212	7.43	425	59.1	7.03	24.99	75.5			$-\hat{\mathbf{x}}$
1115	1125	~240	7.87	423	50 9	7.21	24.91	12009		30	$- \overleftarrow{\chi} -$
1125	1133	~268	7-81	423	25.2	7.26	24.98	B4.9			/\
1135	1145	~294	7.92	440	14.0	5.40	25.IT	954			X
1145	lien	~310	7.95	441	11.4	544	25.13	59.1			X
	1155	2324	794	440	9.5	5.49	25.17	480			X
1150	1200	~3250	700	429	8.3	5.50	25.09	37.5		•	\times
1188	1200	5-50	1210	17	- 0	7:03				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
									-		
						- 1					
				T-4-11/2	Ludia Domarrad	22.70	before cal	LOCALIA CO	Land Mary		
Post-development	depth to water:		501315	I otal Vol	lume Removed	250	Trace Con	2.09.30	unpic 11co	_	

Notes/Comments:

collect sample Mwz @1205

Pg.2 of 2

WELL SERVICE REPORT

Client Todd	Field Rep.
Project Name Big Hosp Water	Client Project No.
Location Warren Vista Yucca Valley OA	Client P.O. #

TYPE OF WORK	WELL NUMBER	DIA.	DEPTH OF WELL	MEASURED WATER DEPTH	PUMP SETTING	MEASURED GPM	START TIME	FINISH TIME	TOTAL TIME
Developmen	allons, Sur	411	259-7"	231,93	258	2	100, 15	minda	
	allans, Sur	10. 15	DO IN CIEC	15611	SINGIL	200			
Pump						d	12:115	3:20	
Development		2/11	348-1	288,53					
Bail 15	gallens, si	190	30 milioto	f (
Bring Bo	brad from	الد	to m	W-2					
Tranfer 1	water 10	mile	e to	Emply					

Time	Hours	Schedule	Time		Personnel	Name	Hours			
Shop / Pretrip	,5	On Duty	5:30	ATM PM	Technician Dan	Hansen	12.5			
Mobilization	2	Arrive Site	8:00	AM PM	Helper Dan	Elans	13			
Operating	9.5	Depart Site	5:30	AM PM						
Standby	+	Off Duty	6:00	AM PM	Subsistence (No. Men)					
Down/Repair (non-billable		Comments:								
Demobilization										
Shop/Post Trip	,5									
>Total Hours	12.5									

Equipment / Tools / Service	Supplies
[X] Generator (KW) [] Compressor (Size)	5 drums
[] Steam Cleaner [3] Pump (Size)	
[x] Water Wagon	
[X] Other Pick-up with plywood	

Client Signature	Technician Signature

V	VEL	LS	ER\	/ICE	REP	ORT
		_ ~				311

RIG <u>\$967</u> JOB NO. <u>\$426-8515</u> DAY <u>2</u> DATE <u>9-24-10</u>

Client	dd						Field Rep.	Dina	
Project Name	Bia Hoin	Water					Client Projec	t No.	
Location	ien Vista	4000	a Val	lea			Client P.O. #		
		1.4							
TYPE OF WORK	WELL NUMBER	DIA.	DEPTH OF	MEASURED	PUMP	MEASURE	START TIME	FINISH TIME	TOTAL

TYPE OF WORK	WELL NUMBER	DIA.	DEPTH OF WELL	MEASURED WATER DEPTH	PUMP SETTING	MEASURED GPM	START TIME	FINISH TIME	TOTAL TIME
DOVELGEMEN	MW-2	1/11		28853	344	203		12:00	
BEIT 10 9	allons, 56,	96	30 mu	10465	Ball	10 94	110195		
numa -						let.			
1									
transer 2	Under								

Time	Hours	Schedule	Time		Personnel	Name	Hours			
Shop / Pretrip		On Duty	6:30	AM PM	Technician Oon	Hansen	10			
Mobilization	,5	Arrive Site	71.00	AM PM	Helper					
Operating	7.5	Depart Site	2:30	AM PM						
Standby		Off Duty	4130	AM PM	Subsistence (No. Men)					
Down/Repair (non-billable		Comments:								
Demobilization										
Shop/Post Trip	2									
>Total Hours	10									

Equipment / Tools / Service		Supplies
[] Generator (KW)	[] Compressor (Size)	
[] Steam Cleaner	[3] Pump (Size)	
[7] Water Wagon		
[] Other		

Client Signature	1	V	IA		1	1	(1	X	Technician Signature
	1	V		U	1		1	1	4	 A francisco

Appendix D Aquifer Testing Data

Report Date: 10/6/2010 16:27

Report User Name: David
Report Computer Name: DAVID-PC

Log File Properties

File Name Dan_Append_2010-10-06_12-06-08-225.wsl

Create Date 10/6/2010 12:06

Device Properties

Device Level TROLL 700
Site HDWD24E

Device Name

Serial Number 122996
Firmware Version 2.08
Hardware Version 2

Log Configuration

Log NameDanCreated ByDavidComputer NameDAVID-PCApplicationWinSitu.exeApplication Version5.6.16.0

Create Date 10/4/2010 11:21
Current Time Zone Pacific Daylight Time(Use Local Time)

Notes Size(bytes) 4096

Overwrite when full Disabled
Scheduled Start Time Manual Start
Scheduled Stop Time No Stop Time
Type Fast Linear

Interval Days: 0 hrs: 00 mins: 00 secs: 20

Level Reference Settings At Log Creation

Level Measurement Mode Level Depth To Water

Specific Gravity 0.999

Level Reference Mode: Set new reference

Level Reference Value: 0 (ft)

Level Reference Head Pressure 23.7936 (PSI)

Other Log Settings

 Depth of Probe:
 54.9278 (ft)

 Head Pressure:
 23.7889 (PSI)

 Temperature:
 22.5892 (C)

Log Notes:

Date and Time Note

10/4/2010 11:21 Used Battery: 20% Used Memory: 4% User Name: David

10/4/2010 11:21 Manual Start Command

10/5/2010 15:16 Log Download - Used Battery: 21% Used Memory: 6% User Name: David 10/6/2010 12:04 Log Download - Used Battery: 21% Used Memory: 7% User Name: David

Log Data:

 Record Count
 8769

 Sensors
 1

Date/Time	Time (min	WL (ft)	DD (ft)	10/5/10 8:21	21.0	1.314	1.382	10/5/10 8:43	42.3	1.451	1.519
10/5/10 8:00	0.0	-0.068	DD (II)	10/5/10 8:22	21.3	1.329	1.397	10/5/10 8:43	42.7	1.456	1.524
10/5/10 8:01	0.3	0.957	1.025	10/5/10 8:22	21.7	1.335	1.403	10/5/10 8:43	43.0	1.453	1.521
10/5/10 8:01	0.7	1.468	1.536	10/5/10 8:22	22.0	1.327	1.395	10/5/10 8:44	43.3	1.461	1.529
10/5/10 8:01	1.0	1.500	1.568	10/5/10 8:22	22.3	1.342	1.41	10/5/10 8:44	43.7	1.467	1.535
10/5/10 8:02		1.129		10/5/10 8:23			1.398		44.0	1.468	1.536
			1.197		22.7	1.330		10/5/10 8:44			
10/5/10 8:02		0.972	1.04	10/5/10 8:23	23.0	1.341 1.340	1.409	10/5/10 8:45 10/5/10 8:45	44.3	1.473	1.541
10/5/10 8:02		0.994	1.062	10/5/10 8:24	23.3		1.408		44.7	1.469	1.537
10/5/10 8:03	2.3	1.009	1.077	10/5/10 8:24	23.7	1.344	1.412	10/5/10 8:45	45.0	1.462	1.53
10/5/10 8:03	2.7	1.069	1.137	10/5/10 8:24	24.0	1.361	1.429	10/5/10 8:46	45.3	1.464	1.532
10/5/10 8:03	3.0	1.095	1.163	10/5/10 8:25	24.3	1.340	1.408	10/5/10 8:46	45.7	1.465	1.533
10/5/10 8:04	3.3	1.112	1.18	10/5/10 8:25	24.7	1.346	1.414	10/5/10 8:46	46.0	1.465	1.533
10/5/10 8:04	3.7	1.109	1.177	10/5/10 8:25	25.0	1.349	1.417	10/5/10 8:47	46.3	1.466	1.534
10/5/10 8:04	4.0	1.116	1.184	10/5/10 8:26	25.3	1.353	1.421	10/5/10 8:47	46.7	1.468	1.536
10/5/10 8:05	4.3	1.137	1.205	10/5/10 8:26	25.7	1.350	1.418	10/5/10 8:47	47.0	1.471	1.539
10/5/10 8:05	4.7	1.127	1.195	10/5/10 8:26	26.0	1.357	1.425	10/5/10 8:48	47.3	1.475	1.543
10/5/10 8:05	5.0	1.139	1.207	10/5/10 8:27	26.3	1.354	1.422	10/5/10 8:48	47.7	1.475	1.543
10/5/10 8:06	5.3	1.147	1.215	10/5/10 8:27	26.7	1.342	1.41	10/5/10 8:48	48.0	1.478	1.546
10/5/10 8:06	5.7	1.151	1.219	10/5/10 8:27	27.0	1.349	1.417	10/5/10 8:49	48.3	1.480	1.548
10/5/10 8:06	6.0	1.160	1.228	10/5/10 8:28	27.3	1.348	1.416	10/5/10 8:49	48.7	1.482	1.55
10/5/10 8:07	6.3	1.169	1.237	10/5/10 8:28	27.7	1.367	1.435	10/5/10 8:49	49.0	1.483	1.551
10/5/10 8:07	6.7	1.183	1.251	10/5/10 8:28	28.0	1.370	1.438	10/5/10 8:50	49.3	1.484	1.552
10/5/10 8:07	7.0	1.189	1.257	10/5/10 8:29	28.3	1.367	1.435	10/5/10 8:50	49.7	1.488	1.556
10/5/10 8:08	7.3	1.190	1.258	10/5/10 8:29	28.7	1.369	1.437	10/5/10 8:50	50.0	1.487	1.555
10/5/10 8:08	7.7	1.186	1.254	10/5/10 8:29	29.0	1.376	1.444	10/5/10 8:51	50.3	1.485	1.553
10/5/10 8:08	8.0	1.188	1.256	10/5/10 8:30	29.3	1.374	1.442	10/5/10 8:51	50.7	1.491	1.559
10/5/10 8:09	8.3	1.193	1.261	10/5/10 8:30	29.7	1.379	1.447	10/5/10 8:51	51.0	1.490	1.558
10/5/10 8:09	8.7	1.199	1.267	10/5/10 8:30	30.0	1.376	1.444	10/5/10 8:52	51.3	1.491	1.559
10/5/10 8:09	9.0	1.203	1.271	10/5/10 8:31	30.3	1.384	1.452	10/5/10 8:52	51.7	1.496	1.564
10/5/10 8:10	9.3	1.207	1.275	10/5/10 8:31	30.7	1.391	1.459	10/5/10 8:52	52.0	1.493	1.561
10/5/10 8:10	9.7	1.223	1.291	10/5/10 8:31	31.0	1.394	1.462	10/5/10 8:53	52.3	1.491	1.559
10/5/10 8:10	10.0	1.225	1.293	10/5/10 8:32	31.3	1.377	1.445	10/5/10 8:53	52.7	1.497	1.565
10/5/10 8:11	10.3	1.226	1.294	10/5/10 8:32	31.7	1.389	1.457	10/5/10 8:53	53.0	1.496	1.564
10/5/10 8:11	10.7	1.236	1.304	10/5/10 8:32	32.0	1.392	1.46	10/5/10 8:54	53.3	1.498	1.566
10/5/10 8:11	11.0	1.230	1.298	10/5/10 8:33	32.3	1.399	1.467	10/5/10 8:54	53.7	1.504	1.572
10/5/10 8:12		1.242	1.31	10/5/10 8:33	32.7	1.394	1.462	10/5/10 8:54	54.0	1.510	1.578
10/5/10 8:12		1.246	1.314	10/5/10 8:33	33.0	1.394	1.462	10/5/10 8:55	54.3	1.508	1.576
10/5/10 8:12		1.249	1.317	10/5/10 8:34	33.3	1.402	1.47	10/5/10 8:55	54.7	1.504	1.572
10/5/10 8:13	12.3	1.241	1.309	10/5/10 8:34	33.7	1.404	1.472	10/5/10 8:55	55.0	1.507	1.575
10/5/10 8:13	12.7	1.254	1.322	10/5/10 8:34	34.0	1.402	1.47	10/5/10 8:56	55.3	1.506	1.574
10/5/10 8:13	13.0	1.256	1.324	10/5/10 8:35	34.3	1.403	1.471	10/5/10 8:56	55.7	1.508	1.576
10/5/10 8:14	13.3	1.262	1.33	10/5/10 8:35	34.7	1.407	1.475	10/5/10 8:56	56.0	1.518	1.586
10/5/10 8:14	13.7	1.263	1.331	10/5/10 8:35	35.0	1.409	1.477	10/5/10 8:57	56.3	1.518	1.586
10/5/10 8:14	14.0	1.266	1.334	10/5/10 8:36	35.3	1.409	1.477	10/5/10 8:57	56.7	1.515	1.583
10/5/10 8:15		1.274	1.342	10/5/10 8:36	35.7	1.407	1.475	10/5/10 8:57	57.0	1.516	1.584
10/5/10 8:15	14.7	1.271	1.339	10/5/10 8:36	36.0	1.408	1.476	10/5/10 8:58	57.3	1.517	1.585
10/5/10 8:15	15.0	1.277	1.345	10/5/10 8:37	36.3	1.408	1.476	10/5/10 8:58	57.7	1.519	1.587
10/5/10 8:16	15.3	1.279	1.347	10/5/10 8:37	36.7	1.410	1.478	10/5/10 8:58	58.0	1.522	1.59
10/5/10 8:16	15.7	1.281	1.349	10/5/10 8:37	37.0	1.412	1.48	10/5/10 8:59	58.3	1.523	1.591
10/5/10 8:16	16.0	1.280	1.348	10/5/10 8:38	37.3	1.420	1.488	10/5/10 8:59	58.7	1.527	1.595
10/5/10 8:17	16.3	1.279	1.347	10/5/10 8:38	37.7	1.420	1.482	10/5/10 8:59	59.0	1.521	1.589
10/5/10 8:17	16.7	1.284	1.352	10/5/10 8:38	38.0	1.424	1.492	10/5/10 9:00	59.3	1.517	1.585
10/5/10 8:17	17.0	1.287	1.352	10/5/10 8:39	38.3	1.424	1.492	10/5/10 9:00	59.3 59.7	1.524	1.592
10/5/10 8:17	17.0	1.290	1.358	10/5/10 8:39	38.7	1.422	1.49	10/5/10 9:00	60.0	1.524	1.592
		1.290			36.7 39.0		1.497			1.522	1.589
10/5/10 8:18			1.361	10/5/10 8:39 10/5/10 8:40		1.430		10/5/10 9:01	60.3		
10/5/10 8:18 10/5/10 8:19		1.298	1.366	10/5/10 8:40 10/5/10 8:40	39.3	1.433	1.501	10/5/10 9:01	60.7	1.523	1.591 1.593
		1.307	1.375	10/5/10 8:40	39.7	1.439	1.507	10/5/10 9:01	61.0	1.525	
10/5/10 8:19	18.7	1.310	1.378	10/5/10 8:40	40.0	1.440	1.508	10/5/10 9:02	61.3	1.529	1.597
10/5/10 8:19	19.0	1.305	1.373	10/5/10 8:41	40.3	1.447	1.515	10/5/10 9:02	61.7	1.532	1.6
10/5/10 8:20		1.311	1.379	10/5/10 8:41	40.7	1.445	1.513	10/5/10 9:02	62.0	1.532	1.6
10/5/10 8:20	19.7	1.311	1.379	10/5/10 8:41	41.0	1.442	1.51	10/5/10 9:03	62.3	1.542	1.61
10/5/10 8:20		1.308	1.376	10/5/10 8:42	41.3	1.448	1.516	10/5/10 9:03	62.7	1.540	1.608
10/5/10 8:21	20.3	1.311	1.379	10/5/10 8:42	41.7	1.450	1.518	10/5/10 9:03	63.0	1.539	1.607
10/5/10 8:21	20.7	1.312	1.38	10/5/10 8:42	42.0	1.451	1.519	10/5/10 9:04	63.3	1.542	1.61

106/19 8-04 63.7 1.538 1.606 106/19 225 85.0 1.596 1.692 1.691 1.471 1.091 1.639 1.771 1.091 1.005 64.3 1.550 1.691 1.09												
106/10 9.06 64.0 1.542 1.61 106/10 9.25 85.3 1.597 1.685 105/10 9.47 107 1.639 1.707 106/10 9.05 65.0 1.544 1.612 106/10 9.25 85.0 1.597 1.685 105/10 9.48 107 1.644 17.15 106/10 9.05 85.0 1.544 1.612 106/10 9.25 85.7 1.605 105/10 9.48 107 1.644 17.15 106/10 9.05 85.0 1.544 1.612 106/10 9.27 86.3 1.597 1.685 105/10 9.48 108 1.647 17.15 106/10 9.05 85.0 1.544 1.612 106/10 9.27 86.3 1.597 1.685 105/10 9.48 108 1.647 17.15 106/10 9.05 85.0 1.594 1.612 106/10 9.27 86.3 1.597 1.685 105/10 9.48 108 1.645 17.15 106/10 9.05 85.0 1.594 1.615 1.615 1.733 106/10 9.05 85.0 1.594 1.615 1.615 1.733 106/10 9.05 85.0 1.594 1.615 1.615 1.733 106/10 9.05 85.0 1.594 1.615 1.615 1.733 106/10 9.05 85.0 1.594 1.615 1.615 1.733 106/10 9.05 85.0 1.594 1.615 1.615 1.733 106/10 9.05 85.0 1.594 1.615 1.	10/E/10 0:01	62.7	4 500	1.606	10/5/10 0:05	05.0	1 505	1 660	10/5/10 0:47	100	1 6 4 0	1 71
105/10 9:05 64.3 1.560 1.618 105/10 9:26 85.7 1.593 1.661 105/10 9:47 107 1.644 1.772 105/10 9:06 64.7 1.594 1.617 105/10 9:06 65.2 1.544 1.612 105/10 9:27 88.7 1.600 1.608 105/10 9:48 109 1.650 1.718 105/10 9:06 65.3 1.544 1.612 105/10 9:27 88.7 1.600 1.608 105/10 9:48 109 1.650 1.718 105/10 9:06 65.3 1.544 1.612 105/10 9:27 88.7 1.600 1.608 105/10 9:48 109 1.650 1.718 105/10 9:07 89.0 105/10 9:08 105/10 9:48 109 1.650 1.718 105/10 9:07 89.0 105/10 9:08 105							1.595	1.003				
105/10 806 647 1.548 1.677 105/10 9/36 86.0 1.589 1.662 105/10 8/48 107 1.644 1.712 1.05/10 8/36 65.3 1.544 1.612 1.05/10 8/27 86.7 1.608 1.668 1.05/10 8/48 108 1.668 1.650 1.728 1.05/10 8/36 1.669 1.05/10 8/48 1.05/10				1.01								
106/19/26/6 65.0 1.544 1.612 106/19/27 86.3 1.587 1.665 106/19/24 108 1.667 1.715 1.06719/26/6 65.7 1.542 1.611 106/19/26/6 87.7 1.666					10/5/10 9:20							
106/10/20/6 63.3 1.544 1.612 106/10/20/27 86.7 1.500 1.668 106/10/24 1							1.594					
105/10 9:06 65.7 1542 161 105/10 9:27 87.0 1601 1688 105/10 9:49 108 1680 1.728 105/10 9:07 66.3 1541 1609 105/10 9:08 87.7 1601 1689 105/10 9:08 109/10 9:09 109/10 9:09 109/10 9:09 109/10 9:09 109/10 9:09 109/10 9:09 109/10 9:09 109/10 9:09 109/10 9:09 109/10 9				1.612			1.597					
108/10 9:06 66.0 1.533 1.607 108/10 9:28 87.7 1.006 1.676 1.006 1.608 1.728 1.												
106/10 807 66.3 1.541 1.609 105/10 9.28 87.7 1.606 1.674 105/10 9.49 109 1.688 1.726 106/10 808 67.7 1.654 1.611 105/10 9.28 88.0 1.604 1.677 105/10 9.50 109 1.680 1.728 106/10 808 67.7 1.641 1.609 1.608 1.728 106/10 808 67.7 1.641 1.609 1.608 1.												
106/10 9:07 67.7 1.543 1.611 105/10 9:28 88.0 1.604 1.672 106/10 9:50 109 1.660 1.728 106/10 9:50 67.9 1.542 1.611 105/10 9:29 88.3 1.604 1.672 106/10 9:50 10 1.689 1.727 106/10 9:08 67.7 1.541 1.689 105/10 9:29 89.0 1.602 1.67 106/10 9:51 110 1.682 1.731 106/10 9:08 68.7 1.541 1.689 105/10 9:29 89.0 1.602 1.67 106/10 9:51 110 1.682 1.731 106/10 9:08 68.7 1.541 1.689 105/10 9:30 89.3 1.602 1.67 106/10 9:51 111 1.683 1.731 106/10 9:09 68.3 1.544 1.612 105/10 9:30 89.3 1.602 1.67 106/10 9:51 111 1.683 1.731 106/10 9:09 68.3 1.544 1.612 105/10 9:30 89.3 1.602 1.67 106/10 9:51 111 1.683 1.731 106/10 9:09 1.660 1.728 1.724 1.660 1.728 1.724 1.660 1.728 1.724 1.660 1.728 1.724 1.660 1.728 1.724 1.660 1.728 1.724 1.660 1.728 1.724 1.660 1.728 1.724 1.660 1.728 1.724 1.660 1.728 1.724 1.660 1.728 1.724 1.660 1.728 1.724 1.660 1.728 1.724 1.660 1.728 1.724 1.660 1.728 1.724 1.660 1.												
108/10 9.07 67.0 1.542 1.61 108/10 9.29 88.3 1.602 1.67 108/10 9.50 110 1.689 1.727 108/10 9.08 67.3 1.542 1.609 108/10 9.29 88.7 1.605 1.677 108/10 9.50 110 1.682 1.737 108/10 9.08 86.3 1.542 1.61 108/10 9.09 88.3 1.602 1.67 108/10 9.31 111 1.663 1.731 108/10 9.09 88.7 1.544 1.612 108/10 9.09 88.3 1.602 1.67 108/10 9.31 111 1.663 1.731 108/10 9.09 88.7 1.547 1.615 108/10 9.09 88.3 1.602 1.67 108/10 9.32 111 1.663 1.731 108/10 9.09 88.7 1.547 1.615 108/10 9.30 88.7 1.607 1.675 108/10 9.32 112 1.668 1.731 108/10 9.09 88.7 1.547 1.615 108/10 9.30 1.608 1.677 1.675 108/10 9.32 112 1.668 1.731 108/10 9.10 8.7 1.547 1.615 108/10 9.32 9.13 1.607 1.675 108/10 9.33 112 1.668 1.731 108/10 9.10 8.7 1.547 1.615 108/10 9.32 9.13 1.607 1.676 108/10 9.33 112 1.668 1.731 108/10 9.10 8.7 1.547 1.615 108/10 9.32 9.13 1.600 1.676 1.676 108/10 9.33 113 1.663 1.731 108/10 9.11 7.03 1.547 1.615 108/10 9.32 9.13 1.600 1.676 1.676 108/10 9.33 113 1.663 1.731 108/10 9.11 7.03 1.547 1.615 108/10 9.32 9.13 1.600 1.676 1.678 108/10 9.53 113 1.663 1.731 108/10 9.11 7.03 1.547 1.615 108/10 9.32 9.17 1.610 1.678 108/10 9.53 113 1.663 1.731 108/10 9.11 7.03 1.547 1.615 108/10 9.32 9.17 1.610 1.678 108/10 9.53 113 1.663 1.731 108/10 9.12 9.13 1.600 1.678 108/10 9.53 113 1.663 1.731 108/10 9.12 9.13 1.600 1.678 108/10 9.53 113 1.663 1.731 108/10 9.12 9.13 1.600 1.678 108/10 9.53 113 1.663 1.731 108/10 9.12 9.13 1.678 108/10 9.53 113 1.663 1.731 108/10 9.12 9.13 1.679					10/5/10 9:28							
108/10 9:08 67.3 1.542 1.61 108/10 9:29 88.7 1.605 1.673 108/10 9:50 110 1.662 1.73 108/10 9:08 67.7 1.541 1.609 108/10 9:29 88.7 1.602 1.67 108/10 9:01 111 1.662 1.73 108/10 9:09 68.7 1.602 1.67 108/10 9:01 111 1.663 1.73 108/10 9:09 68.7 1.602 1.67 108/10 9:01 111 1.663 1.73 108/10 9:09 68.7 1.602 1.67 108/10 9:01 111 1.663 1.73 108/10 9:09 68.7 1.602 1.67 108/10 9:01 111 1.663 1.73 108/10 9:09 68.7 1.602 1.67 108/10 9:01 111 1.663 1.73 108/10 9:09 68.7 1.602 1.67 108/10 9:05 111 1.663 1.73 108/10 9:09 1.607 1.676 108/10 9:05 111 1.663 1.73 108/10 9:09 1.607 1.676 108/10 9:05 111 1.663 1.73 1.608 1.676 108/10 9:05 111 1.663 1.73 1.608 1.676												
105/10 9.08 67.7 1.541 1.609 105/10 9.39 88.0 1.602 1.677 105/10 9.51 110 1.662 1.73 105/10 9.08 68.0 1.542 1.617 105/10 9.30 88.3 1.602 1.677 105/10 9.51 111 1.668 1.73 105/10 9.08 68.0 1.542 1.617 105/10 9.30 88.3 1.602 1.677 105/10 9.52 111 1.668 1.73 105/10 9.09 68.0 1.588 1.547 1.615 105/10 9.31 90.0 1.608 1.676 105/10 9.52 112 1.666 1.73 105/10 9.10 68.0 1.588 1.616 105/10 9.31 90.0 1.608 1.676 105/10 9.52 112 1.666 1.73 105/10 9.10 10 68.7 1.547 1.615 105/10 9.31 90.3 1.607 1.675 105/10 9.32 112 1.668 1.73 105/10 9.10 10 68.7 1.547 1.615 105/10 9.31 90.7 1.610 1.676 105/10 9.33 112 1.668 1.73 105/10 9.11 10 1.608 1.678 105/10 9.33 112 1.668 1.73 105/10 9.11 10 1.608 1.678 105/10 9.33 112 1.669 1.73 105/10 9.11 10 1.608 1.678 105/10 9.33 113 1.664 1.73 105/10 9.11 10 1.608 1.678 105/10 9.33 113 1.663 1.73 105/10 9.11 10 1.670 9.11 10 1.676			1.542									
106/10 9:08 68.0 1.544 1.615 106/10 9:30 89.3 1.602 1.67 106/10 9:51 111 1.663 1.731 106/10 9:09 68.3 1.544 1.615 106/10 9:30 89.7 1.602 1.67 106/10 9:52 111 1.663 1.731 106/10 9:09 68.0 1.544 1.615 106/10 9:30 89.7 1.602 1.67 1.676 106/10 9:52 112 1.666 1.734 106/10 9:09 68.0 1.546 1.616 106/10 9:31 90.3 1.607 1.675 106/10 9:52 112 1.666 1.734 106/10 9:09 68.0 1.546 1.614 106/10 9:31 90.3 1.607 1.675 106/10 9:52 112 1.666 1.734 106/10 9:09 89.3 1.546 1.614 106/10 9:31 90.3 1.607 1.675 106/10 9:52 112 1.669 1.734 106/10 9:09 89.3 1.546 1.614 106/10 9:31 91.0 1.608 1.678 106/10 9:52 112 1.669 1.734 106/10 9:00 1.608 1.676 106/10 9:52 112 1.669 1.734 106/10 9:00 1.608 1.676 106/10 9:52 112 1.669 1.734 106/10 9:00 1.608 1.676 106/10 9:52 112 1.669 1.734 106/10 9:10 7.00 1.547 1.615 106/10 9:32 9:32 9:33 1.610 1.678 106/10 9:53 112 1.663 1.731 106/10 9:11 77.0 1.547 1.615 106/10 9:32 9:32 9:33 1.610 1.678 106/10 9:53 113 1.606 1.734 106/10 9:11 77.0 1.547 1.615 106/10 9:32 9:20 1.615 1.689 1.078 106/10 9:54 113 1.666 1.734 106/10 9:12 7.73 1.549 1.617 106/10 9:33 9:2.3 1.618 1.686 1.06/10 9:54 114 1.666 1.734 106/10 9:12 7.73 1.549 1.617 106/10 9:33 9:2.3 1.618 1.686 1.06/10 9:54 114 1.666 1.734 106/10 9:12 7.73 1.552 1.62 106/10 9:33 9:2.7 1.619 1.687 106/10 9:54 114 1.666 1.734 106/10 9:34 9:30 1.699 1.687 1.687 1.06/10 9:55 115 1.669 1.734 106/10 9:34 9:30 1.699 1.687 1.687 1.06/10 9:55 115 1.669 1.734 106/10 9:34 9:30 1.699 1.687 1.689 1.06/10 9:55 115 1.669 1.734 106/10 9:34 9:30 1.699 1.687 1.689 1.06/10 9:55 115 1.668 1.735 106/10 9:34 9:30 1.699 1.689 1.06/10 9:55 115 1.668 1.736 106/10 9:34 9:30 1.699 1.689 1.06/10 9:55 115 1.668 1.736 106/10 9:34 9:35 1.699					10/5/10 9:29							
105/10 9:09 68.3 1.544 1.612 105/10 9:30 89.7 1.602 1.676 105/10 9:51 111 1.663 1.731 105/10 9:09 68.7 1.547 1.615 1.659 1.737 105/10 9:09 68.0 1.548 1.616 1.659 1.62					10/5/10 9:29							
105/10 9:09 68.7 1.547 1.615 105/10 9:30 90.0 1.608 1.676 105/10 9:52 111 1.659 1.727 105/10 9:10 68.0 1.548 1.616 105/10 9:31 90.7 1.608 1.675 105/10 9:52 112 1.666 1.734 105/10 9:10 68.0 1.546 1.616 105/10 9:31 90.7 1.608 1.675 105/10 9:52 112 1.666 1.734 105/10 9:10 70.0 1.547 1.615 105/10 9:10 105/10 9:10 70.0 1.547 1.615 105/10 9:32 91.7 1.610 1.678 105/10 9:53 113 1.661 1.734 105/10 9:11 70.7 1.547 1.615 105/10 9:32 91.7 1.610 1.678 105/10 9:53 113 1.663 1.734 105/10 9:11 70.7 1.547 1.615 105/10 9:32 91.7 1.610 1.678 105/10 9:53 113 1.663 1.734 105/10 9:11 70.7 1.547 1.615 105/10 9:32 91.7 1.610 1.678 105/10 9:53 113 1.668 1.734 105/10 9:11 70.7 1.547 1.615 105/10 9:32 91.7 1.610 1.678 105/10 9:53 113 1.668 1.734 105/10 9:11 70.7 1.547 1.615 105/10 9:32 91.7 1.610 1.678 105/10 9:54 113 1.668 1.734 105/10 9:11 70.3 1.547 1.615 105/10 9:32 92.3 1.618 1.683 105/10 9:54 114 1.668 1.734 105/10 9:12 71.3 1.549 1.617 105/10 9:33 92.3 1.618 1.686 105/10 9:54 114 1.668 1.734 105/10 9:12 71.3 1.549 1.617 105/10 9:33 92.3 1.618 1.686 105/10 9:54 114 1.668 1.734 105/10 9:12 71.3 1.560 1.628 105/10 9:34 93.3 1.628 1.694 105/10 9:55 115 1.669 1.737 105/10 9:13 72.3 1.560 1.628 105/10 9:34 93.3 1.628 1.694 105/10 9:55 115 1.669 1.737 105/10 9:13 72.3 1.560 1.628 105/10 9:34 93.3 1.625 1.693 105/10 9:55 115 1.669 1.737 105/10 9:13 72.3 1.550 1.628 105/10 9:34 93.7 1.625 1.693 105/10 9:55 115 1.669 1.737 105/10 9:13 72.3 1.550 1.628 105/10 9:35 94.7 1.625 1.693 105/10 9:55 115 1.669 1.737 105/10 9:13 72.3 1.550 1.628 105/10 9:35 94.7 1.625 1.693 105/10 9:55 115 1.668 1.734 105/10 9:13 72.0 1.564 1.624 105/10 9:35 94.7 1.625 1.693 105/10 9:55 115 1.668 1.734 105/10 9:55 115 1.669 1.734 105/10 9:55 115 1.669 1.734 105/10 9:55 115 1.669 1.734 105/10 9:55 115 1.669 1.734 105/10 9:55 115 1.669 1.734 105/10 9:55 115 1.669 1.734 105/10 9:55 115 1.669 1.734 105/10 9:55 115 1.669 1.734 105/10 9:55 115 1.669 1.734 105/10 9:55 115 1.669 1.734 105/10 9:55 115 1.669 1.734 105/10 9:55 115 1.669 1.734 105/10 9:55 115 1.669 1.734 105/10				1.61								
106/10 9:00 69.0					10/5/10 9:30							
106/10 9-10 69.3												
1015/10 9:10 69,7			1.548									
10\(10\(10\) 10\(10\) 10\(10\) 10\(10\) 10\(10\) 10\(10\) 10\(10\) 10\(10\) 11\(10\)	10/5/10 9:10	69.3	1.546	1.614	10/5/10 9:31	90.7	1.610	1.678	10/5/10 9:52	112	1.669	1.737
10 5/10 9:11 70.3 1.547 1.615 10 5/10 9:32 91.7 1.610 1.678 10 5/10 9:53 113 1.663 1.731 10 5/10 9:11 70.7 71.0 1.547 1.615 10 5/10 9:32 92.0 1.615 1.683 10 5/10 9:54 114 1.666 1.7361 10 5/10 9:12 71.3 1.552 1.621 10 5/10 9:33 82.3 1.618 1.686 1.05/10 9:54 114 1.666 1.7361 10 5/10 9:12 71.3 1.552 1.621 10 5/10 9:33 82.3 1.618 1.686 1.05/10 9:54 114 1.666 1.7361 10 5/10 9:12 71.3 1.550 1.623 10 5/10 9:33 82.3 1.618 1.686 1.05/10 9:55 1.616 1.6861 1.05/10 9:13 72.3 1.550 1.628 10 5/10 9:34 83.3 1.629 1.686 1.05/10 9:55 1.628 1.628 10 5/10 9:35 1.628 1.628 1.05/10 9:35 1.628 1.05/10 9:35 1.628 1.05/10 9:35 1.628 1.05/10 9:35 1.05/10	10/5/10 9:10	69.7	1.547	1.615	10/5/10 9:31		1.608	1.676		112	1.663	
105/10 9:11 71.0 1.549 1.615 1.05/10 9:32 92.0 1.615 1.683 105/10 9:54 114 1.666 1.734 105/10 9:12 77.7 1.552 1.62 105/10 9:33 92.3 1.618 1.686 1.05/10 9:34 114 1.666 1.734 105/10 9:12 77.7 1.552 1.62 105/10 9:33 92.7 1.619 1.687 105/10 9:35 114 1.666 1.734 1.05/10 9:12 77.7 1.552 1.62 105/10 9:34 33.7 1.621 1.639 1.637 1.05/10 9:35 1.14 1.666 1.734 1.05/10 9:35 1.05		70.0	1.547	1.615						113	1.664	1.732
10 5/10 9:12 71.0 1.549 1.617 10 5/10 9:33 92.3 1.618 1.686 10 5/10 9:54 114 1.668 1.734 10 5/10 9:12 71.7 1.553 1.621 10 5/10 9:33 33.0 1.619 1.687 10 5/10 9:55 114 1.668 1.734 10 5/10 9:12 72.0 1.553 1.621 10 5/10 9:33 33.0 1.619 1.687 10 5/10 9:55 115 1.689 1.734 10 5/10 9:12 72.0 1.558 1.628 10 5/10 9:34 94.0 1.625 1.639 10 5/10 9:55 115 1.689 1.734 10 5/10 9:13 72.7 1.558 1.628 10 5/10 9:34 94.0 1.625 1.639 10 5/10 9:55 115 1.689 1.734 10 5/10 9:13 73.0 1.555 1.623 10 5/10 9:35 94.7 1.621 1.689 10 5/10 9:56 116 1.668 1.734 10 5/10 9:14 73.3 1.560 1.628 10 5/10 9:35 94.7 1.621 1.689 10 5/10 9:56 116 1.668 1.734 10 5/10 9:14 73.3 1.560 1.628 10 5/10 9:35 94.7 1.621 1.689 10 5/10 9:56 116 1.688 1.736 10 5/10 9:14 73.7 1.562 1.633 10 5/10 9:36 95.0 1.630 1.689 10 5/10 9:57 116 1.671 1.739 10 5/10 9:14 73.7 1.562 1.633 10 5/10 9:36 95.3 1.630 1.689 10 5/10 9:57 116 1.671 1.739 10 5/10 9:14 73.7 1.562 1.633 10 5/10 9:36 95.3 1.630 1.689 10 5/10 9:57 117 1.671 1.739 10 5/10 9:15 74.3 1.562 1.633 10 5/10 9:38 95.7 1.630 1.689 10 5/10 9:57 117 1.671 1.739 10 5/10 9:15 74.3 1.562 1.633 10 5/10 9:38 96.7 1.630 1.689 10 5/10 9:57 117 1.671 1.739 10 5/10 9:16 75.3 1.573 1.641 1.6710 9:39 96.7 1.630 1.689 10 5/10 9:57 117 1.671 1.739	10/5/10 9:11	70.3	1.547	1.615	10/5/10 9:32	91.7	1.610	1.678	10/5/10 9:53	113	1.663	1.731
10 5/10 9:12 71.0 1.549 1.617 10 5/10 9:33 92.3 1.618 1.686 10 5/10 9:54 114 1.668 1.734 10 5/10 9:12 71.7 1.553 1.621 10 5/10 9:33 33.0 1.619 1.687 10 5/10 9:55 114 1.668 1.734 10 5/10 9:12 72.0 1.553 1.621 10 5/10 9:33 33.0 1.619 1.687 10 5/10 9:55 115 1.689 1.734 10 5/10 9:12 72.0 1.558 1.628 10 5/10 9:34 94.0 1.625 1.639 10 5/10 9:55 115 1.689 1.734 10 5/10 9:13 72.7 1.558 1.628 10 5/10 9:34 94.0 1.625 1.639 10 5/10 9:55 115 1.689 1.734 10 5/10 9:13 73.0 1.555 1.623 10 5/10 9:35 94.7 1.621 1.689 10 5/10 9:56 116 1.668 1.734 10 5/10 9:14 73.3 1.560 1.628 10 5/10 9:35 94.7 1.621 1.689 10 5/10 9:56 116 1.668 1.734 10 5/10 9:14 73.3 1.560 1.628 10 5/10 9:35 94.7 1.621 1.689 10 5/10 9:56 116 1.688 1.736 10 5/10 9:14 73.7 1.562 1.633 10 5/10 9:36 95.0 1.630 1.689 10 5/10 9:57 116 1.671 1.739 10 5/10 9:14 73.7 1.562 1.633 10 5/10 9:36 95.3 1.630 1.689 10 5/10 9:57 116 1.671 1.739 10 5/10 9:14 73.7 1.562 1.633 10 5/10 9:36 95.3 1.630 1.689 10 5/10 9:57 117 1.671 1.739 10 5/10 9:15 74.3 1.562 1.633 10 5/10 9:38 95.7 1.630 1.689 10 5/10 9:57 117 1.671 1.739 10 5/10 9:15 74.3 1.562 1.633 10 5/10 9:38 96.7 1.630 1.689 10 5/10 9:57 117 1.671 1.739 10 5/10 9:16 75.3 1.573 1.641 1.6710 9:39 96.7 1.630 1.689 10 5/10 9:57 117 1.671 1.739	10/5/10 9:11	70.7	1.547	1.615	10/5/10 9:32	92.0	1.615	1.683		113	1.666	1.734
10 5/10 9:12	10/5/10 9:11	71.0	1.549	1.617	10/5/10 9:33	92.3	1.618		10/5/10 9:54	114	1.668	1.736
10/5/10 9:12 77.0 1.553 1.621 10/5/10 9:33 93.0 1.619 1.687 10/5/10 9:55 114 1.663 1.731 10/5/10 9:13 72.3 1.560 1.628 10/5/10 9:34 93.3 1.626 1.693 10/5/10 9:55 115 1.669 1.737 10/5/10 9:13 72.7 1.558 1.626 10/5/10 9:34 93.3 1.625 1.693 10/5/10 9:56 115 1.669 1.737 10/5/10 9:13 72.7 1.558 1.626 10/5/10 9:34 94.0 1.625 1.693 10/5/10 9:56 115 1.689 1.735 10/5/10 9:36 13 1.626 10/5/10 9:35 94.3 1.621 1.625 1.693 10/5/10 9:56 115 1.689 1.735 10/5/10 9:36 116 1.686 1.734 10/5/10 9:37 94.3 1.621 1.689 10/5/10 9:56 116 1.686 1.734 10/5/10 9:14 73.3 1.560 1.628 10/5/10 9:35 94.3 1.621 1.689 10/5/10 9:56 116 1.686 1.734 10/5/10 9:15 74.7 1.564 1.632 10/5/10 9:38 94.7 1.622 1.689 10/5/10 9:56 116 1.686 1.734 10/5/10 9:15 74.7 1.566 1.633 10/5/10 9:38 95.7 1.630	10/5/10 9:12	71.3	1.552	1.62	10/5/10 9:33		1.619	1.687	10/5/10 9:54	114	1.666	1.734
105/10 9:13 72.3 1.560 1.624 10/5/10 9:34 93.3 1.626 1.694 10/5/10 9:55 115 1.669 1.737 10/5/10 9:13 72.3 1.560 1.628 10/5/10 9:34 93.7 1.625 1.693 10/5/10 9:55 115 1.669 1.737 10/5/10 9:13 72.3 1.560 1.628 10/5/10 9:34 93.7 1.625 1.693 10/5/10 9:56 115 1.668 1.736 10/5/10 9:13 73.3 1.560 1.628 10/5/10 9:35 94.3 1.621 1.689 10/5/10 9:56 116 1.666 1.734 10/5/10 9:14 73.7 1.556 1.623 10/5/10 9:35 94.3 1.621 1.689 10/5/10 9:56 116 1.666 1.734 10/5/10 9:14 73.7 1.560 1.623 10/5/10 9:35 95.7 1.621 1.689 10/5/10 9:56 116 1.666 1.734 10/5/10 9:15 74.3 1.562 1.632 10/5/10 9:35 95.7 1.630 1.688 10/5/10 9:57 117 1.676 1.749 10/5/10 9:15 74.7 1.566 1.634 10/5/10 9:36 95.7 1.630 1.688 10/5/10 9:57 117 1.676 1.744 10/5/10 9:15 74.7 1.566 1.634 10/5/10 9:36 95.7 1.630 1.681 10/5/10 9:58 117 1.674 1.742 10/5/10 9:16 75.0 1.565 1.633 10/5/10 9:36 95.7 1.623 1.623 1.691 10/5/10 9:58 118 1.672 1.74 10/5/10 9:16 75.0 1.565 1.633 10/5/10 9:37 96.3 1.623 1.691 10/5/10 9:58 118 1.672 1.74 10/5/10 9:16 75.0 1.565 1.633 10/5/10 9:37 96.3 1.623 1.691 10/5/10 9:58 118 1.672 1.74 10/5/10 9:16 75.7 1.573 1.641 10/5/10 9:37 96.7 1.622 1.688 10/5/10 9:59 118 1.681 1.749 10/5/10 9:16 75.7 1.573 1.644 10/5/10 9:38 97.3 1.622 1.689 10/5/10 9:59 118 1.681 1.749 10/5/10 9:16 75.7 1.573 1.644 10/5/10 9:38 97.3 1.622 1.689 10/5/10 9:59 118 1.681 1.749 10/5/10 9:16 75.7 1.573 1.644 10/5/10 9:38 97.3 1.622 1.689 10/5/10 9:59 118 1.681 1.749 10/5/10 9:18 77.7 1.574 1.642 10/5/10 9:38 98.7 1.621 1.689 10/5/10 9:59 118 1.681 1.749 10/5/10 9:18 77.7 1.575 1.643 10/5/10 9:38 98.7 1.621 1.689 10/5/10 0:00 1.20 1.677 1.745 10/5/10 9:18 77.7 1.574 1.642 10/5/10 9:38 98.7 1.621 1.689 10/5/10 0:00 1.20 1.677 1.745 10/5/10 9:18 77.7 1.574 1.642 10/5/10 9:38 98.7 1.621 1.689 10/5/10 0:00 1.20 1.677 1.745 10/5/10 9:18 77.7 1.574 1.642 10/5/10 9:38 98.7 1.619 1.689 10/5/10 0:00 1.20 1.677 1.745 10/5/10 9:18 77.7 1.574 1.642 10/5/10 9:38 98.7 1.619 1.689 10/5/10 0:00 1.20 1.677 1.745 10/5/10 9:18 77.7 1.574 1.644 10/5/10 9:38 98.7 1.621 1.689 10/5/10 0:00 1.20 1.6					10/5/10 9:33					114	1.663	1.731
105/10 9:13 72.3 1.560 1.628 10/5/10 9:34 93.0 1.625 1.693 10/5/10 9:55 115 1.669 1.737 10/5/10 9:13 72.7 1.558 1.626 10/5/10 9:35 94.3 1.621 1.689 10/5/10 9:56 116 1.668 1.734 10/5/10 9:14 73.3 1.550 1.628 10/5/10 9:35 94.3 1.621 1.689 10/5/10 9:56 116 1.668 1.734 10/5/10 9:14 73.7 1.552 1.632 10/5/10 9:35 94.7 1.621 1.689 10/5/10 9:56 116 1.668 1.734 10/5/10 9:14 73.7 1.552 1.632 10/5/10 9:35 94.7 1.621 1.689 10/5/10 9:56 116 1.668 1.734 10/5/10 9:14 73.7 1.552 1.632 10/5/10 9:35 95.3 1.621 1.689 10/5/10 9:56 116 1.668 1.734 10/5/10 9:14 73.7 1.552 1.632 10/5/10 9:36 85.3 1.630 1.698 10/5/10 9:57 116 1.671 1.739 10/5/10 9:14 73.7 1.562 1.633 10/5/10 9:36 85.3 1.630 1.698 10/5/10 9:57 116 1.671 1.739 10/5/10 9:15 74.7 1.666 1.633 10/5/10 9:38 85.3 1.630 1.698 10/5/10 9:57 117 1.676 1.739 10/5/10 9:15 74.7 1.666 1.633 10/5/10 9:38 86.0 1.630 1.698 10/5/10 9:58 117 1.674 1.742 10/5/10 9:16 75.3 1.573 1.641 10/5/10 9:37 95.3 1.623 1.691 10/5/10 9:38 117 1.674 1.744 10/5/10 9:16 75.3 1.573 1.641 10/5/10 9:37 96.7 1.612 1.688 10/5/10 9:58 118 1.676 1.744 10/5/10 9:16 75.3 1.573 1.641 10/5/10 9:37 97.0 1.686 1.694 10/5/10 9:38 118 1.676 1.744 10/5/10 9:16 75.3 1.573 1.644 10/5/10 9:38 97.3 1.622 1.698 10/5/10 9:59 119 1.681 1.749 10/5/10 9:17 76.7 1.574 1.642 10/5/10 9:38 97.3 1.622 1.69 10/5/10 9:59 119 1.681 1.749 10/5/10 9:17 76.7 1.574 1.642 10/5/10 9:38 97.3 1.622 1.69 10/5/10 9:59 119 1.681 1.745 10/5/10 9:17 77.0 1.575 1.643 10/5/10 9:38 98.0 1.622 1.69 10/5/10 10/0 120 1.677 1.745 10/5/10 9:18 77.3 1.574 1.642 10/5/10 9:38 98.0 1.622 1.69 10/5/10 10/0 120 1.677 1.745 10/5/10 9:18 77.3 1.574 1.642 10/5/10 9:38 98.0 1.622 1.69 10/5/10 10/0 120 1.677 1.745 10/5/10 9:18 77.3 1.574 1.642 10/5/10 9:39 98.3 1.621 1.699 10/5/10 10/0 120 1.677 1.745 10/5/10 9:18 77.3 1.574 1.642 10/5/10 9:39 98.3 1.621 1.699 10/5/10 10/0 120 1.677 1.745 10/5/10 9:19 77.0 1.575 1.643 10/5/10 9:44 10/5/10 9:44 10/5/10 9:44 10/5/10 9:44 10/5/10 9:44 10/5/10 9:44 10/5/10 9:44 10/5/10 9:44 10/5/10 9:44 10/5/10 9:44 10/5/10 9:44 10/5/10 9:												
105/10 9:13 72.7 1.558 1.626 10/5/10 934 94.0 1.625 1.693 10/5/10 9:56 115 1.668 1.734 10/5/10 9:14 73.3 1.560 1.628 10/5/10 9:35 94.7 1.621 1.689 10/5/10 9:56 116 1.668 1.734 10/5/10 9:14 73.7 1.562 1.63 10/5/10 9:35 94.7 1.621 1.689 10/5/10 9:56 116 1.668 1.734 10/5/10 9:14 73.7 1.562 1.63 10/5/10 9:35 95.0 1.630 1.698 10/5/10 9:56 116 1.668 1.734 10/5/10 9:14 73.7 1.562 1.63 10/5/10 9:35 95.0 1.630 1.698 10/5/10 9:57 117 1.671 1.739 10/5/10 9:15 74.3 1.562 1.63 10/5/10 9:36 95.3 1.630 1.698 10/5/10 9:57 117 1.671 1.739 10/5/10 9:15 74.3 1.562 1.63 10/5/10 9:36 95.3 1.630 1.698 10/5/10 9:57 117 1.671 1.739 10/5/10 9:15 74.7 1.566 1.634 10/5/10 9:36 95.0 1.630 1.698 10/5/10 9:57 117 1.671 1.739 10/5/10 9:15 74.7 1.566 1.634 10/5/10 9:37 96.3 1.623 1.691 10/5/10 9:58 117 1.674 1.742 10/5/10 9:15 75.7 1.573 1.641 10/5/10 9:37 96.7 1.623 1.691 10/5/10 9:58 118 1.672 1.744 10/5/10 9:16 75.7 1.573 1.644 10/5/10 9:38 96.0 1.614 1.682 10/5/10 9:89 118 1.672 1.744 10/5/10 9:16 75.7 1.573 1.644 10/5/10 9:38 97.7 1.621 1.689 10/5/10 9:99 119 1.677 1.745 10/5/10 9:17 76.3 1.576 1.644 10/5/10 9:38 97.7 1.621 1.689 10/5/10 9:99 119 1.677 1.745 10/5/10 9:17 76.3 1.576 1.644 10/5/10 9:38 97.7 1.621 1.689 10/5/10 9:99 119 1.677 1.745 10/5/10 9:17 77.0 1.575 1.643 10/5/10 9:39 98.3 1.613 1.681 10/5/10 10.00 120 1.679 1.745 10/5/10 9:18 77.3 1.574 1.642 10/5/10 9:39 98.3 1.613 1.681 10/5/10 10.00 120 1.677 1.745 10/5/10 9:19 78.3 1.574 1.642 10/5/10 9:39 98.3 1.613 1.681 10/5/10 10.00 120 1.677 1.745 10/5/10 9:19 78.3 1.574 1.642 10/5/10 9:39 98.3 1.613 1.681 10/5/10 10.00 120 1.677 1.745 10/5/10 9:19 78.3 1.576 1.643 10/5/10 9:39 98.3 1.613 1.681 10/5/10 10.00 120 1.677 1.745 10/5/10 9:19 78.7 1.575 1.643 10/5/10 9:39 98.3 1.613 1.681 10/5/10 10.00 120 1.677 1.745 10/5/10 9:19 78.7 1.575 1.643 10/5/10 9:39 98.3 1.613 1.681 1.689 10/5/10 10.00 120 1.677 1.745 10/5/10 9:19 78.7 1.575 1.643 10/5/10 9:40 10.00 1.628 1.689 10/5/10 10.00 120 1.21 1.689 1.757 10/5/10 10.00 120 1.21 1.681 1.749 10/5/10 9:20 79.3 1.575 1.643 10/5/10 9:						93.7						
105/10 9:14 73.3 1.565 1.623 10/5/10 9:35 94.3 1.621 1.689 10/5/10 9:56 116 1.666 1.734 10/5/10 9:14 73.7 1.562 1.63 10/5/10 9:35 94.7 1.621 1.689 10/5/10 9:57 116 1.668 1.736 10/5/10 9:14 74.0 1.564 1.632 10/5/10 9:36 95.0 1.630 1.698 10/5/10 9:57 117 1.671 1.739 10/5/10 9:15 74.7 1.566 1.63 10/5/10 9:36 95.7 1.603 1.671 10/5/10 9:57 117 1.671 1.739 10/5/10 9:15 74.7 1.566 1.63 10/5/10 9:36 95.7 1.603 1.671 10/5/10 9:57 117 1.671 1.739 10/5/10 9:15 74.7 1.566 1.634 10/5/10 9:36 95.7 1.603 1.671 10/5/10 9:57 117 1.676 1.744 10/5/10 9:15 74.7 1.566 1.633 10/5/10 9:36 96.0 1.614 1.682 10/5/10 9:58 117 1.674 1.742 10/5/10 9:16 75.0 1.565 1.633 10/5/10 9:37 96.3 1.623 1.691 10/5/10 9:58 118 1.672 1.744 10/5/10 9:16 75.7 1.573 1.641 10/5/10 9:37 96.3 1.622 1.681 10/5/10 9:58 118 1.672 1.744 10/5/10 9:16 75.7 1.573 1.641 10/5/10 9:38 97.7 1.612 1.68 10/5/10 9:59 118 1.681 1.749 10/5/10 9:17 7.63 1.576 1.644 10/5/10 9:38 97.7 1.622 1.689 10/5/10 9:59 119 1.677 1.745 10/5/10 9:17 7.63 1.576 1.644 10/5/10 9:38 97.7 1.622 1.699 10/5/10 9:59 119 1.677 1.745 10/5/10 9:18 77.7 1.574 1.642 10/5/10 9:38 98.3 1.622 1.899 10/5/10 1000 119 1.677 1.745 10/5/10 9:18 77.7 1.574 1.642 10/5/10 9:39 98.3 1.631 1.681 1.687 10/5/10 1000 120 1.679 1.745 10/5/10 9:18 77.7 1.574 1.642 10/5/10 9:39 98.3 1.631 1.681 1.687 10/5/10 1000 120 1.679 1.745 10/5/10 9:18 77.7 1.574 1.642 10/5/10 9:39 98.3 1.631 1.681 1.687 10/5/10 1000 120 1.677 1.745 10/5/10 9:18 77.7 1.574 1.642 10/5/10 9:39 98.3 1.631 1.681 1.687 10/5/10 1000 120 1.677 1.745 10/5/10 9:18 77.7 1.574 1.642 10/5/10 9:39 98.3 1.631 1.681 1.687 10/5/10 1000 120 1.677 1.745 10/5/10 9:18 77.7 1.574 1.642 10/5/10 9:39 98.3 1.631 1.681 1.689 10/5/10 1000 120 1.677 1.745 10/5/10 9:18 77.7 1.574 1.644 10/5/10 9:39 98.3 1.631 1.689 10/5/10 1000 120 1.677 1.745 10/5/10 9:18 77.7 1.574 1.644 10/5/10 9:40 9:40 9:40 1.689 10/5/10 1000 120 120 1.688 1.759 10/5/10 9:40 10/5/10 9:40 10/5/10 1000 120 120 1.688 1.759 10/5/10 9:40 10/5/10 1000 120 120 1.688 1.759 10/5/10 9:40 10/5/10 9:40 10/5/10 1000					10/5/10 9:34		1.625					
10/5/10 9:14								1.689	10/5/10 9:56			
10/5/10 9:14 74.0 1.564 1.632 10/5/10 9:36 95.3 1.630 1.698 10/5/10 9:57 116 1.671 1.739 10/5/10 9:14 74.0 1.564 1.632 10/5/10 9:36 95.3 1.630 1.698 10/5/10 9:57 117 1.671 1.739 10/5/10 9:15 74.3 1.562 1.63 10/5/10 9:36 95.7 1.603 1.671 10/5/10 9:58 117 1.676 1.744 10/5/10 9:15 74.7 1.566 1.634 10/5/10 9:36 96.0 1.614 1.682 10/5/10 9:58 117 1.674 1.742 10/5/10 9:16 75.0 1.565 1.633 10/5/10 9:37 96.3 1.623 1.691 10/5/10 9:58 118 1.672 1.74 10/5/10 9:16 75.0 1.565 1.633 10/5/10 9:37 96.7 1.612 1.68 10/5/10 9:58 118 1.672 1.74 10/5/10 9:16 75.0 1.573 1.641 10/5/10 9:37 96.7 1.612 1.68 10/5/10 9:58 118 1.676 1.744 10/5/10 9:16 75.7 1.573 1.641 10/5/10 9:37 97.0 1.620 1.688 10/5/10 9:59 118 1.681 1.749 10/5/10 9:16 75.0 1.577 1.645 10/5/10 9:38 97.3 1.622 1.69 10/5/10 9:59 118 1.681 1.749 10/5/10 9:17 76.3 1.576 1.644 10/5/10 9:38 97.3 1.622 1.69 10/5/10 9:59 119 1.681 1.749 10/5/10 9:17 76.7 1.574 1.642 10/5/10 9:38 97.7 1.621 1.689 10/5/10 9:59 119 1.687 1.745 10/5/10 9:17 77.0 1.575 1.643 10/5/10 9:39 98.3 1.622 1.69 10/5/10 9:59 119 1.677 1.745 10/5/10 9:18 77.3 1.574 1.642 10/5/10 9:39 98.7 1.619 1.687 1.067 10.00 120 1.677 1.745 10/5/10 9:18 77.3 1.574 1.642 10/5/10 9:39 98.7 1.619 1.687 1.067 10.00 120 1.677 1.745 10/5/10 9:18 77.3 1.574 1.642 10/5/10 9:39 98.7 1.619 1.687 1.067 10.00 120 1.677 1.745 10/5/10 9:18 77.3 1.574 1.642 10/5/10 9:39 98.7 1.619 1.687 1.067 10.00 120 1.677 1.745 10/5/10 9:18 77.3 1.574 1.642 10/5/10 9:39 98.7 1.619 1.687 1.067 10.00 120 1.677 1.745 10/5/10 9:18 77.7 1.575 1.643 10/5/10 9:40 9:39 1.623 1.691 1.067 10.00 120 1.677 1.745 10/5/10 9:18 77.7 1.575 1.643 10/5/10 9:40 9:39 1.623 1.691 1.067 10.00 120 1.677 1.745 10/5/10 9:18 78.7 1.575 1.643 10/5/10 9:40 9:39 1.623 1.691 1.067 10.00 120 1.679 1.745 10/5/10 9:19 78.3 1.575 1.643 10/5/10 9:40 10.00 1.628 1.698 10/5/10 10.00 120 1.679 1.768 1.776 10/5/10 9:20 79.7 1.575 1.643 10/5/10 9:40 10.00 1.628 1.699 10/5/10 10.00 120 1.682 1.768 1.768 1.05/10 9:40 10.00 1.20 1.682 1.768 1.05/10 10.00 1.20 1.688 1.768 1.05/10 10.00 1.20 1.									10/5/10 9:56			
10/5/10 9:15 74.3 1.564 1.632 10/5/10 9:36 95.7 1.630 1.698 10/5/10 9:57 117 1.671 1.739 10/5/10 9:15 74.7 1.566 1.634 10/5/10 9:36 96.0 1.614 1.682 10/5/10 9:58 117 1.674 1.742 10/5/10 9:15 75.0 1.566 1.634 10/5/10 9:37 96.3 1.623 1.691 10/5/10 9:58 118 1.672 1.74 10/5/10 9:16 75.3 1.573 1.641 10/5/10 9:37 96.3 1.623 1.691 10/5/10 9:58 118 1.676 1.744 10/5/10 9:16 75.3 1.573 1.641 10/5/10 9:37 96.7 1.602 1.688 10/5/10 9:59 118 1.681 1.744 10/5/10 9:37 97.0 1.620 1.688 10/5/10 9:59 118 1.681 1.744 10/5/10 9:37 97.0 1.620 1.688 10/5/10 9:59 119 1.681 1.744 10/5/10 9:16 76.0 1.577 1.645 10/5/10 9:38 97.3 1.622 1.69 10/5/10 9:59 119 1.681 1.749 10/5/10 9:17 76.3 1.574 1.642 10/5/10 9:38 97.7 1.621 1.689 10/5/10 9:59 119 1.681 1.749 10/5/10 9:17 76.7 1.574 1.642 10/5/10 9:38 98.0 1.622 1.69 10/5/10 9:59 119 1.677 1.745 10/5/10 9:17 77.0 1.575 1.643 10/5/10 9:39 98.3 1.613 1.681 10/5/10 10:00 119 1.677 1.745 10/5/10 9:18 77.3 1.574 1.642 10/5/10 9:39 98.3 1.613 1.681 10/5/10 10:00 120 1.679 1.747 10/5/10 9:18 77.7 1.574 1.642 10/5/10 9:39 98.3 1.613 1.681 10/5/10 10:00 120 1.677 1.745 10/5/10 9:18 77.7 1.574 1.642 10/5/10 9:39 98.3 1.613 1.681 10/5/10 10:00 120 1.677 1.745 10/5/10 9:18 77.7 1.574 1.642 10/5/10 9:39 98.3 1.613 1.681 10/5/10 10:00 120 1.677 1.745 10/5/10 9:18 77.7 1.574 1.642 10/5/10 9:39 99.0 1.620 1.688 10/5/10 10:00 120 1.677 1.745 10/5/10 9:18 77.3 1.574 1.642 10/5/10 9:39 99.0 1.620 1.688 10/5/10 10:00 120 1.677 1.745 10/5/10 9:18 77.3 1.574 1.642 10/5/10 9:39 99.0 1.620 1.688 10/5/10 10:00 120 1.677 1.745 10/5/10 9:19 78.0 1.578 1.643 10/5/10 9:40 100 1.626 1.694 10/5/10 10:00 120 1.687 10/5/10 9:19 78.0 1.578 1.643 10/5/10 9:40 100 1.626 1.694 10/5/10 10:00 121 1.689 1.758 10/5/10 9:19 78.0 1.575 1.643 10/5/10 9:40 100 1.628 1.699 10/5/10 10:00 122 1.688 1.756 10/5/10 9:20 79.3 1.575 1.643 10/5/10 9:41 101 1.632 1.70 10/5/10 10:00 122 1.688 1.756 10/5/10 9:20 80.0 1.575 1.643 10/5/10 9:42 100 1.626 1.694 10/5/10 10:00 122 1.688 1.756 10/5/10 9:22 81.3 1.583 1.681 10/5/10 9:44 100 1.626 1.689 10					10/5/10 9:35							
10/5/10 9:15 74.3 1.562 1.63 10/5/10 9:36 95.7 1.603 1.671 10/5/10 9:57 117 1.676 1.744 10/5/10 9:15 74.7 1.566 1.633 10/5/10 9:36 95.7 1.603 1.671 10/5/10 9:58 118 1.674 1.742 10/5/10 9:16 75.3 1.573 1.641 10/5/10 9:37 96.3 1.623 1.691 10/5/10 9:58 118 1.676 1.744 10/5/10 9:16 75.3 1.573 1.641 10/5/10 9:37 97.0 1.620 1.688 10/5/10 9:59 118 1.676 1.744 10/5/10 9:16 75.7 1.573 1.641 10/5/10 9:37 97.0 1.620 1.688 10/5/10 9:59 118 1.681 1.749 10/5/10 9:16 76.0 1.577 1.645 10/5/10 9:38 97.3 1.622 1.699 10/5/10 9:59 118 1.681 1.749 10/5/10 9:17 76.3 1.576 1.644 10/5/10 9:38 97.3 1.622 1.699 10/5/10 9:59 119 1.681 1.749 10/5/10 9:17 76.3 1.576 1.644 10/5/10 9:38 97.3 1.622 1.699 10/5/10 9:59 119 1.671 1.671 1.672 1.745 10/5/10 9:17 76.7 1.574 1.642 10/5/10 9:38 97.7 1.621 1.689 10/5/10 9:59 119 1.677 1.745 10/5/10 9:17 77.0 1.575 1.643 10/5/10 9:39 98.3 1.613 1.681 10/5/10 10.00 119 1.677 1.745 10/5/10 9:18 77.3 1.574 1.642 10/5/10 9:39 98.7 1.613 1.681 1.00/5/10 10.00 120 1.679 1.747 10/5/10 9:18 77.3 1.574 1.642 10/5/10 9:39 98.7 1.619 1.688 10/5/10 1.000 120 1.677 1.745 10/5/10 9:18 77.3 1.574 1.642 10/5/10 9:39 98.7 1.619 1.688 10/5/10 1.000 120 1.677 1.745 10/5/10 9:18 77.3 1.574 1.642 10/5/10 9:39 98.7 1.619 1.688 10/5/10 1.000 120 1.677 1.745 10/5/10 9:18 77.7 1.574 1.644 10/5/10 9:39 98.7 1.619 1.688 10/5/10 1.000 120 1.677 1.745 10/5/10 9:19 7.87 1.575 1.643 10/5/10 9:40 9.3 1.623 1.691 10/5/10 1.001 120 1.682 1.75 10/5/10 9:19 7.87 1.575 1.643 10/5/10 9:40 9.3 1.623 1.691 10/5/10 1.001 121 1.681 1.759 10/5/10 9:20 79.3 1.575 1.643 10/5/10 9:40 100 1.628 1.699 10/5/10 1.002 122 1.688 1.756 10/5/10 9:20 79.3 1.575 1.643 10/5/10 9:41 101 1.633 1.699 10/5/10 1.002 122 1.688 1.756 10/5/10 9:20 79.7 1.575 1.643 10/5/10 9:41 101 1.633 1.699 10/5/10 1.002 122 1.688 1.756 10/5/10 9:22 81.3 1.575 1.643 10/5/10 9:44 101 1.633 1.699 10/5/10 1.003 123 1.690 1.758 10/5/10 9:22 81.3 1.595 1.664 10/5/10 9:44 101 1.633 1.699 10/5/10 1.004 124 1.689 1.758 10/5/10 9:22 81.3 1.595 1.666 10/5/10 9:44 104 106 1.639 10/5/10 1.006												
10/5/10 9:15					10/5/10 9:36				10/5/10 9:57			
10/5/10 9:15					10/5/10 0:36				10/5/10 9:58			
10/5/10 9:16												
10/5/10 9:16 75.7 1.573 1.641 10/5/10 9:37 97.0 1.620 1.688 10/5/10 9:59 118 1.681 1.749 10/5/10 9:16 76.0 1.577 1.645 10/5/10 9:38 97.3 1.622 1.689 10/5/10 9:59 119 1.681 1.749 10/5/10 9:17 76.3 1.576 1.644 10/5/10 9:38 97.3 1.621 1.689 10/5/10 9:59 119 1.677 1.745 10/5/10 9:17 76.7 1.574 1.642 10/5/10 9:38 98.0 1.622 1.69 10/5/10 10:00 119 1.677 1.745 10/5/10 9:17 77.0 1.575 1.643 10/5/10 9:39 98.3 1.613 1.681 10/5/10 10:00 120 1.679 1.747 10/5/10 9:18 77.3 1.574 1.642 10/5/10 9:39 98.7 1.619 1.687 10/5/10 10:00 120 1.679 1.745 10/5/10 9:18 77.7 1.574 1.642 10/5/10 9:39 98.7 1.619 1.687 10/5/10 10:00 120 1.677 1.745 10/5/10 9:18 77.7 1.574 1.642 10/5/10 9:40 99.3 1.623 1.681 10/5/10 10:01 120 1.682 1.75 10/5/10 9:18 78.0 1.578 1.644 10/5/10 9:40 99.3 1.623 1.691 10/5/10 10:01 121 1.681 1.749 10/5/10 9:19 78.3 1.576 1.644 10/5/10 9:40 100 1.626 1.694 10/5/10 10:01 121 1.689 1.757 10/5/10 9:19 78.7 1.575 1.643 10/5/10 9:40 100 1.626 1.694 10/5/10 10:02 121 1.689 1.757 10/5/10 9:19 78.7 1.575 1.643 10/5/10 9:40 100 1.626 1.694 10/5/10 10:02 121 1.683 1.751 10/5/10 9:0 79.3 1.575 1.643 10/5/10 9:41 100 1.631 1.699 10/5/10 10:02 122 1.688 1.756 10/5/10 9:20 79.3 1.575 1.643 10/5/10 9:41 100 1.631 1.699 10/5/10 10:02 122 1.688 1.756 10/5/10 9:20 79.3 1.575 1.643 10/5/10 9:42 101 1.633 1.701 10/5/10 10:03 123 1.698 1.758 10/5/10 9:20 79.7 1.575 1.643 10/5/10 9:42 101 1.633 1.701 10/5/10 10:03 123 1.698 1.758 10/5/10 9:22 80.0 1.575 1.643 10/5/10 9:42 101 1.633 1.701 10/5/10 10:03 123 1.690 1.758 10/5/10 9:22 80.7 1.584 1.652 10/5/10 9:43 10/5/10 9:43 103 1.629 10/5/10 10:04 124 1.682 1.758 10/5/10 9:22 81.7 1.583 1.651 10/5/10 9:43 103 1.623 1.691 10/5/10 10:04 124 1.692 1.768 10/5/10 9:22 81.7 1.583 1.651 10/5/10 9:43 103 1.623 1.699 10/5/10 10:04 124 1.692 1.768 10/5/10 9:22 81.7 1.583 1.651 10/5/10 9:44 104 1.630 1.699 10/5/10 10:05 124 1.694 1.762 10/5/10 9:23 82.3 1.592 1.66 10/5/10 9:44 104 1.630 1.699 10/5/10 10:05 124 1.694 1.762 10/5/10 9:23 82.3 1.593 1.661 10/5/10 9:44 104 1.630 1.699 10/5/10 10:05 125 1.			1.503				1.023					
10/5/10 9:16 76.0 1.577 1.645 10/5/10 9:38 97.3 1.622 1.69 10/5/10 9:59 119 1.881 1.749 10/5/10 9:17 76.3 1.576 1.644 10/5/10 9:38 97.3 1.622 1.69 10/5/10 9:59 119 1.861 1.745 10/5/10 9:17 76.7 1.575 1.643 10/5/10 9:38 98.0 1.622 1.69 10/5/10 10:00 119 1.677 1.745 10/5/10 9:18 77.3 1.574 1.642 10/5/10 9:39 98.3 1.613 1.681 10/5/10 10:00 120 1.679 1.747 10/5/10 9:18 77.3 1.574 1.642 10/5/10 9:39 98.7 1.619 1.687 10/5/10 10:00 120 1.677 1.745 10/5/10 9:18 77.7 1.575 1.643 10/5/10 9:39 99.0 1.620 1.688 10/5/10 10:01 120 1.682 1.75 10/5/10 9:18 78.0 1.578 1.646 10/5/10 9:40 99.3 1.623 1.691 10/5/10 10:01 120 1.682 1.75 10/5/10 9:19 78.3 1.576 1.644 10/5/10 9:40 99.3 1.623 1.691 10/5/10 10:01 121 1.681 1.749 10/5/10 9:19 78.7 1.575 1.643 10/5/10 9:40 100 1.626 1.694 10/5/10 10:01 121 1.689 1.751 10/5/10 9:19 78.7 1.575 1.643 10/5/10 9:40 100 1.626 1.694 10/5/10 10:01 121 1.689 1.751 10/5/10 9:19 79.0 1.572 1.64 10/5/10 9:40 100 1.626 1.694 10/5/10 10:02 122 1.685 1.753 10/5/10 9:19 79.0 1.575 1.643 10/5/10 9:41 100 1.626 1.699 10/5/10 10:02 122 1.685 1.753 10/5/10 9:20 79.3 1.575 1.643 10/5/10 9:41 101 1.631 1.699 10/5/10 10:02 122 1.685 1.753 10/5/10 9:20 79.7 1.575 1.643 10/5/10 9:41 101 1.632 1.70 10/5/10 10:02 122 1.685 1.754 10/5/10 9:20 80.0 1.575 1.643 10/5/10 9:41 101 1.632 1.70 10/5/10 10:03 122 1.686 1.754 10/5/10 9:22 81.3 1.575 1.643 10/5/10 9:42 102 1.631 1.699 10/5/10 10:03 123 1.690 1.758 10/5/10 9:22 81.3 1.584 1.652 10/5/10 9:42 102 1.631 1.699 10/5/10 10:04 124 1.690 1.758 10/5/10 10:04 124 1.690 1.758 10/5/10 10:04 124 1.690 1.758 10/5/10 10:04 124 1.690 1.758 1.759 1.644 10/5/10 10:44 101 1.632 1.70 10/5/10 10:04 124 1.690 1.758 1.759 1.644 10/5/10 10:44 101 1.632 1.70 10/5/10 10:04 124 1.690 1.758 1.759 1.665 10/5/10 9:43 102 1.621 1.689 10/5/10 10:04 124 1.690 1.758 1.759 1.666 10/5/10 9:44 104 1.629 1.697 10/5/10 10:04 124 1.690 1.758 1.754 10/5/10 10:24 81.3 1.583 1.651 10/5/10 9:45 105 1.653 1.699 10/5/10 10:05 125 1.694 1.762 10/5/10 10:24 81.3 1.594 1.662 10/5/10 9:45 105 1.653 1.704 10/5/					10/5/10 0:37							
10/5/10 9:17 76.3 1.576 1.644 10/5/10 9:38 97.7 1.621 1.689 10/5/10 9:58 119 1.677 1.745 10/5/10 9:17 76.7 1.574 1.642 10/5/10 9:38 98.0 1.622 1.69 10/5/10 0:00 119 1.677 1.745 10/5/10 9:18 77.3 1.574 1.642 10/5/10 9:39 98.3 1.613 1.681 10/5/10 10:00 120 1.679 1.747 10/5/10 9:18 77.3 1.574 1.642 10/5/10 9:39 98.7 1.619 1.687 10/5/10 10:00 120 1.679 1.745 10/5/10 9:18 77.7 1.574 1.642 10/5/10 9:39 98.7 1.619 1.687 10/5/10 10:00 120 1.679 1.745 10/5/10 9:18 78.0 1.578 1.646 10/5/10 9:39 99.0 1.620 1.688 10/5/10 10:01 120 1.682 1.75 10/5/10 9:19 78.3 1.576 1.644 10/5/10 9:40 10/5/10 9:40 10/5/10 9:19 78.7 1.575 1.643 10/5/10 9:40 10/5/10 9:40 10/5/10 9:19 78.7 1.575 1.643 10/5/10 9:41 10/5/10 9:41 10/5/10 10:02 121 1.683 1.751 10/5/10 9:20 79.3 1.575 1.643 10/5/10 9:41 10/5/10 9:41 10/5/10 10:02 122 1.688 1.754 10/5/10 9:20 79.7 1.575 1.643 10/5/10 9:41 10/1 1.631 1.699 10/5/10 10:02 122 1.688 1.754 10/5/10 9:20 80.0 1.575 1.643 10/5/10 9:41 10/1 1.631 1.699 10/5/10 10:02 122 1.688 1.756 10/5/10 9:21 80.3 1.575 1.643 10/5/10 9:42 101 1.632 1.77 10/5/10 10:03 122 1.688 1.756 10/5/10 9:21 80.3 1.575 1.643 10/5/10 9:42 101 1.632 1.77 10/5/10 10:03 122 1.688 1.756 10/5/10 9:21 80.3 1.575 1.643 10/5/10 9:42 101 1.632 1.77 10/5/10 10:03 123 1.690 1.758 10/5/10 9:21 80.7 1.584 1.652 10/5/10 9:42 102 1.621 1.689 10/5/10 10:03 123 1.692 1.758 10/5/10 9:22 81.3 1.583 1.651 10/5/10 9:42 102 1.621 1.689 10/5/10 10:04 124 1.692 1.762 10/5/10 9:22 81.7 1.584 1.651 10/5/10 9:43 103 1.623 1.691 10/5/10 10:04 124 1.692 1.762 10/5/10 9:22 81.7 1.583 1.651 10/5/10 9:43 103 1.623 1.691 10/5/10 10:04 124 1.692 1.762 10/5/10 9:22 81.7 1.583 1.651 10/5/10 9:43 103 1.623 1.691 10/5/10 10:04 124 1.692 1.762 10/5/10 9:22 81.7 1.583 1.651 10/5/10 9:44 104 1.629 1.697 10/5/10 10:05 125 1.694 1.762 10/5/10 9:23 82.3 1.592 1.66 10/5/10 9:44 104 1.629 1.697 10/5/10 10:05 125 1.694 1.762 10/5/10 9:24 83.3 1.583 1.651 10/5/10 9:45 10/5/10 9:45 10/5/10 9:45 10/5/10 9:45 10/5/10 9:45 10/5/10 9:45 10/5/10 9:45 10/5/10 9:45 10/5/10 9:45 10/5/10 9:45												
10/5/10 9:17 77.0 1.574 1.642 10/5/10 9:39 98.0 1.622 1.69 10/5/10 10:00 119 1.677 1.745 10/5/10 9:18 77.3 1.574 1.642 10/5/10 9:39 98.3 1.613 1.681 10/5/10 10:00 120 1.679 1.747 10/5/10 9:18 77.7 1.574 1.642 10/5/10 9:39 98.7 1.619 1.687 10/5/10 10:00 120 1.677 1.745 10/5/10 9:18 78.0 1.578 1.646 10/5/10 9:39 99.0 1.620 1.688 10/5/10 10:01 120 1.682 1.749 10/5/10 9:18 78.0 1.578 1.646 10/5/10 9:40 99.3 1.623 1.691 10/5/10 10:01 121 1.681 1.749 10/5/10 9:19 78.3 1.576 1.644 10/5/10 9:40 100 1.626 1.694 10/5/10 10:01 121 1.683 1.757 10/5/10 9:19 78.7 1.575 1.643 10/5/10 9:40 100 1.626 1.694 10/5/10 10:01 121 1.683 1.757 10/5/10 9:19 79.0 1.572 1.64 10/5/10 9:41 100 1.628 1.696 10/5/10 10:02 121 1.683 1.751 10/5/10 9:20 79.3 1.575 1.643 10/5/10 9:41 100 1.621 1.699 10/5/10 10:02 122 1.685 1.753 10/5/10 9:20 79.3 1.575 1.643 10/5/10 9:41 101 1.631 1.699 10/5/10 10:02 122 1.686 1.754 10/5/10 9:20 79.3 1.575 1.643 10/5/10 9:41 101 1.633 1.701 10/5/10 10:03 122 1.686 1.754 10/5/10 9:20 80.0 1.575 1.643 10/5/10 9:42 101 1.632 1.7 10/5/10 10:03 122 1.686 1.754 10/5/10 9:21 80.3 1.579 1.647 10/5/10 9:42 102 1.631 1.699 10/5/10 10:03 123 1.690 1.758 10/5/10 9:22 80.3 1.579 1.647 10/5/10 9:42 102 1.631 1.699 10/5/10 10:03 123 1.690 1.758 10/5/10 9:22 81.3 1.583 1.651 10/5/10 9:42 102 1.631 1.699 10/5/10 10:03 123 1.690 1.758 10/5/10 9:22 81.3 1.583 1.651 10/5/10 9:43 103 1.625 1.684 10/5/10 10:04 124 1.696 1.764 10/5/10 9:22 81.3 1.583 1.651 10/5/10 9:44 104 1.630 1.699 10/5/10 10:04 124 1.696 1.764 10/5/10 9:22 82.0 1.583 1.651 10/5/10 9:44 104 1.630 1.699 10/5/10 10:05 125 1.694 1.762 10/5/10 9:23 82.3 1.592 1.666 10/5/10 9:44 104 1.630 1.699 10/5/10 10:05 125 1.694 1.762 10/5/10 9:23 82.3 1.592 1.666 10/5/10 9:44 104 1.630 1.699 10/5/10 10:05 125 1.694 1.762 10/5/10 9:23 82.3 1.592 1.666 10/5/10 9:44 104 1.630 1.699 10/5/10 10:05 125 1.694 1.762 10/5/10 9:23 82.3 1.592 1.666 10/5/10 9:45 10/5 10/5 1.634 1.702 10/5/10 10:07 127 1.684 1.752 10/5/10 9:24 83.3 1.594 1.662 10/5/10 9:45 105 1.659 1.704 10/5/10 10:07 127 1.68			1.576									
10/5/10 9:17 77.0 1.575 1.643 10/5/10 9:39 98.7 1.619 1.687 10/5/10 10:00 120 1.679 1.747 10/5/10 9:18 77.3 1.574 1.642 10/5/10 9:39 98.7 1.619 1.687 10/5/10 10:00 120 1.677 1.745 10/5/10 9:18 77.7 1.574 1.642 10/5/10 9:39 99.0 1.620 1.688 10/5/10 10:01 120 1.682 1.75 10/5/10 9:18 78.0 1.578 1.646 10/5/10 9:40 100 1.626 1.694 10/5/10 10:01 121 1.681 1.749 10/5/10 9:19 78.3 1.576 1.644 10/5/10 9:40 100 1.626 1.694 10/5/10 10:01 121 1.681 1.749 10/5/10 9:19 78.7 1.575 1.643 10/5/10 9:40 100 1.626 1.694 10/5/10 10:01 121 1.683 1.751 10/5/10 9:19 78.0 1.575 1.643 10/5/10 9:41 100 1.628 1.696 10/5/10 10:02 121 1.683 1.751 10/5/10 9:20 79.3 1.575 1.643 10/5/10 9:41 100 1.631 1.699 10/5/10 10:02 122 1.688 1.756 10/5/10 9:20 79.7 1.575 1.643 10/5/10 9:41 101 1.631 1.699 10/5/10 10:02 122 1.688 1.756 10/5/10 9:20 79.7 1.575 1.643 10/5/10 9:41 101 1.631 1.699 10/5/10 10:02 122 1.688 1.756 10/5/10 9:20 80.0 1.575 1.643 10/5/10 9:41 101 1.633 1.701 10/5/10 10:03 122 1.686 1.754 10/5/10 9:20 80.0 1.575 1.643 10/5/10 9:42 101 1.632 1.77 10/5/10 10:03 122 1.686 1.758 10/5/10 9:21 80.3 1.575 1.643 10/5/10 9:42 101 1.632 1.77 10/5/10 10:03 123 1.690 1.758 10/5/10 9:21 80.3 1.575 1.647 10/5/10 9:42 102 1.631 1.699 10/5/10 10:03 123 1.690 1.758 10/5/10 9:21 80.7 1.584 1.652 10/5/10 9:42 102 1.631 1.699 10/5/10 10:03 123 1.690 1.758 10/5/10 9:21 80.7 1.584 1.652 10/5/10 9:43 102 1.661 1.684 10/5/10 10:04 124 1.696 1.764 10/5/10 9:22 81.3 1.583 1.651 10/5/10 9:43 103 1.623 1.691 10/5/10 10:04 124 1.690 1.766 10/5/10 9:22 81.7 1.583 1.651 10/5/10 9:44 104 1.629 1.697 10/5/10 10:05 125 1.694 1.762 10/5/10 9:23 82.0 1.583 1.651 10/5/10 9:44 104 1.629 1.697 10/5/10 10:06 125 1.694 1.762 10/5/10 9:23 82.0 1.583 1.651 10/5/10 9:44 104 1.630 1.698 10/5/10 10:06 125 1.694 1.762 10/5/10 9:23 82.0 1.583 1.661 10/5/10 9:44 104 1.630 1.698 10/5/10 10:06 125 1.694 1.762 10/5/10 9:24 83.7 1.592 1.66 10/5/10 9:45 105 105 1.634 1.702 10/5/10 10:07 126 1.686 1.754 10/5/10 9:24 83.7 1.593 1.661 10/5/10 9:46 105 1.636 1.704 10/5/10 10:07 127 1.686 1.					10/5/10 9.30							
10/5/10 9:18 77.3 1.574 1.642 10/5/10 9:39 98.7 1.619 1.687 10/5/10 10:00 120 1.677 1.745 10/5/10 9:18 77.7 1.574 1.642 10/5/10 9:39 99.0 1.620 1.688 10/5/10 10:01 120 1.682 1.75 10/5/10 9:18 78.0 1.578 1.646 10/5/10 9:40 99.3 1.623 1.691 10/5/10 10:01 121 1.681 1.749 10/5/10 9:19 78.3 1.576 1.644 10/5/10 9:40 100 1.626 1.694 10/5/10 10:01 121 1.689 1.757 10/5/10 9:19 78.7 1.575 1.643 10/5/10 9:40 100 1.628 1.696 10/5/10 10:01 121 1.688 1.751 10/5/10 9:19 79.0 1.572 1.64 10/5/10 9:41 100 1.628 1.696 10/5/10 10:02 121 1.683 1.751 10/5/10 9:20 79.3 1.575 1.643 10/5/10 9:41 101 1.631 1.699 10/5/10 10:02 122 1.688 1.756 10/5/10 9:20 79.3 1.575 1.643 10/5/10 9:41 101 1.631 1.699 10/5/10 10:02 122 1.688 1.756 10/5/10 9:20 79.7 1.575 1.643 10/5/10 9:41 101 1.631 1.699 10/5/10 10:02 122 1.688 1.756 10/5/10 9:20 79.7 1.575 1.643 10/5/10 9:41 101 1.631 1.699 10/5/10 10:03 122 1.688 1.756 10/5/10 9:20 79.7 1.575 1.643 10/5/10 9:41 101 1.631 1.699 10/5/10 10:03 122 1.688 1.756 10/5/10 9:20 80.0 1.575 1.643 10/5/10 9:42 101 1.632 1.71 10/5/10 10:03 122 1.686 1.754 10/5/10 9:21 80.7 1.584 1.652 10/5/10 9:42 102 1.631 1.699 10/5/10 10:03 123 1.690 1.758 10/5/10 9:21 80.7 1.584 1.652 10/5/10 9:42 102 1.631 1.699 10/5/10 10:03 123 1.690 1.768 10/5/10 9:21 80.7 1.584 1.652 10/5/10 9:42 102 1.621 1.689 10/5/10 10:04 123 1.690 1.768 10/5/10 9:22 81.3 1.583 1.651 10/5/10 9:43 102 1.616 1.684 10/5/10 10:04 124 1.692 1.76 10/5/10 9:22 81.3 1.583 1.651 10/5/10 9:43 102 1.616 1.684 10/5/10 10:04 124 1.694 1.762 10/5/10 9:22 82.0 1.583 1.651 10/5/10 9:44 103 1.625 1.693 10/5/10 10:05 125 1.694 1.762 10/5/10 9:22 82.0 1.583 1.651 10/5/10 9:44 103 1.627 1.695 10/5/10 10:05 125 1.694 1.762 10/5/10 9:22 82.0 1.583 1.651 10/5/10 9:44 103 1.627 1.695 10/5/10 10:05 125 1.694 1.762 10/5/10 9:23 82.3 1.592 1.66 10/5/10 9:44 104 1.629 1.697 10/5/10 10:06 125 1.694 1.762 10/5/10 9:23 82.3 1.592 1.66 10/5/10 9:44 104 1.630 1.698 10/5/10 10:06 125 1.694 1.762 10/5/10 9:24 83.3 1.593 1.661 10/5/10 9:45 105 10/5/10 9:45 105 1.699 10/5/10 10:07 127 1.6												
10/5/10 9:18 77.7 1.574 1.642 10/5/10 9:39 99.0 1.620 1.688 10/5/10 10:01 120 1.682 1.75 10/5/10 9:18 78.0 1.578 1.646 10/5/10 9:40 99.3 1.623 1.691 10/5/10 10:01 121 1.681 1.749 10/5/10 9:19 78.3 1.576 1.644 10/5/10 9:40 100 1.626 1.694 10/5/10 10:01 121 1.683 1.757 10/5/10 9:19 78.7 1.575 1.643 10/5/10 9:40 100 1.628 1.696 10/5/10 10:02 121 1.683 1.751 10/5/10 9:19 79.0 1.572 1.64 10/5/10 9:41 100 1.631 1.699 10/5/10 10:02 122 1.685 1.753 10/5/10 9:20 79.3 1.575 1.643 10/5/10 9:41 101 1.631 1.699 10/5/10 10:02 122 1.688 1.756 10/5/10 9:20 79.7 1.575 1.643 10/5/10 9:41 101 1.631 1.699 10/5/10 10:02 122 1.688 1.756 10/5/10 9:20 80.0 1.575 1.643 10/5/10 9:41 101 1.633 1.701 10/5/10 10:03 122 1.688 1.756 10/5/10 9:20 80.0 1.575 1.643 10/5/10 9:42 101 1.632 1.7 10/5/10 10:03 123 1.690 1.758 10/5/10 9:21 80.3 1.579 1.647 10/5/10 9:42 101 1.632 1.7 10/5/10 10:03 123 1.690 1.758 10/5/10 9:21 80.3 1.579 1.647 10/5/10 9:42 102 1.631 1.699 10/5/10 10:03 123 1.690 1.758 10/5/10 9:21 80.7 1.584 1.652 10/5/10 9:42 102 1.631 1.699 10/5/10 10:04 123 1.690 1.758 10/5/10 9:21 81.0 1.584 1.652 10/5/10 9:43 102 1.621 1.684 10/5/10 10:04 123 1.690 1.758 10/5/10 9:22 81.3 1.583 1.651 10/5/10 9:43 102 1.616 1.684 10/5/10 10:04 124 1.692 1.76 10/5/10 9:22 81.3 1.583 1.651 10/5/10 9:43 103 1.623 1.691 10/5/10 10:04 124 1.692 1.76 10/5/10 9:22 82.0 1.583 1.651 10/5/10 9:43 103 1.623 1.691 10/5/10 10:05 124 1.694 1.762 10/5/10 9:23 82.3 1.592 1.66 10/5/10 9:44 104 1.630 1.698 10/5/10 10:05 125 1.694 1.762 10/5/10 9:23 82.3 1.592 1.66 10/5/10 9:44 104 1.630 1.698 10/5/10 10:06 125 1.694 1.762 10/5/10 9:24 83.0 1.594 1.662 10/5/10 9:45 104 1.631 1.699 10/5/10 10:06 125 1.694 1.762 10/5/10 9:24 83.0 1.594 1.662 10/5/10 9:45 104 1.631 1.699 10/5/10 10:07 127 1.686 1.754 10/5/10 9:24 83.0 1.594 1.662 10/5/10 9:45 104 1.631 1.699 10/5/10 10:07 127 1.686 1.754 10/5/10 9:24 83.3 1.594 1.662 10/5/10 9:45 105 1.634 1.702 10/5/10 10:07 127 1.686 1.754 10/5/10 9:24 84.0 1.595 1.663 10/5/10 9:46 105 1.634 1.702 10/5/10 10:07 127 1.686 1.754 10/5/10					10/5/10 9.39							
10/5/10 9:18 78.0 1.578 1.646 10/5/10 9:40 99.3 1.623 1.691 10/5/10 10:01 121 1.681 1.749 10/5/10 9:19 78.7 1.575 1.643 10/5/10 9:40 100 1.626 1.694 10/5/10 10:02 121 1.683 1.757 10/5/10 9:19 78.7 1.575 1.643 10/5/10 9:41 100 1.628 1.696 10/5/10 10:02 122 1.683 1.751 10/5/10 9:19 79.0 1.572 1.64 10/5/10 9:41 100 1.631 1.699 10/5/10 10:02 122 1.685 1.753 10/5/10 9:20 79.7 1.575 1.643 10/5/10 9:41 101 1.631 1.699 10/5/10 10:03 122 1.686 1.754 10/5/10 9:20 79.7 1.575 1.643 10/5/10 9:41 101 1.633 1.701 10/5/10 10:03 122 1.686 1.754 10/5/10 9:20 80.0 1.575 1.643 10/5/10 9:42 102 1.					10/5/10 9.39							
10/5/10 9:19 78.3 1.576 1.644 10/5/10 9:40 100 1.626 1.694 10/5/10 10:01 121 1.689 1.757 10/5/10 9:19 78.7 1.575 1.643 10/5/10 9:40 100 1.628 1.699 10/5/10 10:02 121 1.683 1.753 10/5/10 9:20 79.3 1.575 1.643 10/5/10 9:41 101 1.631 1.699 10/5/10 10:02 122 1.685 1.753 10/5/10 9:20 79.7 1.575 1.643 10/5/10 9:41 101 1.631 1.699 10/5/10 10:02 122 1.688 1.756 10/5/10 9:20 79.7 1.575 1.643 10/5/10 9:41 101 1.631 1.699 10/5/10 10:03 122 1.686 1.754 10/5/10 9:21 80.3 1.579 1.647 10/5/10 9:42 102 1.631 1.699 10/5/10 10:03 123 1.692 1.76 10/5/10 9:21 80.7 1.584 1.652 1.0/5/10 9:42 102 1.							1.020					
10/5/10 9:19 78.7 1.575 1.643 10/5/10 9:40 100 1.628 1.696 10/5/10 10:02 121 1.683 1.751 10/5/10 9:19 79.0 1.572 1.644 10/5/10 9:41 100 1.631 1.699 10/5/10 10:02 122 1.685 1.753 10/5/10 9:20 79.7 1.575 1.643 10/5/10 9:41 101 1.631 1.699 10/5/10 10:02 122 1.686 1.756 10/5/10 9:20 79.7 1.575 1.643 10/5/10 9:41 101 1.633 1.701 10/5/10 10:03 122 1.686 1.756 10/5/10 9:20 80.0 1.575 1.643 10/5/10 9:42 101 1.632 1.7 10/5/10 10:03 123 1.690 1.758 10/5/10 9:21 80.3 1.579 1.647 10/5/10 9:42 102 1.631 1.689 10/5/10 10:04 123 1.690 1.758 10/5/10 9:21 81.0 1.582 1.651 10/5/10 9:43 102 1.62												
10/5/10 9:19 79.0 1.572 1.64 10/5/10 9:41 100 1.631 1.699 10/5/10 10:02 122 1.685 1.753 10/5/10 9:20 79.3 1.575 1.643 10/5/10 9:41 101 1.631 1.699 10/5/10 10:02 122 1.688 1.753 10/5/10 9:20 80.0 1.575 1.643 10/5/10 9:42 101 1.632 1.7 10/5/10 10:03 123 1.690 1.758 10/5/10 9:21 80.3 1.579 1.647 10/5/10 9:42 102 1.631 1.699 10/5/10 10:03 123 1.690 1.758 10/5/10 9:21 80.3 1.579 1.647 10/5/10 9:42 102 1.631 1.699 10/5/10 10:03 123 1.690 1.758 10/5/10 9:21 81.0 1.582 1.652 10/5/10 9:42 102 1.631 1.699 10/5/10 10:03 123 1.692 1.76 10/5/10 9:21 81.0 1.582 1.651 10/5/10 9:43 102 1.616<					10/5/10 9.40							
10/5/10 9:20 79.3 1.575 1.643 10/5/10 9:41 101 1.631 1.699 10/5/10 10:02 122 1.688 1.756 10/5/10 9:20 79.7 1.575 1.643 10/5/10 9:41 101 1.633 1.701 10/5/10 10:03 122 1.686 1.754 10/5/10 9:20 80.0 1.575 1.643 10/5/10 9:42 101 1.632 1.7 10/5/10 10:03 123 1.690 1.758 10/5/10 9:21 80.3 1.579 1.647 10/5/10 9:42 102 1.631 1.699 10/5/10 10:03 123 1.690 1.758 10/5/10 9:21 80.7 1.584 1.652 10/5/10 9:42 102 1.621 1.689 10/5/10 10:04 123 1.690 1.758 10/5/10 9:21 81.0 1.582 1.651 10/5/10 9:43 102 1.661 1.689 10/5/10 10:04 123 1.690 1.76 10/5/10 9:22 81.7 1.583 1.651 10/5/10 9:43 103 1.621												
10/5/10 9:20 79.7 1.575 1.643 10/5/10 9:41 101 1.633 1.701 10/5/10 10:03 122 1.686 1.754 10/5/10 9:21 80.0 1.575 1.643 10/5/10 9:42 101 1.632 1.7 10/5/10 10:03 123 1.690 1.758 10/5/10 9:21 80.7 1.584 1.652 10/5/10 9:42 102 1.631 1.689 10/5/10 10:04 123 1.690 1.758 10/5/10 9:21 81.0 1.582 1.65 10/5/10 9:43 102 1.616 1.689 10/5/10 10:04 123 1.690 1.758 10/5/10 9:21 81.0 1.582 1.65 10/5/10 9:43 102 1.616 1.689 10/5/10 10:04 124 1.692 1.76 10/5/10 9:22 81.3 1.583 1.651 10/5/10 9:43 103 1.623 1.691 10/5/10 10:04 124 1.692 1.764 10/5/10 9:22 81.7 1.583 1.651 10/5/10 9:43 103 1.625 1.693 10/5/10 10:05 124 1.694 1.762 10/5			1.572									
10/5/10 9:20 80.0 1.575 1.643 10/5/10 9:42 101 1.632 1.7 10/5/10 10:03 123 1.690 1.758 10/5/10 9:21 80.3 1.579 1.647 10/5/10 9:42 102 1.631 1.699 10/5/10 10:03 123 1.690 1.76 10/5/10 9:21 80.7 1.584 1.652 10/5/10 9:42 102 1.621 1.689 10/5/10 10:04 123 1.690 1.758 10/5/10 9:21 81.0 1.582 1.65 10/5/10 9:43 102 1.616 1.689 10/5/10 10:04 123 1.690 1.758 10/5/10 9:22 81.3 1.583 1.651 10/5/10 9:43 103 1.623 1.691 10/5/10 10:04 124 1.692 1.76 10/5/10 9:22 81.7 1.583 1.651 10/5/10 9:43 103 1.625 1.693 10/5/10 10:05 124 1.694 1.762 10/5/10 9:22 81.7 1.583 1.651 10/5/10 9:44 103 1.625 </td <td></td> <td></td> <td></td> <td></td> <td>10/5/10 9.41</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>					10/5/10 9.41							
10/5/10 9:21 80.3 1.579 1.647 10/5/10 9:42 102 1.631 1.699 10/5/10 10:03 123 1.692 1.76 10/5/10 9:21 80.7 1.584 1.652 10/5/10 9:42 102 1.621 1.689 10/5/10 10:04 123 1.690 1.758 10/5/10 9:21 81.0 1.582 1.65 10/5/10 9:43 102 1.616 1.684 10/5/10 10:04 124 1.692 1.76 10/5/10 9:22 81.3 1.583 1.651 10/5/10 9:43 103 1.623 1.691 10/5/10 10:04 124 1.696 1.764 10/5/10 9:22 81.7 1.583 1.651 10/5/10 9:43 103 1.625 1.693 10/5/10 10:05 124 1.696 1.762 10/5/10 9:22 82.0 1.583 1.651 10/5/10 9:44 103 1.627 1.695 10/5/10 10:05 124 1.694 1.762 10/5/10 9:23 82.3 1.592 1.66 10/5/10 9:44 104 1.630 1.695 10/5/10 10:05 125 1.694 1.762 10/							1.633					
10/5/10 9:21 80.7 1.584 1.652 10/5/10 9:42 102 1.621 1.689 10/5/10 10:04 123 1.690 1.758 10/5/10 9:21 81.0 1.582 1.65 10/5/10 9:43 102 1.616 1.684 10/5/10 10:04 124 1.692 1.76 10/5/10 9:22 81.3 1.583 1.651 10/5/10 9:43 103 1.623 1.691 10/5/10 10:04 124 1.696 1.764 10/5/10 9:22 81.7 1.583 1.651 10/5/10 9:43 103 1.625 1.693 10/5/10 10:05 124 1.694 1.762 10/5/10 9:22 82.0 1.583 1.651 10/5/10 9:44 103 1.627 1.695 10/5/10 10:05 124 1.694 1.762 10/5/10 9:23 82.3 1.592 1.66 10/5/10 9:44 104 1.629 1.697 10/5/10 10:05 125 1.694 1.762 10/5/10 9:23 82.7 1.592 1.66 10/5/10 9:44 104 1.630 1.698 10/5/10 10:06 125 1.679 1.747 10/			1.575		10/5/10 9:42							
10/5/10 9:21 81.0 1.582 1.65 10/5/10 9:43 102 1.616 1.684 10/5/10 10:04 124 1.692 1.76 10/5/10 9:22 81.3 1.583 1.651 10/5/10 9:43 103 1.623 1.691 10/5/10 10:04 124 1.696 1.764 10/5/10 9:22 81.7 1.583 1.651 10/5/10 9:44 103 1.625 1.693 10/5/10 10:05 124 1.694 1.762 10/5/10 9:22 82.0 1.583 1.651 10/5/10 9:44 103 1.627 1.695 10/5/10 10:05 125 1.694 1.762 10/5/10 9:23 82.3 1.592 1.66 10/5/10 9:44 104 1.629 1.697 10/5/10 10:05 125 1.694 1.762 10/5/10 9:23 82.7 1.592 1.66 10/5/10 9:44 104 1.630 1.698 10/5/10 10:06 125 1.679 1.747 10/5/10 9:24 83.3 1.594 1.662 10/5/10 9:45 104 1.631 1.699 10/5/10 10:06 126 1.681 1.749 10/					10/5/10 9:42							
10/5/10 9:22 81.3 1.583 1.651 10/5/10 9:43 103 1.623 1.691 10/5/10 10:04 124 1.696 1.764 10/5/10 9:22 81.7 1.583 1.651 10/5/10 9:43 103 1.625 1.693 10/5/10 10:05 124 1.694 1.762 10/5/10 9:22 82.0 1.583 1.651 10/5/10 9:44 103 1.627 1.695 10/5/10 10:05 125 1.694 1.762 10/5/10 9:23 82.3 1.592 1.66 10/5/10 9:44 104 1.629 1.697 10/5/10 10:05 125 1.694 1.762 10/5/10 9:23 82.7 1.592 1.66 10/5/10 9:44 104 1.630 1.698 10/5/10 10:06 125 1.679 1.747 10/5/10 9:23 83.0 1.594 1.662 10/5/10 9:45 104 1.631 1.699 10/5/10 10:06 126 1.681 1.749 10/5/10 9:24 83.3 1.589 1.657 10/5/10 9:45 105 1.629 1.697 10/5/10 10:06 126 1.684 1.752 1							1.621				1.690	
10/5/10 9:22 81.7 1.583 1.651 10/5/10 9:43 103 1.625 1.693 10/5/10 10:05 124 1.694 1.762 10/5/10 9:22 82.0 1.583 1.651 10/5/10 9:44 103 1.627 1.695 10/5/10 10:05 125 1.694 1.762 10/5/10 9:23 82.3 1.592 1.66 10/5/10 9:44 104 1.629 1.697 10/5/10 10:05 125 1.694 1.762 10/5/10 9:23 82.7 1.592 1.66 10/5/10 9:44 104 1.630 1.698 10/5/10 10:06 125 1.679 1.747 10/5/10 9:23 83.0 1.594 1.662 10/5/10 9:45 104 1.631 1.699 10/5/10 10:06 126 1.681 1.749 10/5/10 9:24 83.3 1.589 1.657 10/5/10 9:45 105 1.629 1.697 10/5/10 10:06 126 1.684 1.752 10/5/10 9:24 83.7 1.593 1.661 10/5/10 9:45 105 1.639 1.697 10/5/10 10:06 126 1.684 1.754 1												
10/5/10 9:22 82.0 1.583 1.651 10/5/10 9:44 103 1.627 1.695 10/5/10 10:05 125 1.694 1.762 10/5/10 9:23 82.3 1.592 1.66 10/5/10 9:44 104 1.629 1.697 10/5/10 10:05 125 1.694 1.762 10/5/10 9:23 82.7 1.592 1.66 10/5/10 9:44 104 1.630 1.698 10/5/10 10:06 125 1.679 1.747 10/5/10 9:23 83.0 1.594 1.662 10/5/10 9:45 104 1.631 1.699 10/5/10 10:06 126 1.681 1.749 10/5/10 9:24 83.3 1.589 1.657 10/5/10 9:45 105 1.629 1.697 10/5/10 10:06 126 1.684 1.752 10/5/10 9:24 83.7 1.593 1.661 10/5/10 9:45 105 1.634 1.702 10/5/10 10:07 126 1.686 1.754 10/5/10 9:24 84.0 1.595 1.663 10/5/10 9:46 105 1.639 1.707 10/5/10 10:07 127 1.684 1.752 1												
10/5/10 9:23 82.3 1.592 1.66 10/5/10 9:44 104 1.629 1.697 10/5/10 10:05 125 1.694 1.762 10/5/10 9:23 82.7 1.592 1.66 10/5/10 9:44 104 1.630 1.698 10/5/10 10:06 125 1.679 1.747 10/5/10 9:23 83.0 1.594 1.662 10/5/10 9:45 104 1.631 1.699 10/5/10 10:06 126 1.681 1.749 10/5/10 9:24 83.3 1.589 1.657 10/5/10 9:45 105 1.629 1.697 10/5/10 10:06 126 1.684 1.752 10/5/10 9:24 83.7 1.593 1.661 10/5/10 9:45 105 1.634 1.702 10/5/10 10:07 126 1.686 1.754 10/5/10 9:24 84.0 1.595 1.663 10/5/10 9:46 105 1.639 1.707 10/5/10 10:07 127 1.686 1.754 10/5/10 9:25 84.3 1.594 1.662 10/5/10 9:46 106 1.636 1.704 10/5/10 10:07 127 1.686 1.754	10/5/10 9:22			1.651	10/5/10 9:43				10/5/10 10:05			
10/5/10 9:23 82.7 1.592 1.66 10/5/10 9:44 104 1.630 1.698 10/5/10 10:06 125 1.679 1.747 10/5/10 9:23 83.0 1.594 1.662 10/5/10 9:45 104 1.631 1.699 10/5/10 10:06 126 1.681 1.749 10/5/10 9:24 83.3 1.589 1.657 10/5/10 9:45 105 1.629 1.697 10/5/10 10:06 126 1.684 1.752 10/5/10 9:24 83.7 1.593 1.661 10/5/10 9:45 105 1.634 1.702 10/5/10 10:07 126 1.686 1.754 10/5/10 9:24 84.0 1.595 1.663 10/5/10 9:46 105 1.639 1.707 10/5/10 10:07 127 1.684 1.752 10/5/10 9:25 84.3 1.594 1.662 10/5/10 9:46 106 1.636 1.704 10/5/10 10:07 127 1.686 1.754					10/5/10 9:44							
10/5/10 9:23 83.0 1.594 1.662 10/5/10 9:45 104 1.631 1.699 10/5/10 10:06 126 1.681 1.749 10/5/10 9:24 83.3 1.589 1.657 10/5/10 9:45 105 1.697 10/5/10 10:06 126 1.684 1.752 10/5/10 9:24 83.7 1.593 1.661 10/5/10 9:45 105 1.634 1.702 10/5/10 10:07 126 1.686 1.754 10/5/10 9:24 84.0 1.595 1.663 10/5/10 9:46 105 1.639 1.707 10/5/10 10:07 127 1.684 1.752 10/5/10 9:25 84.3 1.594 1.662 10/5/10 9:46 106 1.636 1.704 10/5/10 10:07 127 1.686 1.754					10/5/10 9:44			1.697	10/5/10 10:05			
10/5/10 9:24 83.3 1.589 1.657 10/5/10 9:45 105 1.629 1.697 10/5/10 10:06 126 1.684 1.752 10/5/10 9:24 83.7 1.593 1.661 10/5/10 9:45 105 1.634 1.702 10/5/10 10:07 126 1.686 1.754 10/5/10 9:24 84.0 1.595 1.663 10/5/10 9:46 105 1.639 1.707 10/5/10 10:07 127 1.684 1.752 10/5/10 9:25 84.3 1.594 1.662 10/5/10 9:46 106 1.636 1.704 10/5/10 10:07 127 1.686 1.754					10/5/10 9:44							
10/5/10 9:24 83.7 1.593 1.661 10/5/10 9:45 105 1.634 1.702 10/5/10 10:07 126 1.686 1.754 10/5/10 9:24 84.0 1.595 1.663 10/5/10 9:46 105 1.639 1.707 10/5/10 10:07 127 1.684 1.752 10/5/10 9:25 84.3 1.594 1.662 10/5/10 9:46 106 1.636 1.704 10/5/10 10:07 127 1.686 1.754									10/5/10 10:06			
10/5/10 9:24 84.0 1.595 1.663 10/5/10 9:46 105 1.639 1.707 10/5/10 10:07 127 1.684 1.752 10/5/10 9:25 84.3 1.594 1.662 10/5/10 9:46 106 1.636 1.704 10/5/10 10:07 127 1.686 1.754							1.629					
10/5/10 9:25 84.3 1.594 1.662 10/5/10 9:46 106 1.636 1.704 10/5/10 10:07 127 1.686 1.754	10/5/10 9:24											
	10/5/10 9:24											
10/5/10 9:25 84.7 1.598 1.666 10/5/10 9:46 106 1.635 1.703 10/5/10 10:08 127 1.685 1.753												
	10/5/10 9:25	84.7	1.598	1.666	10/5/10 9:46	106	1.635	1.703	10/5/10 10:08	127	1.685	1.753

40/5/40 40:00	400	4 004	4.750	40/5/40 40:00	4.40	4 705	4 700	40/5/40 40-54	470	4.044	4.070
10/5/10 10:08	128	1.691	1.759	10/5/10 10:29	149	1.725	1.793	10/5/10 10:51	170	1.811	1.879
10/5/10 10:08	128	1.692	1.76	10/5/10 10:30	149	1.727	1.795	10/5/10 10:51	171	1.798	1.866
10/5/10 10:09	128	1.692	1.76	10/5/10 10:30	150	1.742	1.81	10/5/10 10:51	171	1.797	1.865
10/5/10 10:09	129	1.693	1.761	10/5/10 10:30	150	1.759	1.827	10/5/10 10:52	171	1.813	1.881
10/5/10 10:09	129	1.688	1.756	10/5/10 10:31	150	1.774	1.842	10/5/10 10:52	172	1.802	1.87
10/5/10 10:10	129	1.692	1.76	10/5/10 10:31	151	1.746	1.814	10/5/10 10:52	172	1.800	1.868
10/5/10 10:10	130	1.689	1.757	10/5/10 10:31	151	1.749	1.817	10/5/10 10:53	172	1.802	1.87
10/5/10 10:10	130	1.692	1.76	10/5/10 10:32	151	1.748	1.816	10/5/10 10:53	173	1.802	1.87
10/5/10 10:10	130	1.704	1.772	10/5/10 10:32	152	1.753	1.821	10/5/10 10:53	173	1.805	1.873
10/5/10 10:11	131	1.703	1.771	10/5/10 10:32	152	1.753	1.821	10/5/10 10:54	173	1.807	1.875
10/5/10 10:11	131	1.699	1.767	10/5/10 10:33	152	1.756	1.824	10/5/10 10:54	174	1.807	1.875
10/5/10 10:12	131	1.700	1.768	10/5/10 10:33	153	1.758	1.826	10/5/10 10:54	174	1.805	1.873
10/5/10 10:12	132	1.706	1.774	10/5/10 10:33	153	1.757	1.825	10/5/10 10:55	174	1.803	1.871
10/5/10 10:12	132	1.703	1.771	10/5/10 10:34	153	1.757	1.825	10/5/10 10:55	175	1.808	1.876
10/5/10 10:13	132	1.706	1.774	10/5/10 10:34	154	1.758	1.826	10/5/10 10:55	175	1.813	1.881
10/5/10 10:13	133	1.702	1.77	10/5/10 10:34	154	1.763	1.831	10/5/10 10:56	175	1.811	1.879
10/5/10 10:13	133	1.701	1.769	10/5/10 10:35	154	1.766	1.834	10/5/10 10:56	176	1.813	1.881
10/5/10 10:14	133	1.704	1.772	10/5/10 10:35	155	1.767	1.835	10/5/10 10:56	176	1.809	1.877
10/5/10 10:14	134	1.706	1.774	10/5/10 10:35	155	1.763	1.831	10/5/10 10:57	176	1.812	1.88
10/5/10 10:14	134	1.709	1.777	10/5/10 10:36	155	1.763	1.831	10/5/10 10:57	177	1.823	1.891
10/5/10 10:15	134	1.705	1.773	10/5/10 10:36	156	1.769	1.837	10/5/10 10:57	177	1.812	1.88
10/5/10 10:15	135	1.708	1.776	10/5/10 10:36	156	1.764	1.832	10/5/10 10:58	177	1.814	1.882
10/5/10 10:15	135	1.710	1.778	10/5/10 10:37		1.767	1.835	10/5/10 10:58	178	1.816	1.884
					156						
10/5/10 10:16	135	1.708	1.776	10/5/10 10:37	157	1.770	1.838	10/5/10 10:58	178	1.816	1.884
10/5/10 10:16	136	1.704	1.772	10/5/10 10:37	157	1.770	1.838	10/5/10 10:59	178	1.831	1.899
10/5/10 10:16	136	1.706	1.774	10/5/10 10:38	157	1.769	1.837	10/5/10 10:59	179	1.826	1.894
10/5/10 10:17	136	1.707	1.775	10/5/10 10:38	158	1.772	1.84	10/5/10 10:59	179	1.816	1.884
10/5/10 10:17	137	1.709	1.777	10/5/10 10:38	158	1.771	1.839	10/5/10 11:00	179	1.821	1.889
10/5/10 10:17	137	1.707	1.775	10/5/10 10:39	158	1.768	1.836	10/5/10 11:00	180	1.815	1.883
10/5/10 10:18	137	1.711	1.779	10/5/10 10:39	159	1.776	1.844	10/5/10 11:00	180	1.816	1.884
10/5/10 10:18	138	1.709	1.777	10/5/10 10:39	159	1.777	1.845	10/5/10 11:01	180	1.814	1.882
10/5/10 10:18	138	1.712	1.78	10/5/10 10:40	159	1.775	1.843	10/5/10 11:01	181	1.819	1.887
10/5/10 10:19	138	1.710	1.778	10/5/10 10:40	160	1.774	1.842	10/5/10 11:01	181	1.820	1.888
10/5/10 10:19	139	1.715	1.783	10/5/10 10:40	160	1.777	1.845	10/5/10 11:02	181	1.810	1.878
10/5/10 10:19	139	1.718	1.786	10/5/10 10:41	160	1.773	1.841	10/5/10 11:02	182	1.830	1.898
10/5/10 10:13	139	1.722	1.79	10/5/10 10:41	161	1.775	1.843	10/5/10 11:02	182	1.819	1.887
				10/5/10 10:41		1.777	1.845	10/5/10 11:02		1.829	
10/5/10 10:20	140	1.718	1.786		161				182	1.823	1.897
10/5/10 10:20	140	1.719	1.787	10/5/10 10:42	161	1.778	1.846	10/5/10 11:03	183		1.891
10/5/10 10:21	140	1.720	1.788	10/5/10 10:42	162	1.779	1.847	10/5/10 11:03	183	1.822	1.89
10/5/10 10:21	141	1.724	1.792	10/5/10 10:42	162	1.778	1.846	10/5/10 11:04	183	1.816	1.884
10/5/10 10:21	141	1.721	1.789	10/5/10 10:43	162	1.780	1.848	10/5/10 11:04	184	1.819	1.887
10/5/10 10:22	141	1.723	1.791	10/5/10 10:43	163	1.781	1.849	10/5/10 11:04	184	1.823	1.891
10/5/10 10:22	142	1.725	1.793	10/5/10 10:43	163	1.782	1.85	10/5/10 11:05	184	1.822	1.89
10/5/10 10:22	142	1.722	1.79	10/5/10 10:44	163	1.784	1.852	10/5/10 11:05	185	1.823	1.891
10/5/10 10:23	142	1.720	1.788	10/5/10 10:44	164	1.785	1.853	10/5/10 11:05	185	1.822	1.89
10/5/10 10:23	143	1.720	1.788	10/5/10 10:44	164	1.785	1.853	10/5/10 11:06	185	1.819	1.887
10/5/10 10:23	143	1.723	1.791	10/5/10 10:45	164	1.787	1.855	10/5/10 11:06	186	1.816	1.884
10/5/10 10:24	143	1.720	1.788	10/5/10 10:45	165	1.792	1.86	10/5/10 11:06	186	1.814	1.882
10/5/10 10:24	144	1.723	1.791	10/5/10 10:45	165	1.789	1.857	10/5/10 11:07	186	1.815	1.883
10/5/10 10:24	144	1.721	1.789	10/5/10 10:46	165	1.793	1.861	10/5/10 11:07	187	1.812	1.88
10/5/10 10:25	144	1.724	1.792	10/5/10 10:46	166	1.785	1.853	10/5/10 11:07	187	1.818	1.886
10/5/10 10:25	145	1.721	1.789	10/5/10 10:46	166	1.788	1.856	10/5/10 11:08	187	1.812	1.88
	145	1.736	1.804		166	1.789	1.857	10/5/10 11:08	188	1.814	1.882
10/5/10 10:25				10/5/10 10:47							
10/5/10 10:26	145	1.724	1.792	10/5/10 10:47	167	1.789	1.857	10/5/10 11:08	188	1.817	1.885
10/5/10 10:26	146	1.728	1.796	10/5/10 10:47	167	1.793	1.861	10/5/10 11:09	188	1.813	1.881
10/5/10 10:26	146	1.729	1.797	10/5/10 10:48	167	1.792	1.86	10/5/10 11:09	189	1.815	1.883
10/5/10 10:27	146	1.736	1.804	10/5/10 10:48	168	1.789	1.857	10/5/10 11:09	189	1.819	1.887
10/5/10 10:27	147	1.724	1.792	10/5/10 10:48	168	1.791	1.859	10/5/10 11:10	189	1.820	1.888
10/5/10 10:27	147	1.714	1.782	10/5/10 10:49	168	1.793	1.861	10/5/10 11:10	190	1.816	1.884
10/5/10 10:28	147	1.718	1.786	10/5/10 10:49	169	1.796	1.864	10/5/10 11:10	190	1.817	1.885
10/5/10 10:28	148	1.727	1.795	10/5/10 10:49	169	1.808	1.876	10/5/10 11:11	190	1.816	1.884
10/5/10 10:28	148	1.724	1.792	10/5/10 10:50	169	1.794	1.862	10/5/10 11:11	191	1.822	1.89
10/5/10 10:29	148	1.723	1.791	10/5/10 10:50	170	1.798	1.866	10/5/10 11:11	191	1.827	1.895
10/5/10 10:29	149	1.727	1.795	10/5/10 10:50	170	1.800	1.868	10/5/10 11:12	191	1.824	1.892
	-				-			-		-	-

40/5/40 44 40	400	4 00 4	4 000	40/5/40 44 00	040	4 000	4 000	40/5/40 44 55	004	4 000	4.004
10/5/10 11:12	192	1.824	1.892	10/5/10 11:33	213	1.820	1.888	10/5/10 11:55	234	1.863	1.931
10/5/10 11:12	192	1.822	1.89	10/5/10 11:34	213	1.825	1.893	10/5/10 11:55	235	1.864	1.932
10/5/10 11:13	192	1.826	1.894	10/5/10 11:34	214	1.824	1.892	10/5/10 11:55	235	1.864	1.932
10/5/10 11:13	193	1.827	1.895	10/5/10 11:34	214	1.820	1.888	10/5/10 11:56	235	1.866	1.934
10/5/10 11:13	193	1.832	1.9	10/5/10 11:35	214	1.826	1.894	10/5/10 11:56	236	1.866	1.934
10/5/10 11:14	193	1.832	1.9	10/5/10 11:35	215	1.823	1.891	10/5/10 11:56	236	1.865	1.933
10/5/10 11:14	194	1.825	1.893	10/5/10 11:35	215	1.820	1.888	10/5/10 11:57	236	1.871	1.939
						1.020					
10/5/10 11:14	194	1.828	1.896	10/5/10 11:36	215	1.822	1.89	10/5/10 11:57	237	1.870	1.938
10/5/10 11:15	194	1.831	1.899	10/5/10 11:36	216	1.823	1.891	10/5/10 11:57	237	1.872	1.94
10/5/10 11:15	195	1.798	1.866	10/5/10 11:36	216	1.835	1.903	10/5/10 11:58	237	1.873	1.941
10/5/10 11:15	195	1.810	1.878	10/5/10 11:37	216	1.823	1.891	10/5/10 11:58	238	1.872	1.94
10/5/10 11:16	195	1.820	1.888	10/5/10 11:37	217	1.824	1.892	10/5/10 11:58	238	1.875	1.943
10/5/10 11:16	196	1.814	1.882	10/5/10 11:37	217	1.824	1.892	10/5/10 11:59	238	1.876	1.944
10/5/10 11:16	196	1.805	1.873	10/5/10 11:38	217	1.825	1.893	10/5/10 11:59	239	1.877	1.945
						1.023					
10/5/10 11:17	196	1.806	1.874	10/5/10 11:38	218	1.826	1.894	10/5/10 11:59	239	1.872	1.94
10/5/10 11:17	197	1.806	1.874	10/5/10 11:38	218	1.828	1.896	10/5/10 12:00	239	1.874	1.942
10/5/10 11:17	197	1.807	1.875	10/5/10 11:39	218	1.830	1.898	10/5/10 12:00	240	1.872	1.94
10/5/10 11:18	197	1.817	1.885	10/5/10 11:39	219	1.830	1.898	10/5/10 12:00	240	1.869	1.937
10/5/10 11:18	198	1.803	1.871	10/5/10 11:39	219	1.829	1.897	10/5/10 12:01	240	1.874	1.942
10/5/10 11:18	198	1.806	1.874	10/5/10 11:40	219	1.830	1.898	10/5/10 12:01	241	1.873	1.941
10/5/10 11:19	198	1.803	1.871	10/5/10 11:40	220	1.841	1.909	10/5/10 12:01	241	1.870	1.938
10/5/10 11:19	199	1.805	1.873	10/5/10 11:40	220	1.829	1.897	10/5/10 12:02	241	1.870	1.938
						1.029	1.037	10/5/10 12.02			
10/5/10 11:19	199	1.807	1.875	10/5/10 11:41	220	1.829	1.897	10/5/10 12:02	242	1.872	1.94
10/5/10 11:20	199	1.808	1.876	10/5/10 11:41	221	1.828	1.896	10/5/10 12:02	242	1.869	1.937
10/5/10 11:20	200	1.811	1.879	10/5/10 11:41	221	1.834	1.902	10/5/10 12:03	242	1.870	1.938
10/5/10 11:20	200	1.815	1.883	10/5/10 11:42	221	1.833	1.901	10/5/10 12:03	243	1.875	1.943
10/5/10 11:21	200	1.810	1.878	10/5/10 11:42	222	1.833	1.901	10/5/10 12:03	243	1.873	1.941
10/5/10 11:21	201	1.810	1.878	10/5/10 11:42	222	1.833	1.901	10/5/10 12:04	243	1.869	1.937
10/5/10 11:21	201	1.805	1.873	10/5/10 11:43	222	1.835	1.903	10/5/10 12:04	244	1.872	1.94
10/5/10 11:22	201	1.797	1.865	10/5/10 11:43	223	1.833	1.901	10/5/10 12:04	244	1.872	1.94
10/5/10 11:22	202	1.810	1.878	10/5/10 11:43	223	1.824	1.892	10/5/10 12:05	244	1.872	1.94
						1.024	1.092	10/5/10 12.05	244	1.072	
10/5/10 11:22	202	1.799	1.867	10/5/10 11:44	223	1.816	1.884	10/5/10 12:05	245	1.872	1.94
10/5/10 11:23	202	1.801	1.869	10/5/10 11:44	224	1.822	1.89	10/5/10 12:05	245	1.876	1.944
10/5/10 11:23	203	1.799	1.867	10/5/10 11:44	224	1.824	1.892	10/5/10 12:06	245	1.875	1.943
10/5/10 11:23	203	1.802	1.87	10/5/10 11:45	224	1.820	1.888	10/5/10 12:06	246	1.877	1.945
10/5/10 11:24	203	1.804	1.872	10/5/10 11:45	225	1.822	1.89	10/5/10 12:06	246	1.881	1.949
10/5/10 11:24	204	1.806	1.874	10/5/10 11:45	225	1.832	1.9	10/5/10 12:07	246	1.878	1.946
10/5/10 11:24	204	1.804	1.872	10/5/10 11:46	225	1.824	1.892	10/5/10 12:07	247	1.877	1.945
10/5/10 11:25	204	1.808	1.876	10/5/10 11:46	226	1.822	1.89	10/5/10 12:07	247	1.879	1.947
10/5/10 11:25	205	1.804	1.872	10/5/10 11:46	226	1.820	1.888	10/5/10 12:08	247	1.883	1.951
			1.873			1.818	1.886	10/5/10 12:08	248	1.888	
10/5/10 11:25	205	1.805		10/5/10 11:47	226				240		1.956
10/5/10 11:26	205	1.807	1.875	10/5/10 11:47	227	1.818	1.886	10/5/10 12:08	248	1.892	1.96
10/5/10 11:26	206	1.807	1.875	10/5/10 11:47	227	1.817	1.885	10/5/10 12:09	248	1.889	1.957
10/5/10 11:26	206	1.806	1.874	10/5/10 11:48	227	1.820	1.888	10/5/10 12:09	249	1.886	1.954
10/5/10 11:27	206	1.808	1.876	10/5/10 11:48	228	1.837	1.905	10/5/10 12:09	249	1.884	1.952
10/5/10 11:27	207	1.810	1.878	10/5/10 11:48	228	1.861	1.929	10/5/10 12:10	249	1.884	1.952
10/5/10 11:27	207	1.816	1.884	10/5/10 11:49	228	1.877	1.945	10/5/10 12:10	250	1.887	1.955
10/5/10 11:28	207	1.819	1.887	10/5/10 11:49	229	1.856	1.924	10/5/10 12:10	250	1.881	1.949
10/5/10 11:28	208	1.815	1.883	10/5/10 11:49	229	1.852	1.92	10/5/10 12:11	250	1.880	1.948
10/5/10 11:28	208	1.813	1.881	10/5/10 11:50	229	1.851	1.919	10/5/10 12:11	251	1.879	1.947
10/5/10 11.20						1.051					
10/5/10 11:29	208	1.812	1.88	10/5/10 11:50	230	1.859	1.927	10/5/10 12:11	251	1.877	1.945
10/5/10 11:29	209	1.811	1.879	10/5/10 11:50	230	1.861	1.929	10/5/10 12:12	251	1.882	1.95
10/5/10 11:29	209	1.817	1.885	10/5/10 11:51	230	1.857	1.925	10/5/10 12:12	252	1.887	1.955
10/5/10 11:30	209	1.826	1.894	10/5/10 11:51	231	1.855	1.923	10/5/10 12:12	252	1.886	1.954
10/5/10 11:30	210	1.815	1.883	10/5/10 11:51	231	1.858	1.926	10/5/10 12:13	252	1.888	1.956
10/5/10 11:30	210	1.818	1.886	10/5/10 11:52	231	1.860	1.928	10/5/10 12:13	253	1.886	1.954
10/5/10 11:31	210	1.819	1.887	10/5/10 11:52	232	1.862	1.93	10/5/10 12:13	253	1.889	1.957
10/5/10 11:31	211	1.826	1.894	10/5/10 11:52	232	1.861	1.929	10/5/10 12:14	253	1.889	1.957
10/5/10 11:31	211	1.814	1.882	10/5/10 11:53	232	1.860	1.928	10/5/10 12:14	254	1.888	1.956
10/5/10 11:31	211	1.812	1.88	10/5/10 11:53	232	1.862	1.926	10/5/10 12:14	254	1.886	1.954
					200						
10/5/10 11:32	212	1.815	1.883	10/5/10 11:53	233	1.866	1.934	10/5/10 12:15	254	1.887	1.955
10/5/10 11:32	212	1.817	1.885	10/5/10 11:54	233	1.861	1.929	10/5/10 12:15	255	1.892	1.96
10/5/10 11:33	212	1.832	1.9	10/5/10 11:54	234	1.867	1.935	10/5/10 12:15	255	1.892	1.96
10/5/10 11:33	213	1.821	1.889	10/5/10 11:54	234	1.867	1.935	10/5/10 12:16	255	1.894	1.962

10/5/10 10:16	256	1 000	1.057	40/E/40 40:07	277	1.012	1 001	10/5/10 10:50	200	1 000	2.004
10/5/10 12:16	256	1.889	1.957	10/5/10 12:37	277	1.913	1.981	10/5/10 12:59	298	1.933	2.001
10/5/10 12:16	256	1.890	1.958	10/5/10 12:38	277	1.918	1.986	10/5/10 12:59	299	1.933	2.001
10/5/10 12:17	256	1.888	1.956	10/5/10 12:38	278	1.915	1.983	10/5/10 12:59	299	1.936	2.004
10/5/10 12:17	257	1.890	1.958	10/5/10 12:38	278	1.913	1.981	10/5/10 13:00	299	1.936	2.004
10/5/10 12:17	257	1.895	1.963	10/5/10 12:39	278	1.909	1.977	10/5/10 13:00	300	1.933	2.001
10/5/10 12:18	257	1.895	1.963	10/5/10 12:39	279	1.914	1.982	10/5/10 13:00	300	1.935	2.003
10/5/10 12:18	258	1.896	1.964	10/5/10 12:39	279	1.917	1.985	10/5/10 13:01	300	1.936	2.004
10/5/10 12:18	258	1.896	1.964	10/5/10 12:40	279	1.918	1.986	10/5/10 13:01	301	1.937	2.005
10/5/10 12:19	258	1.892	1.96	10/5/10 12:40	280	1.916	1.984	10/5/10 13:01	301	1.936	2.004
10/5/10 12:19	259	1.892	1.96	10/5/10 12:40	280	1.921	1.989	10/5/10 13:02	301	1.936	2.004
10/5/10 12:19	259	1.890	1.958	10/5/10 12:41	280	1.916	1.984	10/5/10 13:02	302	1.938	2.006
10/5/10 12:10	259	1.895	1.963	10/5/10 12:41	281	1.917	1.985	10/5/10 13:02	302	1.939	2.007
10/5/10 12:20	260	1.902	1.97	10/5/10 12:41	281	1.916	1.984	10/5/10 13:02	302	1.937	2.005
10/5/10 12:20	260	1.894	1.962	10/5/10 12:41	281	1.917	1.985	10/5/10 13:03	303	1.936	2.003
10/5/10 12:21	260	1.897	1.965	10/5/10 12:42	282	1.918	1.986	10/5/10 13:03	303	1.936	2.004
10/5/10 12:21	261	1.898	1.966	10/5/10 12:42	282	1.919	1.987	10/5/10 13:04	303	1.939	2.007
10/5/10 12:21	261	1.893	1.961	10/5/10 12:43	282	1.917	1.985	10/5/10 13:04	304	1.941	2.009
10/5/10 12:22	261	1.888	1.956	10/5/10 12:43	283	1.918	1.986	10/5/10 13:04	304	1.937	2.005
10/5/10 12:22	262	1.890	1.958	10/5/10 12:43	283	1.929	1.997	10/5/10 13:05	304	1.937	2.005
10/5/10 12:22	262	1.893	1.961	10/5/10 12:44	283	1.923	1.991	10/5/10 13:05	305	1.941	2.009
10/5/10 12:23	262	1.895	1.963	10/5/10 12:44	284	1.921	1.989	10/5/10 13:05	305	1.939	2.007
10/5/10 12:23	263	1.894	1.962	10/5/10 12:44	284	1.923	1.991	10/5/10 13:06	305	1.938	2.006
10/5/10 12:23	263	1.897	1.965	10/5/10 12:45	284	1.917	1.985	10/5/10 13:06	306	1.937	2.005
10/5/10 12:24	263	1.895	1.963	10/5/10 12:45	285	1.918	1.986	10/5/10 13:06	306	1.935	2.003
10/5/10 12:24	264	1.894	1.962	10/5/10 12:45	285	1.919	1.987	10/5/10 13:07	306	1.933	2.001
10/5/10 12:24	264	1.903	1.971	10/5/10 12:46	285	1.919	1.987	10/5/10 13:07	307	1.942	2.01
10/5/10 12:25	264	1.895	1.963	10/5/10 12:46	286	1.920	1.988	10/5/10 13:07	307	1.945	2.013
10/5/10 12:25	265	1.896	1.964	10/5/10 12:46	286	1.918	1.986	10/5/10 13:08	307	1.942	2.01
10/5/10 12:25	265	1.899	1.967	10/5/10 12:47	286	1.916	1.984	10/5/10 13:08	308	1.942	2.008
10/5/10 12:26	265	1.905	1.973	10/5/10 12:47	287	1.922	1.99	10/5/10 13:08	308	1.942	2.008
						1.922					
10/5/10 12:26	266	1.903	1.971	10/5/10 12:47	287	1.922	1.99	10/5/10 13:09	308	1.952	2.02
10/5/10 12:26	266	1.904	1.972	10/5/10 12:48	287	1.924	1.992	10/5/10 13:09	309	1.942	2.01
10/5/10 12:27	266	1.897	1.965	10/5/10 12:48	288	1.922	1.99	10/5/10 13:09	309	1.945	2.013
10/5/10 12:27	267	1.897	1.965	10/5/10 12:48	288	1.925	1.993	10/5/10 13:10	309	1.947	2.015
10/5/10 12:27	267	1.901	1.969	10/5/10 12:49	288	1.920	1.988	10/5/10 13:10	310	1.942	2.01
10/5/10 12:28	267	1.904	1.972	10/5/10 12:49	289	1.922	1.99	10/5/10 13:10	310	1.936	2.004
10/5/10 12:28	268	1.903	1.971	10/5/10 12:49	289	1.923	1.991	10/5/10 13:11	310	1.944	2.012
10/5/10 12:28	268	1.906	1.974	10/5/10 12:50	289	1.925	1.993	10/5/10 13:11	311	1.940	2.008
10/5/10 12:29	268	1.907	1.975	10/5/10 12:50	290	1.924	1.992	10/5/10 13:11	311	1.946	2.014
10/5/10 12:29	269	1.916	1.984	10/5/10 12:50	290	1.923	1.991	10/5/10 13:12	311	1.944	2.012
10/5/10 12:29	269	1.909	1.977	10/5/10 12:51	290	1.924	1.992	10/5/10 13:12	312	1.941	2.009
10/5/10 12:30	269	1.901	1.969	10/5/10 12:51	291	1.926	1.994	10/5/10 13:12	312	1.941	2.009
10/5/10 12:30	270	1.905	1.973	10/5/10 12:51	291	1.929	1.997	10/5/10 13:13	312	1.938	2.006
10/5/10 12:30	270	1.904	1.972	10/5/10 12:52	291	1.929	1.997	10/5/10 13:13	313	1.938	2.006
10/5/10 12:31	270	1.909	1.977	10/5/10 12:52	292	1.928	1.996	10/5/10 13:13	313	1.941	2.009
10/5/10 12:31	271	1.908	1.976	10/5/10 12:52	292	1.936	2.004	10/5/10 13:14	313	1.947	2.015
10/5/10 12:31	271	1.907	1.975	10/5/10 12:53	292	1.931	1.999	10/5/10 13:14	314	1.945	2.013
10/5/10 12:32	271	1.909	1.977	10/5/10 12:53	293	1.932	2	10/5/10 13:14	314	1.942	2.013
10/5/10 12:32	272	1.911	1.979	10/5/10 12:53	293	1.931	1.999	10/5/10 13:15	314	1.947	2.015
10/5/10 12:32	272	1.909	1.977	10/5/10 12:53	293	1.943	2.011	10/5/10 13:15		1.950	
								10/5/10 13.15	315		2.018
10/5/10 12:33	272	1.910	1.978	10/5/10 12:54	294	1.928	1.996	10/5/10 13:15	315	1.944	2.012
10/5/10 12:33	273	1.912	1.98	10/5/10 12:54	294	1.929	1.997	10/5/10 13:16	315	1.940	2.008
10/5/10 12:33	273	1.911	1.979	10/5/10 12:55	294	1.935	2.003	10/5/10 13:16	316	1.945	2.013
10/5/10 12:34	273	1.910	1.978	10/5/10 12:55	295	1.932	2	10/5/10 13:16	316	1.953	2.021
10/5/10 12:34	274	1.913	1.981	10/5/10 12:55	295	1.936	2.004	10/5/10 13:17	316	1.961	2.029
10/5/10 12:34	274	1.910	1.978	10/5/10 12:56	295	1.933	2.001	10/5/10 13:17	317	1.948	2.016
10/5/10 12:35	274	1.911	1.979	10/5/10 12:56	296	1.931	1.999	10/5/10 13:17	317	1.947	2.015
10/5/10 12:35	275	1.912	1.98	10/5/10 12:56	296	1.935	2.003	10/5/10 13:18	317	1.944	2.012
10/5/10 12:35	275	1.913	1.981	10/5/10 12:57	296	1.933	2.001	10/5/10 13:18	318	1.948	2.016
10/5/10 12:36	275	1.909	1.977	10/5/10 12:57	297	1.934	2.002	10/5/10 13:18	318	1.953	2.021
10/5/10 12:36	276	1.916	1.984	10/5/10 12:57	297	1.932	2	10/5/10 13:19	318	1.953	2.021
10/5/10 12:36	276	1.914	1.982	10/5/10 12:58	297	1.943	2.011	10/5/10 13:19	319	1.951	2.019
10/5/10 12:37	276	1.915	1.983	10/5/10 12:58	298	1.934	2.002	10/5/10 13:19	319	1.950	2.018
10/5/10 12:37	277	1.914	1.982	10/5/10 12:58	298	1.934	2.002	10/5/10 13:20	319	1.950	2.018
									•		

100F101 13_20												
100/F1013-20 320 1-946 2-016 100/F1013-24 341 1-955 2-023 105/F1014-03 383 1-979 2-047 100/F1013-21 321 1-567 2-016 100/F1013-24 321 1-569 2-026 105/F1014-03 383 1-979 2-047 100/F1013-21 321 1-549 2-017 100/F1013-24 342 1-556 2-026 105/F1014-04 384 1-982 2-05 100/F1013-21 321 1-549 2-017 100/F1013-24 343 1-979 2-046 100/F1013-21 321 1-549 2-017 100/F1013-24 343 1-979 2-046 100/F1013-21 321 1-549 2-017 100/F1013-24 343 1-979 2-046 100/F1013-24 321 1-549 2-017 100/F1013-24 343 1-979 2-046 100/F1013-24 322 1-550 2-028 100/F1013-24 344 343 1-979 2-046 100/F1013-24 324 1-569 2-026 100/F1013-24 324 1-569 2-026 100/F1013-24 344 343 1-979 2-046 100/F1013-24 324 1-569 2-026 100/F1013	40/5/40 40:00	200	4.004	0.000	40/5/40 40-44	0.44	4.050	0.000	40/5/40 44.00	200	4 077	0.045
105/1013-21 320 1 95/1 2019 105/1013-42 342 1.886 2.024 105/1014-04 363 1.897 2.045 105/1013-22 321 1.963 2.027 105/1013-43 342 1.896 2.034 105/1014-04 364 1.976 2.044 105/1013-22 321 1.963 2.021 105/1013-43 342 1.896 2.038 105/1014-04 364 1.976 2.044 105/1013-23 322 1.965 2.023 105/1013-43 343 1.970 2.088 105/1014-04 364 1.976 2.044 105/1013-23 322 1.961 2.029 105/1013-44 344 1.987 2.025 105/1013-44 344 1.987 2.025 105/1013-44 344 1.987 2.025 105/1013-44 344 1.987 2.025 105/1013-44 344 1.987 2.025 105/1013-23 322 1.961 2.029 105/1013-44 344 1.987 2.025 105/1014-05 365 1.982 2.034 105/1013-23 322 1.986 2.023 1.986 2.023 105/1013-44 344 1.987 2.025 105/1014-05 365 1.982 2.044 105/1013-23 322 1.986 2.023 1.986 2.023 105/1013-44 344 1.987 2.025 105/1014-05 365 1.982 2.044 105/1013-23 322 1.986 2.023 105/1013-44 344 1.987 2.025 105/1014-05 365 1.982 2.044 105/1013-23 322 1.986 2.033 1.986 2.033 105/1013-44 344 1.987 2.025 105/1014-05 365 1.982 2.044 105/1013-24 323 1.986 2.033 105/1013-44 344 1.987 2.025 105/1014-05 365 1.982 2.044 105/1013-24 324 1.982 2.03 105/1013-44 344 1.987 2.025 105/1014-05 365 1.982 2.03 105/1013-44 344 1.987 2.025 105/1014-05 365 1.982 2.03 105/1013-44 344 1.987 2.025 105/1013-44 344 1.987 2.025 105/1014-05 365 1.982 2.03 105/1013-45 345 1.982 2.03												
105/1013-21 320 1 95/1 2019 105/1013-42 342 1.886 2.024 105/1014-04 363 1.897 2.045 105/1013-22 321 1.963 2.027 105/1013-43 342 1.896 2.034 105/1014-04 364 1.976 2.044 105/1013-22 321 1.963 2.021 105/1013-43 342 1.896 2.038 105/1014-04 364 1.976 2.044 105/1013-23 322 1.965 2.023 105/1013-43 343 1.970 2.088 105/1014-04 364 1.976 2.044 105/1013-23 322 1.961 2.029 105/1013-44 344 1.987 2.025 105/1013-44 344 1.987 2.025 105/1013-44 344 1.987 2.025 105/1013-44 344 1.987 2.025 105/1013-44 344 1.987 2.025 105/1013-23 322 1.961 2.029 105/1013-44 344 1.987 2.025 105/1014-05 365 1.982 2.034 105/1013-23 322 1.986 2.023 1.986 2.023 105/1013-44 344 1.987 2.025 105/1014-05 365 1.982 2.044 105/1013-23 322 1.986 2.023 1.986 2.023 105/1013-44 344 1.987 2.025 105/1014-05 365 1.982 2.044 105/1013-23 322 1.986 2.023 105/1013-44 344 1.987 2.025 105/1014-05 365 1.982 2.044 105/1013-23 322 1.986 2.033 1.986 2.033 105/1013-44 344 1.987 2.025 105/1014-05 365 1.982 2.044 105/1013-24 323 1.986 2.033 105/1013-44 344 1.987 2.025 105/1014-05 365 1.982 2.044 105/1013-24 324 1.982 2.03 105/1013-44 344 1.987 2.025 105/1014-05 365 1.982 2.03 105/1013-44 344 1.987 2.025 105/1014-05 365 1.982 2.03 105/1013-44 344 1.987 2.025 105/1013-44 344 1.987 2.025 105/1014-05 365 1.982 2.03 105/1013-45 345 1.982 2.03	10/5/10 13:20	320	1.948	2.016	10/5/10 13:42	341	1.955	2.023	10/5/10 14:03	363	1.979	2.047
105/1013-27 321 1.952 2.02 105/1013-42 342 1.965 2.033 105/1014-04 363 1.975 2.05 1.05/1013-27 321 1.96 2.03 1.95/1013-43 343 1.950 2.027 1.95/1014-04 364 1.907 2.05 1.95/1013-27 322 322 1.95 2.023 1.95/1013-43 343 1.950 2.027 1.95/1014-04 364 1.907 2.05 1.95/1013-27 322 322 1.95/1013-27 322 1.95/1013-27 322 1.95/1013-27 322 1.95/1013-27 322 1.95/1013-27 322 1.95/1013-27 322 1.95/1013-27 322 1.95/1013-27 322 1.95/1013-27 322 1.95/1013-27 322 1.95/1013-27 322 1.95/1013-27 322 1.95/1013-27 322 1.95/1013-27 322 1.95/1013-27 322 322 32		320					1 956	2 024				
106/1013-22 321 1-949 2-017 105/1013-43 342 1-956 2-024 105/1014-04 364 1-978 2-044 105/1013-22 322 1-950 2-024 105/1013-44 343 343 1-950 2-039 105/1014-04 364 1-978 2-044 105/1013-22 322 1-950 2-028 105/1013-44 343 1-958 2-056 105/1013-23 322 1-950 2-028 105/1013-44 343 1-958 2-056 105/1013-24 324 1-957 2-028 105/1013-44 343 1-958 2-056 105/1013-24 324 1-957 2-028 105/1013-44 344 1-952 2-039 105/1013-24 324 1-957 2-028 105/1013-44 344 1-957 2-026 105/1013-24 324 1-957 2-028 105/1013-24 324 1-957 2-02												
106/1013-22 321 1-963 2-021 106/1013-43 3-43 1-970 2-038 106/10 14-04 364 1-976 2-044 106/1013-33 322 1-961 2-029 105/1013-44 343 1-959 2-036 106/1014-05 365 1-988 2-046 106/1013-33 322 1-961 2-029 105/1013-44 343 1-959 2-036 106/1014-05 365 1-988 2-046 106/1013-33 322 1-961 2-029 105/1013-44 344 1-962 2-03 106/1014-06 365 1-982 2-036 106/1014-05 365 1-982 2-036 106/1013-34 324 324 1-962 2-033 105/1013-44 344 1-962 2-032 106/1013-44 324 1-967 1013-44 324 1-967 1013-44 324 1-967 1013-44 324 1-967 1013-44 324 1-967 1013-44 324 1-967 1013-45 324 1-9		321			10/5/10 13:42	342	1.965		10/5/10 14:04			
106/1013-22 321 1-963 2-021 106/1013-43 3-43 1-970 2-038 106/10 14-04 364 1-976 2-044 106/1013-33 322 1-961 2-029 105/1013-44 343 1-959 2-036 106/1014-05 365 1-988 2-046 106/1013-33 322 1-961 2-029 105/1013-44 343 1-959 2-036 106/1014-05 365 1-988 2-046 106/1013-33 322 1-961 2-029 105/1013-44 344 1-962 2-03 106/1014-06 365 1-982 2-036 106/1014-05 365 1-982 2-036 106/1013-34 324 324 1-962 2-033 105/1013-44 344 1-962 2-032 106/1013-44 324 1-967 1013-44 324 1-967 1013-44 324 1-967 1013-44 324 1-967 1013-44 324 1-967 1013-44 324 1-967 1013-45 324 1-9	10/5/10 13:21	321	1.949	2.017	10/5/10 13:43	342	1.956	2.024	10/5/10 14:04	364	1.982	2.05
106/1013/22 322 1.955 2.023 10/6/1013/45 343 1.969 2.027 10/6/1014/60 364 1.979 2.047 10/6/1013/45 323 1.960 2.028 10/6/1013/46 344 1.957 2.025 10/6/1014/60 365 1.962 2.056 10/6/1013/45 344 1.957 2.025 10/6/1014/60 365 1.962 2.056 10/6/1013/45 344 1.957 2.025 10/6/1014/60 365 1.962 2.056 10/6/1013/45 344 1.957 2.025 10/6/1014/60 365 1.962 2.044 10/6/1013/45 344 1.957 2.025 10/6/1014/60 365 1.962 2.044 10/6/1013/45 344 1.957 2.025 10/6/1014/60 365 1.962 2.044 10/6/1013/45 344 1.957 2.047 10/6/1013/46 346 1.968 2.068 10/6/1013/45 344 1.959 2.067 10/6/1013/46 346 1.968 2.068 10/6/1013/45 344 1.959 2.067 10/6/1013/46 346 1.968 2.068 10/6/1013/46 346					10/5/10 10:10		1.000		10/5/10 11:01			
105/101322 322 1.960 2.028 10/5/101324 343 1.968 2.026 10/5/1014-05 365 1.988 2.056 10/5/101323 322 1.966 2.033 10/5/101346 344 1.967 2.035 10/5/1014-06 366 1.976 2.044 10/5/101323 323 1.966 2.034 10/5/101346 344 1.968 2.026 10/5/1014-06 366 1.976 2.044 10/5/101324 324 1.962 2.033 10/5/101346 346 1.969 2.027 10/5/1014-06 366 1.976 2.044 10/5/101324 324 1.962 2.038 10/5/101346 346 1.969 2.027 10/5/1014-06 366 1.976 2.044 10/5/101324 324 1.962 2.038 10/5/101346 346 1.969 2.027 10/5/1014-06 366 1.977 2.045 10/5/101324 324 1.962 2.038 10/5/101346 346 1.969 2.027 10/5/1014-06 366 1.977 2.045 10/5/101324 324 1.962 2.038 10/5/101346 346 1.969 2.027 10/5/1014-06 366 1.977 2.045 10/5/101324 324 1.962 2.032 10/5/101346 346 1.969 2.071 10/5/1014-07 366 1.977 2.045 10/5/101325 325 1.964 2.032 10/5/101346 346 1.946 2.071 10/5/1014-08 367 1.988 2.048 10/5/101325 325 1.964 2.032 10/5/101346 346 1.948 2.077 10/5/1014-08 367 1.988 2.056 10/5/101346 346 1.949 2.077 10/5/1014-08 367 1.988 2.056 10/5/101346 346 1.949 2.077 10/5/1014-08 367 1.988 2.056 10/5/101346 346 1.949 2.077 10/5/1014-08 367 1.988 2.056 10/5/101346 346 1.949 2.077 10/5/1014-08 367 1.988 2.056 10/5/101346 346 1.949 2.077 10/5/1014-08 367 1.988 2.056 10/5/101346 346 1.949 2.077 10/5/1014-09 368 1.981 2.049 10/5/101346 346 1.949 2.077 10/5/1014-09 368 1.981 2.049 10/5/101346 346 1.949 2.077 10/5/1014-09 368 1.981 2.049 10/5/101346 346 1.949 2.077 10/5/1014-09 368 1.981 2.049 10/5/101346 346 1.949 2.077 10/5/1014-09 368 1.981 2.049 10/5/101346 346 1.949 2.077 10/5/1014-09 368 1.981 2.049 10/5/101346 346 1.949 2.077 10/5/1014-09 368 1.981 2.049 10/5/101346 346 1.949 2.077 10/5/1014-09 368 1.981 2.049 10/5/101346 346 1.949 2.077 10/5/1014-09 368 1.981 2.049 10/5/101346 346 1.949 2.077 10/5/1014-09 368 1.981 2.049 10/5/101346 346 1.949 2.077 10/5/1014-09 368 1.981 2.049 10/5/101346 347 1.947 2.047 10/5/101346 347 1.947 2.047 10/5/101346 347 1.947 2.047 10/5/101346 347 1.947 2.047 10/5/101346 347 1.947 2.047 10/5/101346 347 1.947 2.047 10/5/101346 347 1.947 2.047 10/5												
105/101322 322 1.960 2.028 10/5/101324 343 1.968 2.026 10/5/1014-05 365 1.988 2.056 10/5/101323 322 1.966 2.033 10/5/101346 344 1.967 2.035 10/5/1014-06 366 1.976 2.044 10/5/101323 323 1.966 2.034 10/5/101346 344 1.968 2.026 10/5/1014-06 366 1.976 2.044 10/5/101324 324 1.962 2.033 10/5/101346 346 1.969 2.027 10/5/1014-06 366 1.976 2.044 10/5/101324 324 1.962 2.038 10/5/101346 346 1.969 2.027 10/5/1014-06 366 1.976 2.044 10/5/101324 324 1.962 2.038 10/5/101346 346 1.969 2.027 10/5/1014-06 366 1.977 2.045 10/5/101324 324 1.962 2.038 10/5/101346 346 1.969 2.027 10/5/1014-06 366 1.977 2.045 10/5/101324 324 1.962 2.038 10/5/101346 346 1.969 2.027 10/5/1014-06 366 1.977 2.045 10/5/101324 324 1.962 2.032 10/5/101346 346 1.969 2.071 10/5/1014-07 366 1.977 2.045 10/5/101325 325 1.964 2.032 10/5/101346 346 1.946 2.071 10/5/1014-08 367 1.988 2.048 10/5/101325 325 1.964 2.032 10/5/101346 346 1.948 2.077 10/5/1014-08 367 1.988 2.056 10/5/101346 346 1.949 2.077 10/5/1014-08 367 1.988 2.056 10/5/101346 346 1.949 2.077 10/5/1014-08 367 1.988 2.056 10/5/101346 346 1.949 2.077 10/5/1014-08 367 1.988 2.056 10/5/101346 346 1.949 2.077 10/5/1014-08 367 1.988 2.056 10/5/101346 346 1.949 2.077 10/5/1014-08 367 1.988 2.056 10/5/101346 346 1.949 2.077 10/5/1014-09 368 1.981 2.049 10/5/101346 346 1.949 2.077 10/5/1014-09 368 1.981 2.049 10/5/101346 346 1.949 2.077 10/5/1014-09 368 1.981 2.049 10/5/101346 346 1.949 2.077 10/5/1014-09 368 1.981 2.049 10/5/101346 346 1.949 2.077 10/5/1014-09 368 1.981 2.049 10/5/101346 346 1.949 2.077 10/5/1014-09 368 1.981 2.049 10/5/101346 346 1.949 2.077 10/5/1014-09 368 1.981 2.049 10/5/101346 346 1.949 2.077 10/5/1014-09 368 1.981 2.049 10/5/101346 346 1.949 2.077 10/5/1014-09 368 1.981 2.049 10/5/101346 346 1.949 2.077 10/5/1014-09 368 1.981 2.049 10/5/101346 346 1.949 2.077 10/5/1014-09 368 1.981 2.049 10/5/101346 347 1.947 2.047 10/5/101346 347 1.947 2.047 10/5/101346 347 1.947 2.047 10/5/101346 347 1.947 2.047 10/5/101346 347 1.947 2.047 10/5/101346 347 1.947 2.047 10/5/101346 347 1.947 2.047 10/5	10/5/10 13:22	322	1.955	2.023	10/5/10 13:43	343	1.959	2.027	10/5/10 14:05	364	1.979	2.047
105/101323 322 1961 2.029 105/101344 344 1.962 2.03 105/1014-05 365 1.986 2.054 105/101345 344 344 1.967 2.055 105/1014-05 365 1.986 2.054 105/101345 345 1.967 2.045 105/1013					10/5/10 13:44		1 058					
106/101323 323 1960 2.028 106/101344 344 1.957 2.025 106/101406 365 1.982 2.05 106/101323 323 1.956 2.034 1.05/101345 344 1.957 2.025 1.05/101345 344 1.957 2.047 1.05/101324 324 1.952 2.03 1.05/101346 346 1.957 2.047 1.05/101323 324 1.962 2.03 1.05/101346 346 1.957 2.047 1.05/101325 324 1.964 2.032 1.05/101346 346 1.947 2.015 1.05/101407 367 1.979 2.047 1.05/101325 324 1.964 2.032 1.05/101346 346 1.945 2.013 1.05/101407 367 1.979 2.047 1.05/101325 325 1.964 2.032 1.05/101346 346 1.945 2.013 1.05/101407 367 1.979 2.047 1.05/101325 325 1.964 2.032 1.05/101346 346 1.945 2.013 1.05/101407 367 1.979 2.047 1.05/101326 325 1.961 2.029 1.05/101346 346 1.945 2.016 1.05/101408 368 1.983 2.051 1.05/101326 325 1.961 2.029 1.05/101346 346 1.947 2.015 1.05/101346 346 1.945 2.016 1.05/101346 346 1.945 2.016 1.05/101346 346 1.945 2.016 1.05/101346 346 1.945 2.016 1.05/101346 346 1.945 2.016 1.05/101346 346 1.945 2.016 1.05/101346 346 1.945 2.016 1.05/101346 346 1.945 2.016 1.05/101346 346 1.945 2.05/101346 346 1.945 2.016 1.05/101346 346 1.945 2.05/101346 346 1.945 2.016 1.05/101346 346 1.945 2.05/101346 346 1.945 2.016 1.05/101346 346 1.945 2.05/101346												
106/10/13/23 323 1.965 2.034 106/10/13/45 344 1.958 2.026 106/10/14/06 366 1.976 2.044 106/10/13/24 324 1.966 2.054 106/10/13/24 324 1.966 2.034 106/10/13/24 324 1.967 2.035 106/10/13/24 324 1.967 2.035 106/10/13/24 324 1.967 2.035 106/10/13/24 324 1.967 2.035 106/10/13/24 324 1.967 2.035 106/10/13/24 324 1.967 2.035 106/10/13/24 324 1.967 2.035 106/10/13/24 324 1.967 2.035 106/10/13/24 324 1.967 2.035 106/10/13/24 324 1.967 2.035 106/10/13/24 324 1.967 2.035 106/10/13/24 324 1.967 2.035 106/10/13/24 324 1.967 2.035 106/10/13/24 325 1.964 2.032 106/10/13/24 346 346 1.949 2.017 106/10/14/07 367 1.968 2.066 106/10/13/25 325 1.964 2.032 106/10/13/24 347 347 1.967 2.015 106/10/14/08 368 1.968 2.066 106/10/13/25 325 1.968 2.037 106/10/13/24 347 347 1.967 2.015 106/10/14/09 368 1.968 2.066 106/10/13/25 326 1.968 2.033 106/10/13/24 347 1.967 2.015 106/10/14/09 368 1.968 2.049 106/10/13/27 326 1.968 2.033 106/10/13/24 348 347 1.967 2.015 106/10/14/09 369 1.969 2.047 106/10/13/27 327 1.968 2.033 106/10/13/24 348 348 1.949 2.017 106/10/14/09 369 1.979 2.047 106/10/13/28 328 1.968 2.033 106/10/13/24 348 1.949 2.017 106/10/14/09 369 1.979 2.047 106/10/13/28 328 1.968 2.033 106/10/13/24 348 1.949 2.017 106/10/14/09 369 1.979 2.047 106/10/13/28 328 1.968 2.033 106/10/13/24 348 1.949 2.017 106/10/14/09 369 1.979 2.047 106/10/13/28 328 1.968 2.033 106/10/13/24 348 348 1.949 2.017 106/10/14/09 369 1.979 2.047 106/10/13/28 328 1.968 2.033 106/10/13/24 349 1.968 2.027 106/10/14/10/13/24 349 1.969 2.017 106/10/14/10/13/24 349 1.06/10/13/24 328 328 1.969 2.033 106/10/13/24 349 1.969 2.017 106/10/14/10/13/24 349 1.969 2.017 106/10/14/10/13/24 349 1.969 2.027 106/10/13/24 328 2.028 106/10/13/24 328 328 1.969 2.033 106/10/13/24 349 1.969 2.027 106/10/14/11/24 372 1.969 2.069 106/10/13/24 328 328 1.969 2.033 106/10/13/24 349 1.969 2.027 106/10/14/14/13/37 1.960 2.048 106/10/13/24 328 328 1.969 2.028 106/10/13/24 334 1.969 2.028 106/10/13/24 334 1.969 2.028 106/10/13/24 334 1.969 2.028 106/10/13/24 334 1.969 2.028 106/10/13/24 334 1.969	10/5/10 13:23	322										2.054
106/10/13/23 323 1.965 2.034 106/10/13/45 344 1.958 2.026 106/10/14/06 366 1.976 2.044 106/10/13/24 324 1.966 2.054 106/10/13/24 324 1.966 2.034 106/10/13/24 324 1.967 2.035 106/10/13/24 324 1.967 2.035 106/10/13/24 324 1.967 2.035 106/10/13/24 324 1.967 2.035 106/10/13/24 324 1.967 2.035 106/10/13/24 324 1.967 2.035 106/10/13/24 324 1.967 2.035 106/10/13/24 324 1.967 2.035 106/10/13/24 324 1.967 2.035 106/10/13/24 324 1.967 2.035 106/10/13/24 324 1.967 2.035 106/10/13/24 324 1.967 2.035 106/10/13/24 324 1.967 2.035 106/10/13/24 325 1.964 2.032 106/10/13/24 346 346 1.949 2.017 106/10/14/07 367 1.968 2.066 106/10/13/25 325 1.964 2.032 106/10/13/24 347 347 1.967 2.015 106/10/14/08 368 1.968 2.066 106/10/13/25 325 1.968 2.037 106/10/13/24 347 347 1.967 2.015 106/10/14/09 368 1.968 2.066 106/10/13/25 326 1.968 2.033 106/10/13/24 347 1.967 2.015 106/10/14/09 368 1.968 2.049 106/10/13/27 326 1.968 2.033 106/10/13/24 348 347 1.967 2.015 106/10/14/09 369 1.969 2.047 106/10/13/27 327 1.968 2.033 106/10/13/24 348 348 1.949 2.017 106/10/14/09 369 1.979 2.047 106/10/13/28 328 1.968 2.033 106/10/13/24 348 1.949 2.017 106/10/14/09 369 1.979 2.047 106/10/13/28 328 1.968 2.033 106/10/13/24 348 1.949 2.017 106/10/14/09 369 1.979 2.047 106/10/13/28 328 1.968 2.033 106/10/13/24 348 1.949 2.017 106/10/14/09 369 1.979 2.047 106/10/13/28 328 1.968 2.033 106/10/13/24 348 348 1.949 2.017 106/10/14/09 369 1.979 2.047 106/10/13/28 328 1.968 2.033 106/10/13/24 349 1.968 2.027 106/10/14/10/13/24 349 1.969 2.017 106/10/14/10/13/24 349 1.06/10/13/24 328 328 1.969 2.033 106/10/13/24 349 1.969 2.017 106/10/14/10/13/24 349 1.969 2.017 106/10/14/10/13/24 349 1.969 2.027 106/10/13/24 328 2.028 106/10/13/24 328 328 1.969 2.033 106/10/13/24 349 1.969 2.027 106/10/14/11/24 372 1.969 2.069 106/10/13/24 328 328 1.969 2.033 106/10/13/24 349 1.969 2.027 106/10/14/14/13/37 1.960 2.048 106/10/13/24 328 328 1.969 2.028 106/10/13/24 334 1.969 2.028 106/10/13/24 334 1.969 2.028 106/10/13/24 334 1.969 2.028 106/10/13/24 334 1.969 2.028 106/10/13/24 334 1.969	10/5/10 13:23	323	1 960	2 028	10/5/10 13:44	344	1 957	2 025	10/5/10 14:06	365	1 982	2 05
106/101324 323 1.866 2.034 106/101345 345 1.859 2.027 106/1014-07 366 1.979 2.047 106/101345 345 345 1.859 2.021 1 106/1014-07 366 1.979 2.047 106/101345 324 1.862 2.033 106/101345 345 1.859 2.021 1 106/1014-07 366 1.979 2.048 106/101325 325 1.864 2.032 106/101346 346 1.945 2.013 106/1014-07 367 1.986 2.056 106/101325 325 1.864 2.032 106/101346 346 1.945 2.013 106/1014-08 367 1.868 2.066 106/101325 325 1.862 2.033 106/101347 346 1.862 2.02 106/1014-08 367 1.868 2.066 106/101325 325 1.862 2.033 106/101347 346 1.862 2.02 106/1014-08 368 1.864 2.032 106/101326 326 1.869 2.037 106/101347 347 347 1.862 2.02 106/1014-08 368 1.864 2.052 106/101326 326 1.869 2.038 106/101344 347 347 1.862 2.02 106/1014-08 368 1.864 2.052 106/101326 326 1.860 2.038 106/101348 348 147 1.862 2.02 106/1014-08 368 1.864 2.052 106/101326 326 1.860 2.038 106/101348 348 147 1.862 2.02 106/1014-08 368 1.869 2.056 106/101326 326 1.860 2.038 106/101348 348 1.949 2.017 106/101326 326 1.860 2.033 106/101348 348 1.949 2.016 106/1014-09 369 1.891 2.048 106/101327 327 1.863 2.031 106/101348 348 1.948 2.016 106/1014-09 369 1.891 2.048 106/101328 328 1.895 2.027 106/101328 328 1.895 2.028 106/101333 333 1.896 2.038 106/101335 335 1.896 2.028 106/101338 333 1.896 2.038 106/101335 335 1.896 2.039 106/101338 333 1.896 2.038 106/101335 335 1.896 2.039 106/101338 333 1.896 2.039 106/101335 335 1.896 2.039 106/101338 333 1.896 2.034 106/101335 335 1.896 2.034 106/101338 333 1.896 2.034 106/101338 333 1.896 2.034 106/101338 333 1.896 2.034 106/101338 333 1.												
106/101324 324 1.862 2.03 105/101345 345 1.953 2.021 105/101407 367 1.978 2.045 105/101325 324 1.864 2.032 105/101346 346 1.945 2.015 105/101407 367 1.978 2.045 105/101325 325 1.864 2.032 105/101346 346 1.949 2.017 105/101408 368 1.983 2.056 105/101325 325 1.864 2.032 105/101346 346 1.949 2.017 105/101408 368 1.984 2.056 105/101325 325 1.864 2.032 105/101346 346 1.949 2.017 105/101408 368 1.984 2.056 105/101325 325 1.869 2.037 105/101346 346 1.949 2.017 105/101408 368 1.983 2.056 105/101325 325 1.869 2.037 105/101346 346 1.949 2.016 105/101408 368 1.983 2.056 105/101325 325 1.869 2.037 105/101347 347 1.948 2.016 105/101408 368 1.983 2.056 105/101327 326 1.989 2.037 105/101347 347 1.948 2.016 105/101408 368 1.983 2.056 105/101327 327 1.958 2.033 105/101348 348 1.949 2.017 105/101408 368 1.983 2.047 105/101327 327 1.953 2.031 105/101348 348 1.949 2.017 105/101408 369 1.979 2.047 105/101327 327 1.953 2.031 105/101348 348 1.949 2.017 105/101408 369 1.979 2.047 105/101327 327 1.953 2.031 105/101348 348 1.949 2.017 105/101408 369 1.979 2.047 105/101327 327 1.953 2.031 105/101348 348 1.952 2.022 105/101410 369 1.984 2.056 105/101328 328 1.953 2.031 105/101348 348 1.952 2.022 105/101410 369 1.984 2.056 105/101328 328 1.953 2.031 105/101348 348 1.952 2.022 105/101410 370 1.984 2.056 105/101328 320 1.959 2.033 105/1013348 348 1.952 2.022 105/101410 370 1.984 2.056 105/101328 320 1.959 2.033 105/1013348 348 1.952 2.022 105/101410 370 1.984 2.056 105/101328 320 1.959 2.033 105/1013348 348 1.952 2.022 105/101411 370 1.984 2.056 105/101328 320 1.959 2.033 105/1013348 348 1.952 2.022 105/101411 370 1.984 2.056 105/101328 320 1.959 2.033 105/1013348 348 1.952 2.022 105/101411 370 1.984 2.056 105/101328 320 1.959 2.033 105/1013348 348 1.952 2.022 105/101411 370 1.984 2.056 105/101328 320 1.959 2.035 105/1013348 348 1.952 2.022 105/101411 370 1.984 2.056 105/1013348 348 1.952 2.023 105/101411 370 1.984 2.056 105/1013348 348 1.952 2.023 105/101411 370 1.984 2.056 105/1013348 348 1.952 2.023 105/101411 370 1.984 2.056 105/1013348		323			10/3/10 13.43		1.930		10/3/10 14.06			
106/101324 324 1.862 2.03 105/101345 345 1.953 2.021 105/101407 367 1.978 2.045 105/101325 324 1.864 2.032 105/101346 346 1.945 2.015 105/101407 367 1.978 2.045 105/101325 325 1.864 2.032 105/101346 346 1.949 2.017 105/101408 368 1.983 2.056 105/101325 325 1.864 2.032 105/101346 346 1.949 2.017 105/101408 368 1.984 2.056 105/101325 325 1.864 2.032 105/101346 346 1.949 2.017 105/101408 368 1.984 2.056 105/101325 325 1.869 2.037 105/101346 346 1.949 2.017 105/101408 368 1.983 2.056 105/101325 325 1.869 2.037 105/101346 346 1.949 2.016 105/101408 368 1.983 2.056 105/101325 325 1.869 2.037 105/101347 347 1.948 2.016 105/101408 368 1.983 2.056 105/101327 326 1.989 2.037 105/101347 347 1.948 2.016 105/101408 368 1.983 2.056 105/101327 327 1.958 2.033 105/101348 348 1.949 2.017 105/101408 368 1.983 2.047 105/101327 327 1.953 2.031 105/101348 348 1.949 2.017 105/101408 369 1.979 2.047 105/101327 327 1.953 2.031 105/101348 348 1.949 2.017 105/101408 369 1.979 2.047 105/101327 327 1.953 2.031 105/101348 348 1.949 2.017 105/101408 369 1.979 2.047 105/101327 327 1.953 2.031 105/101348 348 1.952 2.022 105/101410 369 1.984 2.056 105/101328 328 1.953 2.031 105/101348 348 1.952 2.022 105/101410 369 1.984 2.056 105/101328 328 1.953 2.031 105/101348 348 1.952 2.022 105/101410 370 1.984 2.056 105/101328 320 1.959 2.033 105/1013348 348 1.952 2.022 105/101410 370 1.984 2.056 105/101328 320 1.959 2.033 105/1013348 348 1.952 2.022 105/101410 370 1.984 2.056 105/101328 320 1.959 2.033 105/1013348 348 1.952 2.022 105/101411 370 1.984 2.056 105/101328 320 1.959 2.033 105/1013348 348 1.952 2.022 105/101411 370 1.984 2.056 105/101328 320 1.959 2.033 105/1013348 348 1.952 2.022 105/101411 370 1.984 2.056 105/101328 320 1.959 2.033 105/1013348 348 1.952 2.022 105/101411 370 1.984 2.056 105/101328 320 1.959 2.035 105/1013348 348 1.952 2.022 105/101411 370 1.984 2.056 105/1013348 348 1.952 2.023 105/101411 370 1.984 2.056 105/1013348 348 1.952 2.023 105/101411 370 1.984 2.056 105/1013348 348 1.952 2.023 105/101411 370 1.984 2.056 105/1013348	10/5/10 13:24	323	1.966	2.034	10/5/10 13:45	345	1.959	2.027	10/5/10 14:06	366	1.979	2.047
106/10/13/25 324 1.964 2.032 10/5/10/13/6 346 1.945 2.015 10/5/10/14/07 367 1.979 2.047 10/5/10/13/25 324 1.964 2.032 10/5/10/13/6 346 1.945 2.015 10/5/10/14/07 367 1.980 2.048 10/5/10/13/25 325 1.964 2.032 10/5/10/13/6 346 1.945 2.015 10/5/10/14/07 367 1.980 2.048 10/5/10/13/25 325 1.964 2.032 10/5/10/13/6 346 1.945 2.015 10/5/10/14/07 367 1.980 2.048 10/5/10/13/25 325 1.964 2.032 10/5/10/13/25 326 1.969 2.037 10/5/10/13/25 326 1.969 2.037 10/5/10/13/25 326 1.969 2.037 10/5/10/13/25 326 1.969 2.037 10/5/10/13/25 326 1.969 2.037 10/5/10/13/25 326 1.969 2.037 10/5/10/13/25 326 1.969 2.037 10/5/10/13/25 326 1.969 2.037 10/5/10/13/25 326 1.969 2.037 10/5/10/13/25 326 1.969 2.037 10/5/10/13/25 326 1.969 2.037 10/5/10/13/25 326 1.969 2.033 10/5/10/13/25 326 1.969 2.033 10/5/10/13/25 326 1.969 2.033 10/5/10/13/25 326 1.969 2.033 10/5/10/13/25 326 1.969 2.033 10/5/10/13/25 326 1.969 2.033 10/5/10/13/25 326 1.969 2.033 10/5/10/13/25 326 1.969 2.033 10/5/10/13/25 327 1.965 2.033 10/5/10/13/25 326 1.969 2.033 10/5/10/13/25 326 1.969 2.033 10/5/10/13/25 326 1.969 2.033 10/5/10/13/25 326 1.969 2.033 10/5/10/13/25 326 1.969 2.033 10/5/10/13/25 326 1.969 2.033 10/5/10/13/25 326 1.969 2.033 10/5/10/13/25 326 328 1.969 2.033 10/5/10/13/25 326 328 1.969 2.033 10/5/10/13/25 326 1.969 2.033 10/5/10/13/25 326 328 1.969 2.033 10/5/10/13/25 326 1.969 2.033 10/5/10/13/25 326 328 1.969 2.033 10/5/10/13/25 326 1.969 2.033 10/5/10/13/25 326 1.969 2.033 10/5/10/13/25 326 328 1.969 2.033 10/5/10/13/25 326 328 1.969 2.033 10/5/10/13/25 326 1.969 2.033 10/5/10/13/25 326 328 1.969 2.033 10/5/10/13/25 326 1.969 2.033 10/5/10/13/25 326 326 1.969 2.033 10/5/10/13/25 326 1.969 2.033 10/5/10/13/25 326 326 1.969 2.033 10/5/10/13/25 326 1.969 2.033 10/5/10/13/25 326 326 1.969 2.033 10/5/10/13/25 326 1.969 2.033 10/5/10/13/25 326 326 1.969 2.033 10/5/10/13/25 326 1.969 2.033 10/5/10/13/25 326 326 1.969 2.033 10/5/10/13/25 326 1.969 2.033 10/5/10/13/25 326 326 1.969 2.033 10/5/10/13/25 326 326 1.969 2.033 10/5/10/13/25 326 326 1.969 2.033 10/5/10/13/			1 962	2.03		345				366	1 977	2 045
106/f01325 324 1,964 2,032 106/f01346 346 1,945 2,013 106/f014-07 367 1,980 2,048 106/f01325 325 1,964 2,032 106/f01346 346 1,949 2,017 106/f014-08 368 1,984 2,056 106/f01325 325 1,962 2,033 106/f01347 344 1,952 2,026 106/f014-08 368 1,984 2,056 1,06/f01325 326 1,969 2,037 106/f01347 347 347 1,952 2,015 1,06/f014-08 368 1,984 2,056 1,06/f01326 326 1,969 2,037 1,06/f01347 347 347 1,947 2,015 1,06/f014-09 369 1,952 2,047 1,06/f01327 326 1,965 2,033 1,06/f01348 348 347 1,952 2,017 1,06/f014-09 369 1,952 2,047 1,06/f01327 326 1,965 2,033 1,06/f01348 348 1,949 2,017 1,06/f014-09 369 1,952 2,047 1,06/f01327 327 1,963 2,031 1,06/f01348 348 1,949 2,017 1,06/f014-09 369 1,952 2,052 1,06/f01328 328 1,969 2,027 1,06/f01348 348 1,949 2,017 1,06/f014-09 369 1,952 2,052 1,06/f01328 328 1,969 2,027 1,06/f01348 348 1,949 2,017 1,06/f014-10 360 1,981 2,048 1,06/f01328 328 1,963 2,031 1,06/f01349 349 1,953 2,027 1,06/f01328 328 1,963 2,031 1,06/f01349 349 1,953 2,027 1,06/f01328 328 1,963 2,031 1,06/f01349 349 1,953 2,021 1,06/f014-11 370 1,980 2,048 1,06/f01328 328 1,963 2,031 1,06/f01349 349 1,953 2,021 1,06/f014-11 371 1,980 2,048 1,06/f01328 328 1,961 2,029 1,06/f01328 328 1,961 2,029 1,06/f01328 328 1,961 2,033 1,06/f01336 349 1,953 2,021 1,06/f014-11 371 1,980 2,048 1,06/f01328 328 1,961 2,033 1,06/f01336 349 1,953 2,021 1,06/f014-11 371 1,980 2,048 1,06/f01338 330 1,962 2,033 1,06/f01336 349 1,953 2,021 1,06/f014-11 377 1,980 2,048 1,06/f01338 330 1,962 2,033 1,06/f01336 349 1,953 2,021 1,06/f014-11 377 1,980 2,048 1,06/f01338 330 1,962 2,033 1,06/f01336 355 1,967 2,023 1,06												
1065/10 13:25 325							1.947					
1065/10 13:25 325	10/5/10 13:25	324	1.964	2.032	10/5/10 13:46	346	1.945	2.013	10/5/10 14:07	367	1.980	2.048
106/10 13:25 325 1.962 2.03 105/10 13:47 347 1.948 2.016 105/10 14:08 368 1.984 2.052 105/10 13:26 325 1.963 2.037 105/10 13:47 347 1.948 2.016 105/10 14:08 368 1.983 2.051 105/10 13:26 325 1.963 2.037 105/10 13:47 347 1.948 2.016 105/10 14:08 368 1.983 2.041 105/10 13:26 325 1.963 2.033 105/10 13:48 348 1.949 2.017 105/10 14:09 369 1.979 2.047 105/10 13:27 327 1.963 2.031 105/10 13:48 348 1.948 2.016 105/10 14:00 369 1.979 2.047 105/10 13:27 327 1.963 2.031 105/10 13:48 348 1.948 2.016 105/10 14:10 370 1.984 2.052 105/10 13:28 328 1.963 2.033 105/10 13:48 348 1.948 2.016 105/10 14:10 370 1.984 2.052 105/10 13:28 328 1.963 2.033 105/10 13:49 348 1.948 2.022 105/10 14:10 370 1.984 2.052 105/10 13:28 328 328 1.963 2.033 105/10 13:49 348 1.963 2.022 105/10 14:10 370 1.984 2.052 105/10 13:28 328 328 1.963 2.033 105/10 13:50 350 1.964 2.021 105/10 14:11 371 1.980 2.048 105/10 13:29 328 1.963 2.023 105/10 13:50 350 1.964 2.014 105/10 14:11 371 1.980 2.048 105/10 13:29 329 1.963 2.028 105/10 13:50 350 1.964 2.014 105/10 14:11 371 1.983 2.048 105/10 13:20 329 1.963 2.028 105/10 13:50 350 1.964 2.014 105/10 14:11 371 1.983 2.049 105/10 13:20 329 1.963 2.028 105/10 13:50 350 1.964 2.014 105/10 14:11 371 1.983 2.049 105/10 13:30 330 1.962 2.03 105/10 13:50 350 1.965 2.023 105/10 14:11 371 1.981 2.049 105/10 13:30 330 1.962 2.03 105/10 13:50 350 1.965 2.023 105/10 14:11 373 1.981 2.049 105/10 13:30 330 1.965 2.033 105/10 13:50 350 1.965 2.023 105/10 14:11 373 1.981 2.049 105/10 13:30 330 1.965 2.033 105/10												
106/10 13:26 325 1,961 2,029 105/10 13:47 347 1,948 2,016 106/10 14:08 368 1,983 2,051 106/10 13:26 326 1,969 2,027 105/10 13:47 347 1,947 2,015 105/10 14:09 368 1,981 2,049 106/10 13:28 328 1,960 2,028 106/10 13:48 348 1,962 2,027 106/10 14:09 368 1,981 2,059 106/10 13:28 327 1,963 2,031 106/10 13:48 348 1,962 2,02 106/10 14:10 370 1,982 2,059 106/10 13:28 327 1,963 2,031 106/10 13:49 348 1,962 2,02 106/10 14:10 370 1,982 2,051 106/10 13:28 328 1,969 2,027 106/10 13:49 349 1,959 2,027 106/10 14:10 370 1,982 2,051 106/10 13:28 328 1,969 2,027 106/10 13:49 349 1,959 2,027 106/10 14:10 370 1,982 2,051 106/10 13:28 328 1,969 2,027 106/10 13:49 349 1,959 2,027 106/10 14:11 370 1,982 2,044 106/10 13:28 328 1,969 2,027 106/10 14:10 370 1,982 2,044 106/10 13:29 328 1,963 2,031 106/10 13:50 340 1,983 2,021 106/10 14:11 370 1,982 2,044 106/10 13:29 329 1,963 2,021 106/10 13:50 340 1,983 2,021 106/10 14:11 370 1,982 2,044 106/10 13:29 329 1,963 2,026 106/10 13:50 340 1,983 2,021 106/10 14:11 371 1,980 2,048 106/10 13:29 329 1,963 2,031 106/10 13:50 350 1,961 2,019 106/10 14:12 371 1,981 2,049 106/10 13:30 330 1,962 2,033 106/10 13:51 351 1,951 2,019 106/10 14:12 372 1,985 2,053 106/10 13:51 351 1,951 2,019 106/10 14:12 372 1,985 2,053 106/10 13:31 331 1,962 2,033 106/10 13:51 351 1,953 2,029 106/10 14:12 372 1,985 2,053 106/10 13:51 351 1,953 2,029 106/10 14:13 373 1,986 2,053 106/10 13:51 351 1,951 2,019 106/10 14:13 373 1,986 2,053 106/10 13:31 331 1,967 2,035 106/10 13:52 352 1,968 2,026 106/10 14:14 3												
106/10 13:26 326 1.969 2.037											1.984	
106/10 13:26 326 1.969 2.037	10/5/10 13:26	325	1.961	2.029	10/5/10 13:47	347	1.948	2.016	10/5/10 14:08	368	1.983	2.051
106/10 13:26 326 1.960 2.028 10/5/10 13:48 347 1.952 2.02 10/5/10 14:09 369 1.982 2.05												
1005/10 13:27 326 1.965 2.033 1.05/10 13:48 348 1.949 2.017 1005/10 14:09 369 1.979 2.047 1005/10 13:27 327 1.963 2.031 1.05/10 13:49 348 1.962 2.02 1.005/10 14:10 370 1.984 2.052 1.05/10 13:28 327 1.963 2.033 1.05/10 13:49 348 1.962 2.02 1.005/10 14:10 370 1.984 2.052 1.05/10 13:28 328 1.965 2.033 1.05/10 13:49 349 1.959 2.027 1.005/10 14:10 370 1.982 2.05 1.05/10 13:28 328 1.965 2.033 1.05/10 13:49 349 1.959 2.027 1.005/10 14:11 370 1.982 2.05 1.005/10 13:28 328 1.965 2.033 1.05/10 13:49 349 1.959 2.027 1.005/10 14:11 371 1.980 2.048 1.05/10 13:29 329 1.961 2.029 1.05/10 13:50 350 1.968 2.014 1.005/10 14:11 371 1.980 2.048 1.05/10 13:29 329 1.962 2.026 1.05/10 13:50 350 1.969 2.027 1.005/10 14:12 371 1.981 2.049 1.05/10 13:29 329 1.963 2.031 1.05/10 13:51 350 1.961 2.019 1.005/10 14:12 372 1.985 2.049 1.05/10 13:30 330 1.965 2.033 1.05/10 13:51 351 1.951 2.019 1.005/10 14:12 372 1.981 2.049 1.05/10 13:30 330 1.965 2.033 1.05/10 13:51 351 1.951 2.019 1.005/10 14:12 372 1.981 2.049 1.05/10 13:30 330 1.965 2.033 1.05/10 13:51 351 1.953 2.021 1.005/10 14:13 373 1.981 2.049 1.05/10 13:31 333 1.962 2.03 1.05/10 13:51 351 1.953 2.021 1.005/10 14:13 373 1.991 2.059 1.05/10 13:31 333 1.965 2.033 1.05/10 13:52 351 1.955 2.023 1.005/10 14:13 373 1.991 2.059 1.05/10 13:31 333 1.965 2.033 1.05/10 13:52 351 1.955 2.023 1.005/10 14:13 373 1.991 2.059 1.05/10 13:31 333 1.965 2.033 1.05/10 13:53 353 1.958 2.026 1.05/10 14:13 373 1.991 2.059 1.05/10 13:31 333 1.965 2.033 1.05/10 13:54 354 1.956 2.023 1.05/10 13:54 354 1.956 2.023 1.05/10 14:13 374 1.982 2.05 1.05/10 13:32 332 3.965 2.037 1.05/10 13:55 3.555					10/5/10 15.47		1.947		10/5/10 14.09			
105/10 13:27 327 1.963 2.031 105/10 13:48 348 1.948 2.016 105/10 14:10 370 1.984 2.052 105/10 13:23 327 1.965 2.033 105/10 13:49 349 1.959 2.027 105/10 14:10 370 1.984 2.052 105/10 13:23 328 1.965 2.033 105/10 13:49 349 1.959 2.027 105/10 14:10 370 1.982 2.053 105/10 13:23 328 1.961 2.029 105/10 13:50 350 1.994 2.014 105/10 13:41 371 1.983 2.041 105/10 13:29 329 1.963 2.031 105/10 13:50 350 1.994 2.014 105/10 14:11 371 1.981 2.049 105/10 13:29 329 1.958 2.026 105/10 13:51 350 1.951 2.019 105/10 14:12 371 1.981 2.049 105/10 13:30 329 1.963 2.031 105/10 13:51 350 1.951 2.019 105/10 14:12 372 1.985 2.031 105/10 13:30 329 1.963 2.031 105/10 13:52 351 1.953 2.021 105/10 14:13 372 1.981 2.049 105/10 13:30 330 1.962 2.03 105/10 13:52 351 1.953 2.021 105/10 14:13 372 1.981 2.049 105/10 13:31 330 1.962 2.03 105/10 13:52 351 1.953 2.021 105/10 14:13 372 1.981 2.049 105/10 13:31 331 1.967 2.039 105/10 13:52 352 1.955 2.023 105/10 14:13 373 1.981 2.049 105/10 13:31 331 1.967 2.039 105/10 13:52 352 1.955 2.023 105/10 14:13 373 1.981 2.049 105/10 13:33 331 1.963 2.031 105/10 13:52 352 1.955 2.023 105/10 14:13 373 1.981 2.049 105/10 13:33 331 1.963 2.031 105/10 13:52 352 1.955 2.023 105/10 14:14 374 1.982 2.05 105/10 13:33 331 1.967 2.035 105/10 13:53 353 1.956 2.026 105/10 14:14 374 1.982 2.05 105/10 13:33 331 1.963 2.031 105/10 13:53 353 1.958 2.026 105/10 14:14 374 1.982 2.05 105/10 13:34 333 1.968 2.035 105/10 13:54 354 1.957 2.025 105/10 14:16 376 1.988 2.056 105/10 14:16 376 1.988 2.056 105/10 13:34 333 1.968 2.035 105/10 13:55 354 1.957 2.025 105/10 14:16 376 1.988 2.056 105/10 14:16	10/5/10 13:26	326	1.960	2.028	10/5/10 13:48	347	1.952	2.02	10/5/10 14:09	369	1.982	2.05
105/10 13:27 327 1.963 2.031 105/10 13:48 348 1.948 2.016 105/10 14:10 370 1.984 2.052 105/10 13:23 327 1.965 2.033 105/10 13:49 349 1.959 2.027 105/10 14:10 370 1.984 2.052 105/10 13:23 328 1.965 2.033 105/10 13:49 349 1.959 2.027 105/10 14:10 370 1.982 2.053 105/10 13:23 328 1.961 2.029 105/10 13:50 350 1.994 2.014 105/10 13:41 371 1.983 2.041 105/10 13:29 329 1.963 2.031 105/10 13:50 350 1.994 2.014 105/10 14:11 371 1.981 2.049 105/10 13:29 329 1.958 2.026 105/10 13:51 350 1.951 2.019 105/10 14:12 371 1.981 2.049 105/10 13:30 329 1.963 2.031 105/10 13:51 350 1.951 2.019 105/10 14:12 372 1.985 2.031 105/10 13:30 329 1.963 2.031 105/10 13:52 351 1.953 2.021 105/10 14:13 372 1.981 2.049 105/10 13:30 330 1.962 2.03 105/10 13:52 351 1.953 2.021 105/10 14:13 372 1.981 2.049 105/10 13:31 330 1.962 2.03 105/10 13:52 351 1.953 2.021 105/10 14:13 372 1.981 2.049 105/10 13:31 331 1.967 2.039 105/10 13:52 352 1.955 2.023 105/10 14:13 373 1.981 2.049 105/10 13:31 331 1.967 2.039 105/10 13:52 352 1.955 2.023 105/10 14:13 373 1.981 2.049 105/10 13:33 331 1.963 2.031 105/10 13:52 352 1.955 2.023 105/10 14:13 373 1.981 2.049 105/10 13:33 331 1.963 2.031 105/10 13:52 352 1.955 2.023 105/10 14:14 374 1.982 2.05 105/10 13:33 331 1.967 2.035 105/10 13:53 353 1.956 2.026 105/10 14:14 374 1.982 2.05 105/10 13:33 331 1.963 2.031 105/10 13:53 353 1.958 2.026 105/10 14:14 374 1.982 2.05 105/10 13:34 333 1.968 2.035 105/10 13:54 354 1.957 2.025 105/10 14:16 376 1.988 2.056 105/10 14:16 376 1.988 2.056 105/10 13:34 333 1.968 2.035 105/10 13:55 354 1.957 2.025 105/10 14:16 376 1.988 2.056 105/10 14:16	10/5/10 13:27	326	1 965	2 033	10/5/10 13:48	348	1 949	2 017	10/5/10 14:09	369	1 979	2 047
105/10 13:28 327 1.965 2.033 105/10 13:49 348 1.952 2.022 105/10 14:10 370 1.984 2.052 105/10 13:28 328 1.965 2.033 105/10 13:49 349 1.953 2.021 105/10 14:11 370 1.980 2.048 105/10 13:28 328 1.963 2.031 105/10 13:49 349 1.953 2.021 105/10 14:11 371 1.980 2.048 105/10 13:28 328 1.963 2.031 105/10 13:39 349 1.953 2.021 105/10 14:11 371 1.980 2.048 105/10 13:29 329 1.963 2.031 105/10 13:50 350 1.961 2.047 105/10 14:11 371 1.981 2.048 105/10 13:29 329 1.963 2.026 105/10 13:50 350 1.961 2.077 105/10 14:12 372 1.981 2.053 105/10 13:30 330 1.962 2.03 105/10 13:51 351 1.951 2.019 105/10 14:12 372 1.981 2.049 105/10 13:30 330 1.962 2.03 105/10 13:52 351 1.955 2.023 105/10 14:13 373 1.991 2.049 105/10 13:31 330 1.961 2.039 105/10 13:52 351 1.955 2.023 105/10 14:13 373 1.991 2.049 105/10 13:31 330 1.961 2.039 105/10 13:52 351 1.955 2.023 105/10 14:13 373 1.991 2.059 105/10 13:31 330 1.962 2.033 105/10 13:52 351 1.955 2.023 105/10 14:13 373 1.991 2.059 105/10 13:32 331 1.967 2.035 105/10 13:52 352 1.955 2.023 105/10 14:13 373 1.991 2.059 105/10 13:32 331 1.967 2.035 105/10 13:52 352 1.955 2.023 105/10 14:13 373 1.998 2.056 105/10 13:33 331 1.967 2.035 105/10 13:52 352 1.955 2.023 105/10 14:13 373 1.998 2.056 105/10 13:33 331 1.967 2.035 105/10 13:53 353 1.958 2.027 105/10 14:14 374 1.982 2.05 105/10 13:33 331 1.967 2.035 105/10 13:53 353 1.958 2.026 105/10 14:14 374 1.982 2.05 105/10 13:33 333 1.966 2.034 105/10 13:54 354 1.957 2.025 105/10 14:16 375 1.994 2.052 105/10 13:33 333 1.966 2.034 105/10 13:55 355 1.959 2.027 105/10 14:16 375 1.994 2.052 105/10 13:34 333 1.966 2.034 105/10 13:55											4.004	
1015/10 13:28 328 1.965 2.033 1015/10 13:49 349 1.963 2.027 1015/10 14:11 370 1.982 2.05 1015/10 13:28 328 1.963 2.021 1015/10 13:29 328 1.963 2.029 1015/10 13:20 349 1.963 2.021 1015/10 14:11 371 1.983 2.048 1015/10 13:29 328 1.961 2.029 1015/10 13:50 350 1.966 2.014 1015/10 14:11 371 1.983 2.048 1015/10 13:29 328 1.961 2.029 1015/10 13:50 350 1.966 2.014 1015/10 14:11 371 1.983 2.048 1015/10 13:20 328 1.961 2.029 1015/10 13:50 350 1.966 2.014 1015/10 14:11 371 1.983 2.041 1015/10 13:20 328 1.961 2.049 1015/10 13:50 350 1.966 2.017 1015/10 14:11 371 1.983 2.049 1015/10 13:20 328 1.963 2.033 1.967 1015/10 13:50 350 1.969 2.017 1015/10 14:12 371 1.981 2.049 1015/10 13:20 330 1.962 2.03 1015/10 13:51 351 1.953 2.021 1015/10 14:12 372 1.981 2.049 1015/10 13:30 330 1.962 2.033 1015/10 13:51 351 1.955 2.023 1015/10 14:13 373 1.991 2.059 1015/10 13:31 331 1.967 2.035 1015/10 13:52 352 1.955 2.023 1015/10 14:13 373 1.991 2.059 1015/10 13:31 331 1.962 2.03 1015/10 13:53 352 1.959 2.027 1015/10 14:13 373 1.998 2.056 1015/10 14:14 374 1.982 2.05 1015/10 13:33 331 1.964 2.031 1015/10 13:53 353 1.958 2.026 1015/10 14:14 374 1.982 2.05 1015/10 13:33 331 1.963 2.031 1015/10 13:53 353 1.958 2.026 1015/10 14:14 374 1.982 2.05 1015/10 13:33 333 1.966 2.034 1015/10 13:53 353 1.958 2.026 1015/10 14:14 374 1.982 2.05 1015/10 13:33 333 1.966 2.034 1015/10 13:54 354 1.957 2.025 1015/10 14:15 375 1.984 2.05 1015/10 13:34 334 1.967 2.035 1015/10 13:54 354 1.957 2.026 1015/10 14:15 375 1.989 2.057 1015/10 14:15 376 1.989 2.057 1015												
1015/10 13-28 328 1,965 2,033 1015/10 13-49 349 1,953 2,027 1015/10 14-11 370 1,980 2,048 1015/10 13-29 328 1,961 2,029 1015/10 13-29 328 1,961 2,029 1015/10 13-29 328 1,961 2,029 1015/10 13-29 328 1,961 2,029 1015/10 13-29 328 1,961 2,029 1015/10 13-29 328 1,961 2,029 1015/10 13-29 328 1,961 2,029 1015/10 13-29 328 1,961 2,029 1015/10 13-29 328 1,961 2,029 1015/10 13-29 328 1,972 2,044 1015/10 13-29 328 1,972 2,044 1015/10 13-29 328 1,972 2,044 1015/10 13-29 328 1,973 2,044 1015	10/5/10 13:27	327	1.963	2.031	10/5/10 13:49	348	1.952	2.02	10/5/10 14:10	370	1.984	2.052
105/10 13:28 328 19:59 2.027 10:5/10 13:49 349 19:53 2.021 10:5/10 14:11 370 19:80 2.048 10:5/10 13:29 328 19:61 2.029 10:5/10 13:50 350 19:53 2.021 10:5/10 14:11 371 19:80 2.048 10:5/10 13:29 329 19:58 2.024 10:5/10 13:50 350 19:59 2.014 10:5/10 14:11 371 19:80 2.049 10:5/10 13:29 329 19:58 2.026 10:5/10 13:51 350 19:59 2.017 10:5/10 14:12 371 19:81 2.049 10:5/10 13:30 329 19:58 2.026 10:5/10 13:51 350 19:51 2.019 10:5/10 14:12 372 19:51 2.049 10:5/10 13:30 330 19:62 2.031 10:5/10 13:51 351 19:51 2.019 10:5/10 14:12 372 19:51 2.049 10:5/10 14:13 373 19:81 2.049 10:5/10 14:13 373 19:81 2.049 10:5/10 14:13 373 19:81 2.049 10:5/10 14:13 373 19:81 2.049 10:5/10 14:13 373 19:81 2.049 10:5/10 14:13 373 19:81 2.049 10:5/10 14:13 373 19:81 2.049 10:5/10 14:13 373 19:81 2.049 10:5/10 13:31 331 19:57 2.035 10:5/10 13:52 352 19:55 2.023 10:5/10 14:13 373 19:81 2.049 10:5/10 13:31 331 19:57 2.035 10:5/10 13:52 352 19:59 2.027 10:5/10 14:14 373 19:98 2.065 10:5/10 13:31 331 19:67 2.035 10:5/10 13:53 352 19:59 2.027 10:5/10 14:14 374 19:82 2.05 10:5/10 13:32 332 19:69 2.035 10:5/10 13:53 353 19:58 2.026 10:5/10 14:14 374 19:82 2.05 10:5/10 13:32 332 19:69 2.035 10:5/10 13:53 353 19:58 2.026 10:5/10 14:14 374 19:82 2.05 10:5/10 13:33 333 19:78 2.046 10:5/10 13:54 354 19:67 2.025 10:5/10 14:15 375 19:90 2.058 10:5/10 14:15 375 19:90 2.058 10:5/10 14:15 375 19:90 2.058 10:5/10 14:15 375 19:90 2.058 10:5/10 14:15 375 19:90 2.058 10:5/10 14:15 375 19:90 2.058 10:5/10 14:15 375 19:90 2.058 10:5/10 14:15 375 19:90 2.058 10:5/10	10/5/10 13:28	327		2 033		349	1 959	2 027		370	1 982	2.05
1005/10 13.28 32.88 1.963 2.031 1005/10 13.50 34.9 1.953 2.021 1005/10 14.11 371 1.980 2.048 1005/10 13.29 32.9 1.972 2.044 1005/10 13.50 35.0 1.946 2.014 1005/10 14.11 371 1.983 2.041 1005/10 13.29 32.9 1.972 2.044 1005/10 13.51 35.0 1.959 2.027 1005/10 14.12 371 1.981 2.049 1005/10 13.29 32.9 1.972 2.048 1.05710 13.51 35.0 1.951 2.019 1005/10 14.12 371 1.981 2.049 1005/10 13.53 33.0 1.953 2.053 1.05710 13.51 35.1 1.951 2.019 1005/10 14.12 372 1.981 2.059 1.05710 13.51 35.1 1.951 2.019 1005/10 14.12 372 1.981 2.059 1.05710 13.31 33.0 1.971 2.039 1.05710 13.52 35.1 1.955 2.023 1.05710 14.13 373 1.981 2.056 1.05710 13.31 33.1 1.967 2.035 1.05710 13.52 35.2 1.955 2.023 1.05710 14.13 373 1.988 2.056 1.05710 13.32 331 1.962 2.03 1.05710 13.53 35.1 1.955 2.026 1.05710 14.14 374 1.982 2.05 1.05710 13.32 331 1.962 2.03 1.05710 13.53 35.3 1.958 2.026 1.05710 14.14 374 1.982 2.05 1.05710 13.32 332 1.967 2.035 1.05710 13.53 35.3 1.958 2.026 1.05710 14.14 374 1.982 2.05 1.05710 13.32 332 1.964 2.032 1.05710 13.53 35.3 1.958 2.026 1.05710 14.14 374 1.982 2.05 1.05710 13.32 332 1.964 2.032 1.05710 13.54 35.3 1.958 2.026 1.05710 14.15 375 1.980 2.058 1.05710 13.33 33.3 1.964 2.032 1.05710 13.54 35.3 1.957 2.025 1.05710 14.15 375 1.980 2.058 1.05710 13.34 33.34 1.964 2.032 1.05710 13.55 35.5 1.957 2.025 1.05710 14.15 375 1.980 2.058 1.05710 13.34 33.34 1.964 2.032 1.05710 13.55 35.5 1.960 2.028 1.05710 14.17 3.77 1.986 2.057 1.05710 13.34 33.34 1.964 2.032 1.05710 13.55 35.5 1.960 2.028 1.05710 14.17 3.77 1.980 2.057 1.05710 13.33												
1015/10 13:29 328 1.961 2.029 105/510 13:50 350 1.946 2.014 1015/10 14:11 371 1.993 2.061 1015/10 13:29 329 1.958 2.026 105/510 3:50 3:50 1.959 2.027 1015/10 14:12 372 1.981 2.049 1015/10 13:30 329 1.958 2.031 105/510 3:51 351 1.951 2.019 105/510 14:12 372 1.981 2.049 1015/10 13:30 330 1.962 2.031 105/510 3:55 3:51 1.951 2.019 1015/10 14:12 372 1.981 2.049 1015/10 13:30 330 1.962 2.033 1.967 2.035 1.967 2.035 1.967 2.023 1.967 1.067 1015/10 13:30 330 1.962 2.033 1.967 2.035 1.967 2.035 1.967 2.035 1.967 2.035 1.967 2.035 1.967 2.035 1.967 2.035 1.967 2.035 1.967 2.035 1.967 2.035 1.967 2.035 1.967 2.035 1.967 2.035 1.967 2.035 1.967 2.035 1.967 2.035 1.967 2.035 1.05710 3:35 3:52 1.958 2.026 1.05710 4:14 3.73 4.986 2.064 1015/10 13:32 332 1.963 2.031 1.05710 3:53 3:53 1.958 2.026 1.05710 4:14 3.74 1.982 2.05 1015/10 13:32 332 1.969 2.037 1.05710 3:53 3:53 1.958 2.026 1.05710 4:14 3.74 1.982 2.05 1015/10 13:33 333 1.968 2.032 1.05710 3:54 3:54 1.961 2.029 1.05710 4:15 3.75 1.984 2.052 1015/10 13:33 333 1.968 2.034 1.05710 3:55 3:55 1.967 2.025 1.05710 4:16 3.76 1.989 2.057 1015/10 13:33 333 1.968 2.034 1.05710 3:55 3:55 1.960 2.029 1.05710 4:16 3.76 1.989 2.057 1015/10 13:34 334 1.967 2.035 1.05710 3:55 3:55 1.960 2.029 1.05710 4:16 3.76 1.989 2.057 1015/10 13:34 334 1.967 2.035 1.05710 3:55 3:55 1.960 2.029 1.05710 4:16 3.76 1.989 2.057 1015/10 13:34 334 1.967 2.035 1.05710 3:55 3:55 1.960 2.029 1.05710 4:16 3.76 1.989 2.057 1015/10 13:34 334 1.967 2.035 1.05710 3:55 3:55 1.960 2.029 1.0		328				349	1.953					
1015/10 13:29 328 1.961 2.029 105/510 13:50 350 1.946 2.014 1015/10 14:11 371 1.993 2.061 1015/10 13:29 329 1.958 2.026 105/510 3:50 3:50 1.959 2.027 1015/10 14:12 372 1.981 2.049 1015/10 13:30 329 1.958 2.031 105/510 3:51 351 1.951 2.019 105/510 14:12 372 1.981 2.049 1015/10 13:30 330 1.962 2.031 105/510 3:55 3:51 1.951 2.019 1015/10 14:12 372 1.981 2.049 1015/10 13:30 330 1.962 2.033 1.967 2.035 1.967 2.035 1.967 2.023 1.967 1.067 1015/10 13:30 330 1.962 2.033 1.967 2.035 1.967 2.035 1.967 2.035 1.967 2.035 1.967 2.035 1.967 2.035 1.967 2.035 1.967 2.035 1.967 2.035 1.967 2.035 1.967 2.035 1.967 2.035 1.967 2.035 1.967 2.035 1.967 2.035 1.967 2.035 1.967 2.035 1.05710 3:35 3:52 1.958 2.026 1.05710 4:14 3.73 4.986 2.064 1015/10 13:32 332 1.963 2.031 1.05710 3:53 3:53 1.958 2.026 1.05710 4:14 3.74 1.982 2.05 1015/10 13:32 332 1.969 2.037 1.05710 3:53 3:53 1.958 2.026 1.05710 4:14 3.74 1.982 2.05 1015/10 13:33 333 1.968 2.032 1.05710 3:54 3:54 1.961 2.029 1.05710 4:15 3.75 1.984 2.052 1015/10 13:33 333 1.968 2.034 1.05710 3:55 3:55 1.967 2.025 1.05710 4:16 3.76 1.989 2.057 1015/10 13:33 333 1.968 2.034 1.05710 3:55 3:55 1.960 2.029 1.05710 4:16 3.76 1.989 2.057 1015/10 13:34 334 1.967 2.035 1.05710 3:55 3:55 1.960 2.029 1.05710 4:16 3.76 1.989 2.057 1015/10 13:34 334 1.967 2.035 1.05710 3:55 3:55 1.960 2.029 1.05710 4:16 3.76 1.989 2.057 1015/10 13:34 334 1.967 2.035 1.05710 3:55 3:55 1.960 2.029 1.05710 4:16 3.76 1.989 2.057 1015/10 13:34 334 1.967 2.035 1.05710 3:55 3:55 1.960 2.029 1.0	10/5/10 13:28	328	1.963	2.031	10/5/10 13:50	349	1.953	2.021	10/5/10 14:11	371	1.980	2.048
1015/10 13:29 329 1.972 2.04 105/10 13:50 350 1.959 2.027 105/10 14:12 371 1.981 2.049 105/10 13:30 329 1.963 2.031 105/10 13:51 350 1.951 2.019 105/10 14:12 372 1.981 2.049 105/10 13:30 330 1.962 2.03 105/10 13:51 351 1.953 2.021 105/10 14:13 372 1.981 2.049 105/10 13:33 330 1.965 2.033 105/10 13:52 352 1.955 2.023 105/10 14:13 373 1.991 2.059 105/10 13:31 331 1.967 2.035 105/10 13:52 352 1.955 2.023 105/10 14:13 373 1.998 2.056 105/10 13:31 331 1.967 2.035 105/10 13:53 352 1.955 2.023 105/10 14:14 373 1.998 2.056 105/10 13:31 331 1.962 2.03 105/10 13:53 352 1.955 2.023 105/10 14:14 374 1.982 2.056 105/10 13:33 331 1.962 2.03 105/10 13:53 353 1.958 2.026 105/10 14:14 374 1.982 2.05 105/10 13:32 332 1.953 2.031 105/10 13:53 353 1.958 2.026 105/10 14:14 374 1.982 2.05 105/10 13:32 332 1.953 2.031 105/10 13:53 353 1.958 2.026 105/10 14:14 374 1.982 2.05 105/10 13:32 332 1.953 2.031 105/10 13:53 353 1.958 2.026 105/10 14:14 374 1.982 2.05 105/10 13:33 333 1.958 2.036 105/10 13:54 354 1.957 2.025 105/10 14:15 374 1.982 2.05 105/10 13:33 333 1.964 2.032 1.05/10 13:54 354 1.957 2.025 1.05/10 14:16 375 1.989 2.057 105/10 13:33 333 1.966 2.034 1.05/10 13:55 355 1.959 2.027 1.05/10 14:16 376 1.989 2.057 105/10 13:33 333 1.966 2.034 1.05/10 13:55 355 1.959 2.027 1.05/10 14:16 376 1.989 2.057 105/10 13:34 334 1.967 2.035 1.05/10 13:55 355 1.959 2.027 1.05/10 14:16 376 1.989 2.057 105/10 13:34 334 1.967 2.035 1.05/10 13:55 355 1.959 2.027 1.05/10 14:16 376 1.989 2.057 105/10 13:33 333 1.964 2.032 1.05/10 13:5					10/5/10 13:50		1 0/16		10/5/10 1/11			
1016/10 13:29 329 1.985 2.026 1016/10 13:51 350 1.981 2.019 1016/10 14:12 372 1.985 2.049 1016/10 13:30 330 1.986 2.033 1.961 2.049 1016/10 13:30 330 1.986 2.033 1.961 2.049 1016/10 13:30 330 1.986 2.033 1.961 2.049 1016/10 13:31 331 1.981 2.049 1016/10 13:31 331 1.987 2.039 1016/10 13:52 351 1.955 2.023 1016/10 14:13 373 1.981 2.049 1016/10 13:31 331 1.987 2.039 1016/10 13:52 352 1.955 2.023 1016/10 14:13 373 1.988 2.056 1016/10 13:31 331 1.987 2.035 1016/10 13:52 352 1.955 2.027 1016/10 14:14 373 1.988 2.056 1016/10 13:31 331 1.982 2.03 1016/10 13:53 353 1.958 2.026 1016/10 14:14 374 1.982 2.05 1016/10 13:32 332 1.987 2.035 1016/10 13:53 353 1.958 2.026 1016/10 14:14 374 1.982 2.05 1016/10 13:32 332 1.987 2.035 1016/10 13:53 353 1.958 2.026 1016/10 14:15 374 1.982 2.05 1016/10 13:32 332 1.984 2.032 1016/10 13:34 334 1.987 2.035 1016/10 13:54 354 1.957 2.025 1016/10 14:15 375 1.984 2.052 1016/10 13:33 333 1.986 2.034 1016/10 13:54 354 1.957 2.025 1016/10 14:16 375 1.980 2.058 1016/10 13:34 334 1.987 2.035 1016/10 13:54 354 1.957 2.025 1016/10 14:16 375 1.980 2.058 1016/10 13:34 334 1.987 2.035 1016/10 13:55 355 1.980 2.027 1016/10 14:16 375 1.980 2.057 1016/10 13:34 334 1.987 2.035 1016/10 13:55 355 1.980 2.027 1016/10 14:16 375 1.980 2.057 1016/10 13:34 334 1.987 2.035 1016/10 13:55 355 1.980 2.027 1016/10 14:16 376 1.980 2.057 1016/10 13:34 334 1.987 2.035 1016/10 13:55 355 1.980 2.027 1016/10 14:16 376 1.980 2.057 1016/10 13:34 334 1.987 2.035 1016/10 13:55 355 1.980 2.027 1016/10 14:17 377 1.995 2.083												
10/5/10 13:30 329							1.959					
10/5/10 13:30 329	10/5/10 13:29	329	1.958	2.026	10/5/10 13:51	350	1.951	2.019	10/5/10 14:12	372	1.985	2.053
10 5/10 13:30 330 1,962 2,03 10 5/10 13:51 351 1,953 2,021 10 5/10 14:13 373 1,981 2,049												
1015/10 13:30 330 1.965 2.033 1.957 2.035 1.955 2.023 1.957 2.023 1.05/10 14:13 373 1.998 2.058 1.05/10 13:52 352 1.955 2.023 1.05/10 14:13 373 1.998 2.058 1.05/10 13:53 353 1.959 2.027 1.05/10 14:14 373 1.996 2.064 1.05/10 13:31 331 1.962 2.031 1.05/10 13:53 352 1.958 2.026 1.05/10 14:14 374 1.982 2.05 1.05/10 13:32 332 1.963 2.031 1.05/10 13:53 353 1.958 2.026 1.05/10 14:14 374 1.982 2.05 1.05/10 13:32 332 1.967 2.035 1.05/10 13:53 353 1.958 2.026 1.05/10 14:15 374 1.982 2.05 1.05/10 13:32 332 1.964 2.032 1.05/10 13:54 353 1.957 2.025 1.05/10 14:15 375 1.984 2.052 1.05/10 13:33 333 1.964 2.032 1.05/10 13:54 354 1.957 2.025 1.05/10 14:15 375 1.989 2.057 1.05/10 13:33 333 1.964 2.032 1.05/10 13:54 354 1.957 2.025 1.05/10 14:16 375 1.989 2.057 1.05/10 13:34 333 1.964 2.032 1.05/10 13:55 355 1.950 2.028 1.05/10 14:16 376 1.988 2.056 1.05/10 13:34 334 1.967 2.035 1.05/10 13:55 355 1.950 2.028 1.05/10 14:16 376 1.988 2.057 1.05/10 13:34 334 1.963 2.031 1.05/10 13:55 355 1.950 2.028 1.05/10 14:17 377 2.000 2.068 1.05/10 13:35 335 1.967 2.035 1.05/10 13:56 355 1.960 2.028 1.05/10 14:17 377 2.000 2.068 1.05/10 13:35 335 1.967 2.035 1.05/10 13:56 356 1.960 2.028 1.05/10 14:17 377 1.986 2.054 1.05/10 13:35 335 1.967 2.035 1.05/10 13:56 356 1.960 2.028 1.05/10 14:18 377 1.986 2.054 1.05/10 13:36 335 1.967 2.035 1.05/10 13:56 356 1.960 2.028 1.05/10 14:18 377 1.986 2.054 1.05/10 13:36 335 1.967 2.035 1.05/10 13:55 356 1.960 2.028 1.05/10 14:18 378 1.996 2.054 1.05/10 13:36 335 1.967 2.035 1.05/10 13:55 356 1.960 2.028												
10/5/10 13:31 330 1.971 2.039 10/5/10 13:52 352 1.955 2.023 10/5/10 14:13 373 1.988 2.056 10/5/10 13:31 331 1.962 2.03 10/5/10 13:53 352 1.959 2.027 10/5/10 14:14 374 1.982 2.05 10/5/10 13:32 331 1.963 2.031 10/5/10 13:53 353 1.958 2.026 10/5/10 14:14 374 1.982 2.05 10/5/10 13:32 332 1.967 2.035 10/5/10 13:53 353 1.958 2.026 10/5/10 14:15 374 1.982 2.05 10/5/10 13:32 332 1.969 2.037 10/5/10 13:53 353 1.958 2.026 10/5/10 14:15 374 1.982 2.05 10/5/10 13:33 332 1.968 2.032 1.969 2.037 10/5/10 13:54 353 1.958 2.026 10/5/10 14:15 375 1.982 2.05 10/5/10 13:33 333 1.958 2.032 1.969 2.037 10/5/10 13:54 353 1.958 2.026 10/5/10 14:15 375 1.982 2.05 10/5/10 13:33 333 1.968 2.032 10/5/10 13:54 353 1.958 2.029 10/5/10 14:15 375 1.980 2.058 10/5/10 13:33 333 1.968 2.032 10/5/10 13:54 354 1.957 2.025 10/5/10 14:16 375 1.989 2.058 10/5/10 13:33 333 1.966 2.034 10/5/10 13:55 354 1.957 2.025 10/5/10 14:16 376 1.989 2.057 10/5/10 13:34 333 1.966 2.034 10/5/10 13:55 355 1.959 2.027 10/5/10 14:16 376 1.989 2.056 10/5/10 13:34 333 1.966 2.034 10/5/10 13:55 355 1.959 2.027 10/5/10 14:16 376 1.989 2.056 10/5/10 13:34 334 1.967 2.035 10/5/10 13:55 355 1.959 2.027 10/5/10 14:16 376 1.989 2.056 10/5/10 13:35 355 1.959 2.027 10/5/10 14:16 376 1.989 2.056 10/5/10 13:35 355 1.959 2.027 10/5/10 14:16 376 2.004 2.072 10/5/10 13:35 355 1.959 2.027 10/5/10 14:16 376 2.004 2.072 10/5/10 13:35 355 1.959 2.027 10/5/10 14:18 377 2.000 2.088 10/5/10 13:35 335 1.967 2.035 10/5/10 13:36 356 1.954 2.032 10/5/10 13:36 356 1.954 2.032 10/5/10 13:36 356 1.954 2.032 10/5/10 13:36 356 1.954 2.032 10/5/10 13:36 356 1.954 2.032 10/5/10 13:36 356 1.954 2.032 10/5/10 13:36 356 1.954 2.033 10/5/10 14:18 377 1.986 2.054 10/5/10 13:36 336 1.967 2.035 10/5/10 13:36 356 1.964 2.032 10/5/10 13:36 356 1.967 2.035 10/5/10 13:36 356 1.964 2.032 10/5/10 13:37 377 1.995 2.063 10/5/10 13:37 337 1.967 2.035 10/5/10 13:58 358 1.966 2.034 10/5/10 14:18 377 1.986 2.054 10/5/10 13:38 335 1.967 2.033 10/5/10 13:38 338 1.996 2.034 10/5/10 13:39 339 1.961 2.034 10/5/10 13:58 358 1	10/5/10 13:30	330	1.962	2.03	10/5/10 13:51	351	1.953	2.021	10/5/10 14:13	372		2.049
10 5/10 13:31 330	10/5/10 13:30	330	1 965	2 033	10/5/10 13:52	351	1 955	2 023	10/5/10 14:13	373	1 991	2 059
1015/10 13:31 331 1.967 2.035 1015/10 13:52 352 1.959 2.027 1015/10 14:14 374 1.982 2.05 1015/10 13:32 331 1.963 2.031 1015/10 13:53 352 1.968 2.026 1015/10 14:14 374 1.982 2.05 1015/10 13:32 332 1.967 2.035 1015/10 13:53 353 1.968 2.026 1015/10 14:14 374 1.982 2.05 1015/10 13:32 332 1.969 2.037 1015/10 13:54 353 1.968 2.026 1015/10 14:15 374 1.982 2.05 1015/10 13:33 332 1.969 2.037 1015/10 13:54 353 1.967 2.025 1015/10 14:15 375 1.984 2.052 1015/10 13:33 333 1.978 2.046 1015/10 13:54 354 1.961 2.029 1015/10 14:15 375 1.989 2.058 1015/10 13:33 333 1.978 2.046 1015/10 13:54 354 1.967 2.025 1015/10 14:16 375 1.989 2.057 1015/10 13:34 333 1.966 2.034 1.015/10 13:55 355 1.969 2.027 1.015/10 14:16 376 1.988 2.056 1015/10 13:34 333 1.966 2.034 1.015/10 13:55 355 1.960 2.028 1.015/10 14:16 376 1.988 2.057 1.015/10 13:34 334 1.963 2.031 1.015/10 13:55 355 1.960 2.028 1.015/10 14:17 376 2.004 2.072 2.075 1.015/10 14:17 376 2.004 2.072 2.075 1.015/10 14:17 376 2.004 2.072 2.088 1.015/10 13:35 335 1.966 2.032 1.015/10 13:55 355 1.960 2.028 1.015/10 14:17 377 1.995 2.063 1.015/10 13:35 335 1.967 2.035 1.015/10 13:56 356 1.960 2.028 1.015/10 14:17 377 1.995 2.063 1.015/10 13:35 335 1.967 2.035 1.015/10 13:57 356 1.960 2.028 1.015/10 14:18 378 1.989 2.057 1.015/10 13:36 335 1.967 2.035 1.015/10 13:57 356 1.960 2.028 1.015/10 14:18 378 1.989 2.057 1.015/10 13:36 335 1.967 2.035 1.015/10 13:57 356 1.960 2.028 1.015/10 14:18 378 1.999 2.057 1.015/10 13:36 336 1.966 2.034 1.015/10 13:57 357 1.966 2.034 1.015/10 14:19 379 1.998 2.057 1.015/10 13:36 336 1.966 2.034 1.015/10 13:59 358 1.966 2.034 1.015/10 14:19 37			1.000			252	1.055		10/5/10 11:10			
10/5/10 13:31 331 1.962 2.03 10/5/10 13:53 352 1.968 2.026 10/5/10 14:14 374 1.982 2.05 10/5/10 13:32 331 1.963 2.031 10/5/10 13:53 353 1.968 2.026 10/5/10 14:15 374 1.982 2.05 10/5/10 13:32 332 1.969 2.037 10/5/10 13:53 353 1.968 2.026 10/5/10 14:15 374 1.982 2.05 10/5/10 13:33 332 1.964 2.032 10/5/10 13:54 354 1.961 2.029 10/5/10 14:15 375 1.990 2.058 10/5/10 13:33 333 1.976 2.034 10/5/10 13:55 354 1.961 2.029 10/5/10 14:16 375 1.990 2.058 10/5/10 13:33 333 1.966 2.034 10/5/10 13:55 354 1.959 2.027 10/5/10 14:16 376 1.988 2.056 10/5/10 13:34 333 1.966 2.034 10/5/10 13:55 355 1.959 2.027 10/5/10 14:16 376 1.988 2.057 10/5/10 13:34 333 1.967 2.035 10/5/10 13:55 355 1.959 2.027 10/5/10 14:16 376 1.988 2.057 10/5/10 13:34 334 1.967 2.035 10/5/10 13:55 355 1.959 2.027 10/5/10 14:17 376 2.004 2.072 10/5/10 13:34 334 1.967 2.035 10/5/10 13:55 355 1.959 2.027 10/5/10 14:17 376 2.004 2.072 10/5/10 13:35 335 1.967 2.035 10/5/10 13:55 355 1.969 2.028 10/5/10 14:17 377 2.000 2.068 10/5/10 13:35 335 1.967 2.035 10/5/10 13:56 356 1.964 2.032 10/5/10 14:17 377 1.995 2.063 10/5/10 13:35 335 1.967 2.035 10/5/10 13:57 356 1.960 2.028 10/5/10 14:18 378 1.989 2.057 10/5/10 13:36 335 1.967 2.035 10/5/10 13:57 356 1.960 2.028 10/5/10 14:18 378 1.989 2.057 10/5/10 13:36 335 1.967 2.035 10/5/10 13:57 357 1.961 2.029 10/5/10 14:18 378 1.989 2.054 10/5/10 13:36 335 1.967 2.035 10/5/10 13:57 357 1.961 2.029 10/5/10 14:18 378 1.995 2.063 10/5/10 13:36 336 1.967 2.034 10/5/10 13:58 356 1.960 2.034 10/5/10 14:19 379 1.995 2.065 10/5/10 13:38 338 1.974 2.042 10/5/10 13:58 358 1.966 2.034			1.971			332	1.933					
10/5/10 13:32 331 1.963 2.031 10/5/10 13:53 353 1.958 2.026 10/5/10 14:14 374 1.982 2.05 10/5/10 13:32 332 1.967 2.035 10/5/10 13:54 353 1.958 2.026 10/5/10 14:15 374 1.982 2.05 10/5/10 13:33 332 1.964 2.032 10/5/10 13:54 353 1.957 2.025 10/5/10 14:15 375 1.994 2.052 10/5/10 13:33 333 1.978 2.046 10/5/10 13:54 354 1.961 2.029 10/5/10 14:15 375 1.999 2.058 10/5/10 13:33 333 1.978 2.046 10/5/10 13:54 354 1.961 2.029 10/5/10 14:16 375 1.999 2.058 10/5/10 13:33 333 1.966 2.034 10/5/10 13:55 355 1.960 2.028 10/5/10 14:16 376 1.989 2.057 10/5/10 13:34 333 1.966 2.034 10/5/10 13:55 355 1.960 2.028 10/5/10 14:16 376 1.989 2.056 10/5/10 13:34 334 1.967 2.035 10/5/10 13:55 355 1.960 2.028 10/5/10 14:17 377 2.000 2.068 10/5/10 13:35 335 1.967 2.035 10/5/10 13:56 355 1.960 2.028 10/5/10 14:17 377 2.000 2.068 10/5/10 13:35 335 1.967 2.035 10/5/10 13:56 356 1.964 2.032 10/5/10 13:56 356 1.964 2.032 10/5/10 13:56 356 1.964 2.032 10/5/10 14:18 377 1.995 2.063 10/5/10 13:35 335 1.967 2.035 10/5/10 13:56 356 1.964 2.032 10/5/10 14:18 377 1.995 2.063 10/5/10 13:35 335 1.967 2.035 10/5/10 13:57 356 1.960 2.028 10/5/10 14:18 378 1.999 2.057 10/5/10 13:36 336 1.967 2.035 10/5/10 13:57 356 1.960 2.028 10/5/10 14:18 378 1.999 2.057 10/5/10 13:36 336 1.967 2.035 10/5/10 13:57 357 1.961 2.029 10/5/10 14:18 378 1.999 2.057 10/5/10 13:36 336 1.967 2.035 10/5/10 13:57 357 1.961 2.029 10/5/10 14:18 378 1.999 2.057 10/5/10 13:36 336 1.966 2.034 10/5/10 13:58 358 1.967 2.035 10/5/10 14:19 379 1.993 2.061 10/5/10 13:37 336 1.972 2.042 10/5/10 13:59 358 1.966 2.034 10/5/10 14:19 379 1.998 2.065 10/5/10 13:38 338 1.974 2.042 10/5/10 13:59 358 1.966 2.034 10/5/10 14:19 379 1.998 2.066 10/5/10 13:38 338 1.974 2.042 10/5/10 13:59 358 1.966 2.034 10/5/10 14:20 380 1.998 2.066 10/5/10 13:38 338 1.974 2.042 10/5/10 13:59 359 1.988 2.026 10/5/10 14:20 380 1.998 2.066 10/5/10 13:39 339 1.961 2.029 10/5/10 14:00 360 1.966 2.034 10/5/10 14:20 380 1.998 2.066 10/5/10 13:39 339 1.961 2.029 10/5/10 14:00 360 1.976 2.034 10/5/10 14:22 382 1.999 2.066 10/5/10	10/5/10 13:31	331	1.967	2.035	10/5/10 13:52	352	1.959	2.027	10/5/10 14:14	373	1.996	2.064
10/5/10 13:32 331 1.963 2.031 10/5/10 13:53 353 1.958 2.026 10/5/10 14:14 374 1.982 2.05 10/5/10 13:32 332 1.967 2.035 10/5/10 13:54 353 1.958 2.026 10/5/10 14:15 374 1.982 2.05 10/5/10 13:33 332 1.964 2.032 10/5/10 13:54 353 1.957 2.025 10/5/10 14:15 375 1.994 2.052 10/5/10 13:33 333 1.978 2.046 10/5/10 13:54 354 1.961 2.029 10/5/10 14:15 375 1.999 2.058 10/5/10 13:33 333 1.978 2.046 10/5/10 13:54 354 1.961 2.029 10/5/10 14:16 375 1.999 2.058 10/5/10 13:33 333 1.966 2.034 10/5/10 13:55 355 1.960 2.028 10/5/10 14:16 376 1.989 2.057 10/5/10 13:34 333 1.966 2.034 10/5/10 13:55 355 1.960 2.028 10/5/10 14:16 376 1.989 2.056 10/5/10 13:34 334 1.967 2.035 10/5/10 13:55 355 1.960 2.028 10/5/10 14:17 377 2.000 2.068 10/5/10 13:35 335 1.967 2.035 10/5/10 13:56 355 1.960 2.028 10/5/10 14:17 377 2.000 2.068 10/5/10 13:35 335 1.967 2.035 10/5/10 13:56 356 1.964 2.032 10/5/10 13:56 356 1.964 2.032 10/5/10 13:56 356 1.964 2.032 10/5/10 14:18 377 1.995 2.063 10/5/10 13:35 335 1.967 2.035 10/5/10 13:56 356 1.964 2.032 10/5/10 14:18 377 1.995 2.063 10/5/10 13:35 335 1.967 2.035 10/5/10 13:57 356 1.960 2.028 10/5/10 14:18 378 1.999 2.057 10/5/10 13:36 336 1.967 2.035 10/5/10 13:57 356 1.960 2.028 10/5/10 14:18 378 1.999 2.057 10/5/10 13:36 336 1.967 2.035 10/5/10 13:57 357 1.961 2.029 10/5/10 14:18 378 1.999 2.057 10/5/10 13:36 336 1.967 2.035 10/5/10 13:57 357 1.961 2.029 10/5/10 14:18 378 1.999 2.057 10/5/10 13:36 336 1.966 2.034 10/5/10 13:58 358 1.967 2.035 10/5/10 14:19 379 1.993 2.061 10/5/10 13:37 336 1.972 2.042 10/5/10 13:59 358 1.966 2.034 10/5/10 14:19 379 1.998 2.065 10/5/10 13:38 338 1.974 2.042 10/5/10 13:59 358 1.966 2.034 10/5/10 14:19 379 1.998 2.066 10/5/10 13:38 338 1.974 2.042 10/5/10 13:59 358 1.966 2.034 10/5/10 14:20 380 1.998 2.066 10/5/10 13:38 338 1.974 2.042 10/5/10 13:59 359 1.988 2.026 10/5/10 14:20 380 1.998 2.066 10/5/10 13:39 339 1.961 2.029 10/5/10 14:00 360 1.966 2.034 10/5/10 14:20 380 1.998 2.066 10/5/10 13:39 339 1.961 2.029 10/5/10 14:00 360 1.976 2.034 10/5/10 14:22 382 1.999 2.066 10/5/10	10/5/10 13:31	331	1 962	2.03	10/5/10 13:53	352	1 958	2 026	10/5/10 14:14	374	1 982	2.05
10/5/10 13:32 332 1.967 2.035 10/5/10 13:53 353 1.958 2.026 10/5/10 14:15 374 1.982 2.05 10/5/10 13:32 332 1.964 2.032 10/5/10 13:54 353 1.957 2.025 10/5/10 14:15 375 1.990 2.038 10/5/10 13:33 333 1.978 2.046 10/5/10 13:54 354 1.961 2.029 10/5/10 14:15 375 1.990 2.058 10/5/10 13:33 333 1.978 2.046 10/5/10 13:55 354 1.957 2.025 10/5/10 14:16 375 1.989 2.057 10/5/10 13:33 333 1.966 2.034 10/5/10 13:55 355 1.950 2.027 10/5/10 14:16 376 1.988 2.056 10/5/10 13:34 334 1.967 2.035 10/5/10 13:55 355 1.950 2.028 10/5/10 14:16 376 1.989 2.057 10/5/10 13:34 334 1.967 2.035 10/5/10 13:55 355 1.950 2.028 10/5/10 14:17 376 2.004 2.072 10/5/10 13:35 334 1.964 2.032 10/5/10 13:56 355 1.960 2.028 10/5/10 14:17 377 2.000 2.068 10/5/10 13:35 335 1.967 2.035 10/5/10 13:56 356 1.960 2.028 10/5/10 14:17 377 2.000 2.068 10/5/10 13:35 335 1.967 2.035 10/5/10 13:56 356 1.960 2.028 10/5/10 14:18 377 1.995 2.063 10/5/10 13:35 335 1.967 2.035 10/5/10 13:56 356 1.960 2.028 10/5/10 14:18 377 1.995 2.063 10/5/10 13:35 335 1.967 2.035 10/5/10 13:57 356 1.960 2.028 10/5/10 14:18 377 1.996 2.054 10/5/10 13:36 336 1.967 2.035 10/5/10 13:57 356 1.960 2.028 10/5/10 14:18 378 1.999 2.057 10/5/10 13:36 335 1.967 2.035 10/5/10 13:57 356 1.962 2.03 10/5/10 14:18 378 1.999 2.057 10/5/10 13:36 336 1.966 2.034 10/5/10 13:57 357 1.961 2.029 10/5/10 14:18 378 1.999 2.056 10/5/10 13:36 336 1.966 2.034 10/5/10 13:58 358 1.967 2.035 10/5/10 14:19 379 1.993 2.066 10/5/10 13:37 337 1.969 2.037 10/5/10 13:58 358 1.966 2.034 10/5/10 14:19 379 1.993 2.066 10/5/10 13:38 338 1.974 2.042 10/5/10 13:59 359 1.966 2.034 10/5/10 14:20 380 1.995 2.			1.002		10/5/10 10:50	252	1.000					
10/5/10 13:32 332 1.969 2.037 10/5/10 13:54 353 1.957 2.025 10/5/10 14:15 375 1.984 2.052 10/5/10 13:33 332 1.964 2.032 10/5/10 13:54 354 1.961 2.029 10/5/10 14:16 375 1.990 2.058 10/5/10 13:33 333 1.966 2.034 10/5/10 13:55 355 1.960 2.025 10/5/10 14:16 376 1.989 2.057 10/5/10 13:34 333 1.966 2.034 10/5/10 13:55 355 1.960 2.028 10/5/10 14:16 376 1.989 2.057 10/5/10 13:34 334 1.967 2.035 10/5/10 13:55 355 1.960 2.028 10/5/10 14:17 376 2.004 2.072 10/5/10 13:34 334 1.967 2.035 10/5/10 13:56 355 1.960 2.028 10/5/10 14:17 376 2.004 2.072 10/5/10 13:35 334 1.964 2.032 10/5/10 13:56 355 1.960 2.028 10/5/10 14:17 377 2.000 2.068 10/5/10 13:35 335 1.967 2.035 10/5/10 13:56 355 1.960 2.028 10/5/10 14:17 377 1.995 2.063 10/5/10 13:35 335 1.967 2.035 10/5/10 13:56 356 1.964 2.032 10/5/10 14:17 377 1.995 2.063 10/5/10 13:35 335 1.967 2.035 10/5/10 13:56 356 1.964 2.032 10/5/10 14:18 377 1.995 2.063 10/5/10 13:35 335 1.967 2.035 10/5/10 13:57 356 1.960 2.028 10/5/10 14:18 377 1.996 2.054 10/5/10 13:35 335 1.967 2.035 10/5/10 13:57 356 1.962 2.03 10/5/10 14:18 378 1.990 2.057 10/5/10 13:36 336 1.967 2.035 10/5/10 13:57 357 1.961 2.029 10/5/10 14:18 378 1.990 2.057 10/5/10 13:36 336 1.967 2.035 10/5/10 13:57 357 1.961 2.029 10/5/10 14:18 378 2.004 2.072 10/5/10 13:36 336 1.964 2.034 10/5/10 13:58 357 1.962 2.03 10/5/10 14:18 378 2.004 2.072 10/5/10 13:36 336 1.966 2.034 10/5/10 13:58 358 1.967 2.035 10/5/10 13:58 358 1.967 2.035 10/5/10 13:59 359 1.964 2.032 10/5/10 14:19 379 1.993 2.061 10/5/10 13:37 337 1.912 2.04 10/5/10 13:59 359 1.966 2.034 10/5/10 14:19 379 1.993 2.061 10/5/10 13:38 338 1.974 2.042 10/5/10 13:59 359 1.966 2.034 10/5/10 14:20 380 1.996 2.064 10/5/10 13:38 338 1.974 2.042 10/5/10 13:59 359 1.966 2.034 10/5/10 14:21 381 1.995 2.063 10/5/10 13:39 339 1.961 2.042 10/5/10 14:00 360 1.966 2.034 10/5/10 14:23 382 1.999 2.067 10/5/10 13:39 339 1.961 2.042 10/5/10 14:01 361 1.980 2.044 10/5/10 14:23 382 1.999 2.067 10/5/10 13:40 340 1.995 2.033 10/5/10 14:00 360 1.996 2.044 10/5/10 14:23 382 1.999 2.067 10/5/10 1							1.958					
10/5/10 13:32 332 1.969 2.037 10/5/10 13:54 353 1.957 2.025 10/5/10 14:15 375 1.984 2.052 10/5/10 13:33 332 1.964 2.032 10/5/10 13:54 354 1.961 2.029 10/5/10 14:16 375 1.990 2.058 10/5/10 13:33 333 1.966 2.034 10/5/10 13:54 354 1.957 2.025 10/5/10 14:16 375 1.989 2.057 10/5/10 13:34 333 1.966 2.034 10/5/10 13:55 355 1.960 2.028 10/5/10 14:16 376 1.989 2.057 10/5/10 13:34 333 1.966 2.034 10/5/10 13:55 355 1.960 2.028 10/5/10 14:16 376 1.989 2.057 10/5/10 13:34 334 1.967 2.035 10/5/10 13:55 355 1.960 2.028 10/5/10 14:17 376 2.004 2.072 10/5/10 13:34 334 1.967 2.035 10/5/10 13:56 355 1.960 2.028 10/5/10 14:17 376 2.004 2.072 10/5/10 13:35 334 1.964 2.032 10/5/10 13:56 355 1.960 2.028 10/5/10 14:17 377 2.000 2.068 10/5/10 13:35 335 1.967 2.035 10/5/10 13:56 356 1.964 2.032 10/5/10 14:17 377 1.995 2.063 10/5/10 13:35 335 1.967 2.035 10/5/10 13:56 356 1.964 2.032 10/5/10 14:17 377 1.995 2.063 10/5/10 13:35 335 1.967 2.035 10/5/10 13:57 356 1.960 2.028 10/5/10 14:18 377 1.996 2.054 10/5/10 13:35 335 1.967 2.035 10/5/10 13:57 356 1.962 2.03 10/5/10 14:18 378 1.997 2.055 10/5/10 13:36 336 1.967 2.035 10/5/10 13:57 357 1.961 2.029 10/5/10 14:18 378 2.004 2.072 10/5/10 13:36 336 1.967 2.035 10/5/10 13:57 357 1.961 2.029 10/5/10 14:18 378 2.004 2.072 10/5/10 13:36 336 1.964 2.034 10/5/10 13:58 357 1.967 2.035 10/5/10 13:58 357 1.962 2.03 10/5/10 14:19 379 1.993 2.061 10/5/10 13:37 337 1.912 2.04 10/5/10 13:58 358 1.967 2.035 10/5/10 13:58 358 1.967 2.035 10/5/10 13:59 359 1.964 2.032 10/5/10 14:19 379 1.993 2.061 10/5/10 13:38 338 1.974 2.042 10/5/10 13:58 358 1.966 2.034 10/5/10 14:20 339 1.995 2.063 10/5/10 13:39 339 1.961 2.042 10/5/10 13:59 359 1.966 2.034 10/5/10 14:20 380 1.995 2.063 10/5/10 13:39 338 1.974 2.042 10/5/10 13:59 359 1.966 2.034 10/5/10 14:21 381 1.995 2.063 10/5/10 13:39 339 1.961 2.042 10/5/10 14:00 360 1.966 2.034 10/5/10 14:23 382 1.999 2.067 10/5/10 13:39 339 1.961 2.042 10/5/10 14:01 361 1.980 2.044 10/5/10 14:23 382 1.999 2.067 10/5/10 13:40 340 1.995 2.003 10/5/10 14:01 361 1.975 2.043 10/5/10 1	10/5/10 13:32	332	1.967	2.035	10/5/10 13:53	353	1.958	2.026	10/5/10 14:15	374	1.982	2.05
10/5/10 13:33 332 1.964 2.032 10/5/10 13:54 354 1.961 2.029 10/5/10 14:15 375 1.990 2.058 10/5/10 13:33 333 1.978 2.046 10/5/10 13:54 354 1.957 2.025 10/5/10 14:16 375 1.989 2.057 10/5/10 13:33 333 1.966 2.034 10/5/10 13:55 354 1.959 2.027 10/5/10 14:16 376 1.988 2.056 10/5/10 13:34 333 1.964 2.032 10/5/10 13:55 355 1.960 2.028 10/5/10 14:16 376 1.989 2.057 10/5/10 13:34 334 1.967 2.035 10/5/10 13:55 355 1.960 2.028 10/5/10 14:16 376 2.004 2.072 10/5/10 13:34 334 1.963 2.031 10/5/10 13:55 355 1.960 2.028 10/5/10 14:17 377 2.000 2.068 10/5/10 13:35 334 1.963 2.031 10/5/10 13:56 356 1.964 2.032 10/5/10 14:17 377 2.000 2.068 10/5/10 13:35 335 1.967 2.035 10/5/10 13:56 356 1.964 2.032 10/5/10 14:18 377 1.996 2.063 10/5/10 13:35 335 1.967 2.035 10/5/10 13:56 356 1.964 2.032 10/5/10 14:18 377 1.996 2.054 10/5/10 13:35 335 1.967 2.035 10/5/10 13:57 356 1.960 2.028 10/5/10 14:18 377 1.986 2.054 10/5/10 13:36 335 1.967 2.035 10/5/10 13:57 356 1.960 2.028 10/5/10 14:18 377 1.986 2.054 10/5/10 13:36 335 1.967 2.035 10/5/10 13:57 356 1.960 2.028 10/5/10 14:18 378 1.989 2.057 10/5/10 13:36 335 1.967 2.035 10/5/10 13:57 357 1.961 2.029 10/5/10 14:18 378 1.989 2.057 10/5/10 13:36 336 1.967 2.035 10/5/10 13:57 357 1.961 2.029 10/5/10 14:18 378 1.999 2.065 10/5/10 13:37 336 1.966 2.034 10/5/10 13:58 357 1.961 2.039 10/5/10 14:19 379 1.993 2.061 10/5/10 13:37 337 1.969 2.037 10/5/10 13:58 358 1.966 2.034 10/5/10 14:19 379 1.993 2.061 10/5/10 13:37 337 1.969 2.037 10/5/10 13:58 358 1.966 2.034 10/5/10 14:19 379 1.998 2.066 10/5/10 13:38 338 1.974 2.042 10/5/10 13:59 359 1.964 2.032 10/5/10 14:20 380 1.996 2.064 10/5/10 13:38 338 1.974 2.042 10/5/10 13:59 359 1.964 2.032 10/5/10 14:20 380 1.996 2.064 10/5/10 13:39 338 1.974 2.042 10/5/10 13:59 359 1.964 2.032 10/5/10 14:21 381 1.995 2.063 10/5/10 14:20 380 1.999 2.066 10/5/10 13:39 339 1.961 2.029 10/5/10 14:00 360 1.983 2.051 10/5/10 14:21 381 1.995 2.063 10/5/10 13:30 339 1.961 2.029 10/5/10 14:00 360 1.983 2.051 10/5/10 14:23 382 1.999 2.066 10/5/10 13:40 340 1.995 2.023 10/5/1												
10/5/10 13:33 333 1.978 2.046 10/5/10 13:55 354 1.957 2.025 10/5/10 14:16 375 1.989 2.057 10/5/10 13:33 333 1.966 2.034 10/5/10 13:55 354 1.959 2.027 10/5/10 14:16 376 1.988 2.056 10/5/10 13:34 334 1.964 2.032 10/5/10 13:55 355 1.960 2.028 10/5/10 14:16 376 1.989 2.057 10/5/10 13:34 334 1.967 2.035 10/5/10 13:55 355 1.960 2.028 10/5/10 14:16 376 2.040 2.072 10/5/10 13:34 334 1.963 2.031 10/5/10 13:56 355 1.960 2.028 10/5/10 14:17 377 2.000 2.068 10/5/10 13:35 334 1.964 2.032 10/5/10 13:56 355 1.960 2.028 10/5/10 14:17 377 1.995 2.063 10/5/10 13:35 335 1.967 2.035 10/5/10 13:56 356 1.964 2.032 10/5/10 14:17 377 1.995 2.063 10/5/10 13:35 335 1.967 2.035 10/5/10 13:56 356 1.964 2.032 10/5/10 14:18 377 1.986 2.064 10/5/10 13:36 335 1.967 2.035 10/5/10 13:57 356 1.962 2.038 10/5/10 14:18 378 1.989 2.057 10/5/10 13:36 336 1.967 2.035 10/5/10 13:57 357 1.961 2.029 10/5/10 14:18 378 1.989 2.057 10/5/10 13:36 336 1.967 2.035 10/5/10 13:57 357 1.961 2.029 10/5/10 14:18 378 1.989 2.057 10/5/10 13:36 336 1.967 2.035 10/5/10 13:57 357 1.967 2.035 10/5/10 14:18 378 1.989 2.065 10/5/10 13:36 336 1.966 2.034 10/5/10 13:58 358 1.967 2.035 10/5/10 14:19 379 1.993 2.065 10/5/10 13:37 337 1.969 2.034 10/5/10 13:58 358 1.967 2.035 10/5/10 14:19 379 1.998 2.066 10/5/10 13:38 338 1.974 2.042 10/5/10 13:58 358 1.966 2.034 10/5/10 14:20 380 1.996 2.063 10/5/10 13:38 338 1.974 2.042 10/5/10 13:59 359 1.964 2.034 10/5/10 14:20 380 1.992 2.066 10/5/10 13:38 338 1.974 2.042 10/5/10 13:59 359 1.964 2.034 10/5/10 14:21 381 1.996 2.064 10/5/10 13:38 338 1.974 2.042 10/5/10 13:59 359 1.964 2.034 10/5/10 14:21 381 1.996 2.064 10/5/10 13:38 338 1.974 2.042 10/5/10 14:01 360 1.983 2.066 10/5/10 13:39 339 1.961 2.009 10/5/10 14:21 381 1.995 2.063 10/5/10 13:39 339 1.961 2.009 10/5/10 14:21 381 1.995 2.063 10/5/10 13:39 339 1.961 2.009 10/5/10 14:21 381 1.995 2.063 10/5/10 13:40 340 1.959 2.018 10/5/10 14:01 361 1.976 2.044 10/5/10 14:23 382 1.997 2.065 10/5/10 13:40 340 1.959 2.018 10/5/10 14:01 361 1.976 2.044 10/5/10 14:23 383 1.998 2.066 10/5/1					10/5/10 15.54	254			10/5/10 14.15			
10/5/10 13:34 333 1.964 2.032 10/5/10 13:55 354 1.959 2.027 10/5/10 14:16 376 1.988 2.056 10/5/10 13:34 334 1.967 2.035 10/5/10 13:55 355 1.960 2.028 10/5/10 14:16 376 1.989 2.057 10/5/10 13:34 334 1.963 2.031 10/5/10 13:55 355 1.960 2.028 10/5/10 14:17 377 2.000 2.068 10/5/10 13:34 334 1.963 2.031 10/5/10 13:55 355 1.960 2.028 10/5/10 14:17 377 2.000 2.068 10/5/10 13:35 334 1.964 2.032 10/5/10 13:56 355 1.960 2.028 10/5/10 14:17 377 2.000 2.068 10/5/10 13:35 335 1.964 2.032 10/5/10 13:56 356 1.964 2.032 10/5/10 14:17 377 1.995 2.063 10/5/10 13:35 335 1.967 2.035 10/5/10 13:56 356 1.960 2.028 10/5/10 14:18 377 1.986 2.054 10/5/10 13:35 335 1.967 2.035 10/5/10 13:57 356 1.962 2.03 10/5/10 14:18 378 1.989 2.057 10/5/10 13:36 335 1.967 2.035 10/5/10 13:57 357 1.961 2.029 10/5/10 14:18 378 1.998 2.057 10/5/10 13:36 336 1.967 2.035 10/5/10 13:57 357 1.961 2.029 10/5/10 14:19 378 1.999 2.065 10/5/10 13:36 336 1.966 2.034 10/5/10 13:58 357 1.962 2.03 10/5/10 14:19 378 1.997 2.065 10/5/10 13:37 337 1.969 2.037 10/5/10 13:58 358 1.967 2.035 10/5/10 14:19 379 1.993 2.061 10/5/10 13:37 337 1.969 2.037 10/5/10 13:58 358 1.966 2.034 10/5/10 14:19 379 1.998 2.063 10/5/10 13:37 337 1.971 2.039 10/5/10 13:59 358 1.966 2.034 10/5/10 14:20 379 1.995 2.063 10/5/10 13:38 337 1.975 2.043 10/5/10 13:59 358 1.966 2.034 10/5/10 14:20 380 1.992 2.064 10/5/10 13:38 338 1.974 2.042 10/5/10 13:59 359 1.964 2.032 10/5/10 14:20 380 1.992 2.064 10/5/10 13:38 338 1.974 2.042 10/5/10 13:59 359 1.964 2.032 10/5/10 14:20 380 1.992 2.064 10/5/10 13:39 338 1.977 2.042 10/5/10 13:59 359 1.964 2.032 10/5/10 14:21 381 1.996 2.064 10/5/10 13:39 339 1.950 2.048 10/5/10 14:00 360 1.981 2.029 10/5/10 14:22 382 2.001 2.069 10/5/10 13:39 339 1.950 2.048 10/5/10 14:00 360 1.981 2.029 10/5/10 14:22 382 2.001 2.069 10/5/10 13:40 340 1.955 2.023 10/5/10 14:01 361 1.975 2.043 10/5/10 14:02 382 1.997 2.065 10/5/10 13:41 340 1.955 2.023 10/5/10 14:02 361 1.975 2.043 10/5/10 14:23 383 1.999 2.066 10/5/10 13:41 340 1.955 2.023 10/5/10 14:02 362 1.973 2.041 10/5/10												
10/5/10 13:34 333 1.964 2.032 10/5/10 13:55 354 1.959 2.027 10/5/10 14:16 376 1.988 2.056 10/5/10 13:34 334 1.967 2.035 10/5/10 13:55 355 1.960 2.028 10/5/10 14:16 376 1.989 2.057 10/5/10 13:34 334 1.963 2.031 10/5/10 13:55 355 1.960 2.028 10/5/10 14:17 377 2.000 2.068 10/5/10 13:34 334 1.963 2.031 10/5/10 13:55 355 1.960 2.028 10/5/10 14:17 377 2.000 2.068 10/5/10 13:35 334 1.964 2.032 10/5/10 13:56 355 1.960 2.028 10/5/10 14:17 377 2.000 2.068 10/5/10 13:35 335 1.964 2.032 10/5/10 13:56 356 1.964 2.032 10/5/10 14:17 377 1.995 2.063 10/5/10 13:35 335 1.967 2.035 10/5/10 13:56 356 1.960 2.028 10/5/10 14:18 377 1.986 2.054 10/5/10 13:35 335 1.967 2.035 10/5/10 13:57 356 1.962 2.03 10/5/10 14:18 378 1.989 2.057 10/5/10 13:36 335 1.967 2.035 10/5/10 13:57 357 1.961 2.029 10/5/10 14:18 378 1.998 2.057 10/5/10 13:36 336 1.967 2.035 10/5/10 13:57 357 1.961 2.029 10/5/10 14:19 378 1.999 2.065 10/5/10 13:36 336 1.966 2.034 10/5/10 13:58 357 1.962 2.03 10/5/10 14:19 378 1.997 2.065 10/5/10 13:37 337 1.969 2.037 10/5/10 13:58 358 1.967 2.035 10/5/10 14:19 379 1.993 2.061 10/5/10 13:37 337 1.969 2.037 10/5/10 13:58 358 1.966 2.034 10/5/10 14:19 379 1.998 2.063 10/5/10 13:37 337 1.971 2.039 10/5/10 13:59 358 1.966 2.034 10/5/10 14:20 379 1.995 2.063 10/5/10 13:38 337 1.975 2.043 10/5/10 13:59 358 1.966 2.034 10/5/10 14:20 380 1.992 2.064 10/5/10 13:38 338 1.974 2.042 10/5/10 13:59 359 1.964 2.032 10/5/10 14:20 380 1.992 2.064 10/5/10 13:38 338 1.974 2.042 10/5/10 13:59 359 1.964 2.032 10/5/10 14:20 380 1.992 2.064 10/5/10 13:39 338 1.977 2.042 10/5/10 13:59 359 1.964 2.032 10/5/10 14:21 381 1.996 2.064 10/5/10 13:39 339 1.950 2.048 10/5/10 14:00 360 1.981 2.029 10/5/10 14:22 382 2.001 2.069 10/5/10 13:39 339 1.950 2.048 10/5/10 14:00 360 1.981 2.029 10/5/10 14:22 382 2.001 2.069 10/5/10 13:40 340 1.955 2.023 10/5/10 14:01 361 1.975 2.043 10/5/10 14:02 382 1.997 2.065 10/5/10 13:41 340 1.955 2.023 10/5/10 14:02 361 1.975 2.043 10/5/10 14:23 383 1.999 2.066 10/5/10 13:41 340 1.955 2.023 10/5/10 14:02 362 1.973 2.041 10/5/10	10/5/10 13:33	333	1.978	2.046	10/5/10 13:54	354	1.957	2.025	10/5/10 14:16	375	1.989	2.057
10/5/10 13:34 333 1,964 2.032 10/5/10 13:55 355 1,960 2.028 10/5/10 14:16 376 1,989 2.057 10/5/10 13:34 334 1,967 2.035 10/5/10 13:55 355 1,950 2.027 10/5/10 14:17 376 2.004 2.072 10/5/10 13:34 334 1,963 2.031 10/5/10 13:56 355 1,960 2.028 10/5/10 14:17 377 2.000 2.068 10/5/10 13:35 334 1,964 2.032 10/5/10 13:56 356 1,960 2.028 10/5/10 14:17 377 1,995 2.063 10/5/10 13:35 335 1,967 2.035 10/5/10 13:56 356 1,960 2.028 10/5/10 14:17 377 1,995 2.063 10/5/10 13:35 335 1,967 2.035 10/5/10 13:56 356 1,960 2.028 10/5/10 14:18 377 1,996 2.054 10/5/10 13:35 335 1,967 2.035 10/5/10 13:57 356 1,960 2.028 10/5/10 14:18 378 1,998 2.057 10/5/10 13:36 335 1,967 2.035 10/5/10 13:57 356 1,962 2.03 10/5/10 14:18 378 1,998 2.057 10/5/10 13:36 335 1,967 2.035 10/5/10 13:57 357 1,961 2.029 10/5/10 14:18 378 1,997 2.065 10/5/10 13:36 336 1,966 2.034 10/5/10 13:57 357 1,961 2.029 10/5/10 14:19 378 1,997 2.065 10/5/10 13:37 336 1,972 2.04 10/5/10 13:58 358 1,967 2.035 10/5/10 14:19 379 1,993 2.061 10/5/10 13:37 337 1,969 2.037 10/5/10 13:58 358 1,967 2.035 10/5/10 14:19 379 1,993 2.066 10/5/10 13:37 337 1,969 2.037 10/5/10 13:58 358 1,966 2.034 10/5/10 14:20 379 1,995 2.063 10/5/10 13:38 337 1,971 2.039 10/5/10 13:59 359 1,964 2.032 10/5/10 14:20 330 1,996 2.064 10/5/10 13:38 338 1,974 2.042 10/5/10 13:59 359 1,964 2.032 10/5/10 14:20 330 1,996 2.064 10/5/10 13:38 338 1,974 2.042 10/5/10 13:59 359 1,964 2.032 10/5/10 14:21 381 1,996 2.064 10/5/10 13:38 338 1,974 2.042 10/5/10 14:00 360 1,966 2.034 10/5/10 14:21 381 1,996 2.064 10/5/10 13:39 339 1,961 2.029 10/5/10 14:00 360 1,971 2.039 10/5/10 14:21 381 1,996 2.064 10/5/10 13:39 339 1,966 2.034 10/5/10 14:01 361 1,980 2.044 10/5/10 14:22 382 1,997 2.065 10/5/10 13:40 340 1,995 2.018 10/5/10 14:01 361 1,980 2.044 10/5/10 14:23 382 1,997 2.065 10/5/10 13:40 340 1,995 2.034 10/5/10 14:02 362 1,975 2.043 10/5/10 14:23 383 1,996 2.066 10/5/10 13:40 340 1,995 2.034 10/5/10 14:02 361 1,976 2.044 10/5/10 14:23 383 1,998 2.066 10/5/10 13:40 340 1,995 2.034 10/5/10 14:02 361 1,976 2.044 10/5/10	10/5/10 13:33	333	1 966	2 034		354	1 050	2 027	10/5/10 14:16	376	1 088	2.056
10/5/10 13:34 334 1.967 2.035 10/5/10 13:55 355 1.959 2.027 10/5/10 14:17 376 2.004 2.072 10/5/10 13:34 334 1.963 2.031 10/5/10 13:56 355 1.960 2.028 10/5/10 14:17 377 2.000 2.068 10/5/10 13:35 334 1.964 2.032 10/5/10 13:56 356 1.960 2.028 10/5/10 14:17 377 1.995 2.063 10/5/10 13:35 335 1.967 2.035 10/5/10 13:56 356 1.960 2.028 10/5/10 14:18 377 1.996 2.054 10/5/10 13:35 335 1.967 2.035 10/5/10 13:57 356 1.960 2.028 10/5/10 14:18 378 1.986 2.054 10/5/10 13:35 335 1.967 2.035 10/5/10 13:57 357 1.961 2.029 10/5/10 14:18 378 1.989 2.057 10/5/10 13:36 336 1.967 2.035 10/5/10 13:57 357 1.961 2.029 10/5/10 14:18 378 1.989 2.057 10/5/10 13:36 336 1.967 2.035 10/5/10 13:57 357 1.961 2.029 10/5/10 14:18 378 1.997 2.065 10/5/10 13:36 336 1.966 2.034 10/5/10 13:58 357 1.961 2.029 10/5/10 14:19 379 1.993 2.061 10/5/10 13:37 336 1.972 2.04 10/5/10 13:58 357 1.962 2.03 10/5/10 14:19 379 1.993 2.061 10/5/10 13:37 337 1.969 2.037 10/5/10 13:58 358 1.967 2.035 10/5/10 14:19 379 1.998 2.066 10/5/10 13:37 337 1.969 2.037 10/5/10 13:59 358 1.966 2.034 10/5/10 14:20 379 1.998 2.066 10/5/10 13:38 337 1.971 2.039 10/5/10 13:59 358 1.966 2.034 10/5/10 14:20 380 1.996 2.064 10/5/10 13:38 338 1.974 2.042 10/5/10 13:59 359 1.964 2.032 10/5/10 14:20 380 1.996 2.064 10/5/10 13:38 338 1.974 2.042 10/5/10 13:59 359 1.964 2.032 10/5/10 14:21 380 1.993 2.061 10/5/10 13:39 338 1.974 2.042 10/5/10 14:00 359 1.958 2.029 10/5/10 14:21 381 1.996 2.064 10/5/10 13:39 338 1.974 2.042 10/5/10 14:00 360 1.966 2.034 10/5/10 14:21 381 1.996 2.063 10/5/10 13:39 339 1.950 2.018 10/5/10 14:00 360 1.983 2.051 10/5/10 14:22 381 1.995 2.063 10/5/10 13:39 339 1.960 2.038 10/5/10 14:01 361 1.976 2.044 10/5/10 14:22 382 2.001 2.069 10/5/10 13:40 340 340 1.949 2.017 10/5/10 14:01 361 1.976 2.044 10/5/10 14:23 383 1.997 2.065 10/5/10 13:41 340 340 1.955 2.023 10/5/10 14:02 361 1.976 2.044 10/5/10 14:23 383 1.997 2.065 10/5/10 13:41 340 340 1.955 2.023 10/5/10 14:02 361 1.976 2.044 10/5/10 14:23 383 1.997 2.065 10/5/10 13:41 340 340 1.955 2.023 10/5/10 14:02 361 1.97												
10/5/10 13:34 334 1.963 2.031 10/5/10 13:56 355 1.960 2.028 10/5/10 14:17 377 2.000 2.068 10/5/10 13:35 334 1.964 2.032 10/5/10 13:56 356 1.960 2.028 10/5/10 14:18 377 1.995 2.063 10/5/10 13:35 335 1.967 2.035 10/5/10 13:56 356 1.960 2.028 10/5/10 14:18 377 1.986 2.054 10/5/10 13:35 335 1.967 2.035 10/5/10 13:57 356 1.962 2.029 10/5/10 14:18 378 1.989 2.057 10/5/10 13:36 336 1.967 2.035 10/5/10 13:57 357 1.961 2.029 10/5/10 14:18 378 1.989 2.057 10/5/10 13:36 336 1.966 2.034 10/5/10 13:57 357 1.967 2.035 10/5/10 14:19 379 1.993 2.065 10/5/10 13:37 336 1.966 2.034 10/5/10 13:58 358 1.967 2.035 10/5/10 14:19 379 1.993 2.061						333	1.960		10/5/10 14:16			
10/5/10 13:34 334 1.963 2.031 10/5/10 13:56 355 1.960 2.028 10/5/10 14:17 377 2.000 2.068 10/5/10 13:35 334 1.964 2.032 10/5/10 13:56 356 1.960 2.028 10/5/10 14:18 377 1.995 2.063 10/5/10 13:35 335 1.967 2.035 10/5/10 13:56 356 1.960 2.028 10/5/10 14:18 377 1.995 2.054 10/5/10 13:36 335 1.967 2.035 10/5/10 13:57 356 1.962 2.03 10/5/10 14:18 378 1.989 2.057 10/5/10 13:36 336 1.967 2.035 10/5/10 13:57 357 1.967 2.035 10/5/10 14:18 378 1.989 2.057 10/5/10 13:36 336 1.966 2.034 10/5/10 13:57 357 1.967 2.035 10/5/10 14:19 379 1.993 2.061 10/5/10 13:37 337 1.969 2.037 10/5/10 13:58 358	10/5/10 13:34	334	1.967	2.035	10/5/10 13:55	355	1.959	2.027	10/5/10 14:17	376	2.004	2.072
10/5/10 13:35 334 1.964 2.032 10/5/10 13:56 356 1.964 2.032 10/5/10 14:17 377 1.995 2.063 10/5/10 13:35 335 1.967 2.035 10/5/10 13:57 356 1.960 2.028 10/5/10 14:18 377 1.986 2.054 10/5/10 13:36 335 1.967 2.035 10/5/10 13:57 356 1.962 2.03 10/5/10 14:18 378 2.044 2.072 10/5/10 13:36 336 1.974 2.042 10/5/10 13:57 357 1.961 2.029 10/5/10 14:18 378 1.997 2.065 10/5/10 13:36 336 1.974 2.042 10/5/10 13:58 357 1.967 2.035 10/5/10 14:19 378 1.997 2.0661 10/5/10 13:37 336 1.972 2.04 10/5/10 13:58 358 1.967 2.035 10/5/10 14:19 379 1.998 2.066 10/5/10 13:37 337 1.969 2.037 10/5/10 13:59 358	10/5/10 13:34	334	1 963		10/5/10 13:56	355	1 960	2 028	10/5/10 14:17	377	2 000	2.068
10/5/10 13:35 335 1.967 2.035 10/5/10 13:56 356 1.960 2.028 10/5/10 14:18 377 1.986 2.054 10/5/10 13:35 335 1.967 2.035 10/5/10 13:57 356 1.962 2.03 10/5/10 14:18 378 1.989 2.057 10/5/10 13:36 336 1.974 2.042 10/5/10 13:57 357 1.961 2.029 10/5/10 14:18 378 1.997 2.065 10/5/10 13:36 336 1.974 2.042 10/5/10 13:57 357 1.961 2.029 10/5/10 14:19 378 1.997 2.065 10/5/10 13:36 336 1.966 2.034 10/5/10 13:58 357 1.962 2.03 10/5/10 14:19 379 1.998 2.065 10/5/10 13:37 337 1.969 2.037 10/5/10 13:58 358 1.966 2.034 10/5/10 14:20 379 1.995 2.063 10/5/10 13:38 337 1.971 2.039 10/5/10 13:59 358 <												
10/5/10 13:35 335 1.967 2.035 10/5/10 13:57 356 1.962 2.03 10/5/10 14:18 378 1.989 2.057 10/5/10 13:36 335 1.967 2.035 10/5/10 13:57 357 1.961 2.029 10/5/10 14:18 378 2.004 2.057 10/5/10 13:36 336 1.966 2.034 10/5/10 13:58 357 1.962 2.03 10/5/10 14:19 379 1.993 2.061 10/5/10 13:37 336 1.972 2.04 10/5/10 13:58 358 1.967 2.035 10/5/10 14:19 379 1.993 2.061 10/5/10 13:37 336 1.972 2.04 10/5/10 13:58 358 1.967 2.035 10/5/10 14:19 379 1.998 2.066 10/5/10 13:37 337 1.9971 2.039 10/5/10 13:59 358 1.966 2.034 10/5/10 14:20 380 1.995 2.066 10/5/10 13:38 337 1.975 2.043 10/5/10 13:59 359 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
10/5/10 13:36 335 1.967 2.035 10/5/10 13:57 357 1.961 2.029 10/5/10 14:18 378 2.004 2.072 10/5/10 13:36 336 1.974 2.042 10/5/10 13:57 357 1.967 2.035 10/5/10 14:19 378 1.997 2.065 10/5/10 13:36 336 1.966 2.034 10/5/10 13:58 357 1.962 2.03 10/5/10 14:19 379 1.993 2.061 10/5/10 13:37 336 1.972 2.04 10/5/10 13:58 358 1.967 2.035 10/5/10 14:19 379 1.998 2.066 10/5/10 13:37 337 1.969 2.037 10/5/10 13:58 358 1.966 2.034 10/5/10 14:20 379 1.995 2.063 10/5/10 13:37 337 1.971 2.039 10/5/10 13:59 358 1.966 2.034 10/5/10 14:20 380 1.996 2.064 10/5/10 13:38 338 1.974 2.042 10/5/10 13:59 359 <	10/5/10 13:35	335	1.967	2.035	10/5/10 13:56	356	1.960	2.028	10/5/10 14:18	377	1.986	2.054
10/5/10 13:36 335 1.967 2.035 10/5/10 13:57 357 1.961 2.029 10/5/10 14:18 378 2.004 2.072 10/5/10 13:36 336 1.974 2.042 10/5/10 13:57 357 1.967 2.035 10/5/10 14:19 378 1.997 2.065 10/5/10 13:36 336 1.966 2.034 10/5/10 13:58 357 1.962 2.03 10/5/10 14:19 379 1.993 2.061 10/5/10 13:37 336 1.972 2.04 10/5/10 13:58 358 1.967 2.035 10/5/10 14:19 379 1.998 2.066 10/5/10 13:37 337 1.969 2.037 10/5/10 13:58 358 1.966 2.034 10/5/10 14:20 379 1.995 2.063 10/5/10 13:37 337 1.971 2.039 10/5/10 13:59 358 1.966 2.034 10/5/10 14:20 380 1.996 2.064 10/5/10 13:38 338 1.974 2.042 10/5/10 13:59 359 <	10/5/10 13:35	335	1 967	2 035	10/5/10 13:57	356	1 962	2.03	10/5/10 14:18	378	1 989	2 057
10/5/10 13:36 336 1.974 2.042 10/5/10 13:57 357 1.967 2.035 10/5/10 14:19 378 1.997 2.065 10/5/10 13:36 336 1.966 2.034 10/5/10 13:58 357 1.962 2.03 10/5/10 14:19 379 1.993 2.061 10/5/10 13:37 336 1.972 2.04 10/5/10 13:58 358 1.967 2.035 10/5/10 14:19 379 1.993 2.066 10/5/10 13:37 337 1.969 2.037 10/5/10 13:58 358 1.966 2.034 10/5/10 14:20 379 1.995 2.063 10/5/10 13:37 337 1.971 2.039 10/5/10 13:59 358 1.966 2.034 10/5/10 14:20 380 1.996 2.064 10/5/10 13:38 338 1.974 2.042 10/5/10 13:59 359 1.964 2.032 10/5/10 14:20 380 1.992 2.066 10/5/10 13:38 338 1.974 2.042 10/5/10 14:00 359 1.964 2.032 10/5/10 14:21 381 1.996 2.064												
10/5/10 13:36 336 1.966 2.034 10/5/10 13:58 357 1.962 2.03 10/5/10 14:19 379 1.993 2.061 10/5/10 13:37 336 1.972 2.04 10/5/10 13:58 358 1.967 2.035 10/5/10 14:19 379 1.998 2.066 10/5/10 13:37 337 1.969 2.037 10/5/10 13:58 358 1.966 2.034 10/5/10 14:20 379 1.995 2.063 10/5/10 13:37 337 1.971 2.039 10/5/10 13:59 358 1.966 2.034 10/5/10 14:20 380 1.996 2.064 10/5/10 13:38 337 1.975 2.043 10/5/10 13:59 359 1.964 2.032 10/5/10 14:20 380 1.992 2.06 10/5/10 13:38 338 1.974 2.042 10/5/10 13:59 359 1.958 2.026 10/5/10 14:21 380 1.993 2.061 10/5/10 13:39 338 1.970 2.038 10/5/10 14:00 360 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
10/5/10 13:37 336 1.972 2.04 10/5/10 13:58 358 1.967 2.035 10/5/10 14:19 379 1.998 2.066 10/5/10 13:37 337 1.969 2.037 10/5/10 13:58 358 1.966 2.034 10/5/10 14:20 379 1.995 2.066 10/5/10 13:37 337 1.971 2.039 10/5/10 13:59 358 1.966 2.034 10/5/10 14:20 380 1.996 2.064 10/5/10 13:38 337 1.975 2.043 10/5/10 13:59 359 1.964 2.032 10/5/10 14:20 380 1.996 2.066 10/5/10 13:38 338 1.974 2.042 10/5/10 13:59 359 1.958 2.026 10/5/10 14:21 380 1.993 2.061 10/5/10 13:38 338 1.974 2.042 10/5/10 14:00 359 1.961 2.029 10/5/10 14:21 381 1.996 2.064 10/5/10 13:39 338 1.970 2.038 10/5/10 14:00 360 1.966 2.034 10/5/10 14:21 381 1.995 2.063	10/5/10 13:36	336	1.974	2.042	10/5/10 13:57	357	1.967	2.035	10/5/10 14:19	378	1.997	2.065
10/5/10 13:37 336 1.972 2.04 10/5/10 13:58 358 1.967 2.035 10/5/10 14:19 379 1.998 2.066 10/5/10 13:37 337 1.969 2.037 10/5/10 13:58 358 1.966 2.034 10/5/10 14:20 379 1.995 2.066 10/5/10 13:37 337 1.971 2.039 10/5/10 13:59 358 1.966 2.034 10/5/10 14:20 380 1.996 2.064 10/5/10 13:38 337 1.975 2.043 10/5/10 13:59 359 1.964 2.032 10/5/10 14:20 380 1.996 2.066 10/5/10 13:38 338 1.974 2.042 10/5/10 13:59 359 1.958 2.026 10/5/10 14:21 380 1.993 2.061 10/5/10 13:38 338 1.974 2.042 10/5/10 14:00 359 1.961 2.029 10/5/10 14:21 381 1.996 2.064 10/5/10 13:39 338 1.970 2.038 10/5/10 14:00 360 1.966 2.034 10/5/10 14:21 381 1.995 2.063	10/5/10 13:36	336	1 966	2 034	10/5/10 13:58	357	1 962	2.03	10/5/10 14:19	379	1 993	2.061
10/5/10 13:37 337 1.969 2.037 10/5/10 13:58 358 1.966 2.034 10/5/10 14:20 379 1.995 2.063 10/5/10 13:37 337 1.971 2.039 10/5/10 13:59 358 1.966 2.034 10/5/10 14:20 380 1.996 2.064 10/5/10 13:38 337 1.975 2.043 10/5/10 13:59 359 1.964 2.032 10/5/10 14:20 380 1.992 2.06 10/5/10 13:38 338 1.974 2.042 10/5/10 13:59 359 1.958 2.026 10/5/10 14:21 380 1.993 2.061 10/5/10 13:38 338 1.974 2.042 10/5/10 14:00 359 1.961 2.029 10/5/10 14:21 381 1.993 2.061 10/5/10 13:39 338 1.970 2.038 10/5/10 14:00 360 1.966 2.034 10/5/10 14:21 381 1.995 2.063 10/5/10 13:39 339 1.961 2.029 10/5/10 14:00 360 1.971 2.039 10/5/10 14:22 381 1.995 2.063							1.002				1.000	
10/5/10 13:37 337 1.971 2.039 10/5/10 13:59 358 1.966 2.034 10/5/10 14:20 380 1.996 2.064 10/5/10 13:38 337 1.975 2.043 10/5/10 13:59 359 1.964 2.032 10/5/10 14:20 380 1.992 2.06 10/5/10 13:38 338 1.974 2.042 10/5/10 13:59 359 1.958 2.026 10/5/10 14:21 380 1.993 2.061 10/5/10 13:38 338 1.974 2.042 10/5/10 14:00 359 1.961 2.029 10/5/10 14:21 381 1.996 2.064 10/5/10 13:39 338 1.970 2.038 10/5/10 14:00 360 1.966 2.034 10/5/10 14:21 381 1.995 2.063 10/5/10 13:39 339 1.950 2.018 10/5/10 14:00 360 1.971 2.039 10/5/10 14:22 381 1.995 2.063 10/5/10 13:40 340 1.966 2.034 10/5/10 14:01 360 1.983 2.051 10/5/10 14:22 382 2.001 2.069												
10/5/10 13:37 337 1.971 2.039 10/5/10 13:59 358 1.966 2.034 10/5/10 14:20 380 1.996 2.064 10/5/10 13:38 337 1.975 2.043 10/5/10 13:59 359 1.964 2.032 10/5/10 14:20 380 1.992 2.06 10/5/10 13:38 338 1.974 2.042 10/5/10 14:00 359 1.958 2.026 10/5/10 14:21 380 1.993 2.061 10/5/10 13:38 338 1.974 2.042 10/5/10 14:00 359 1.961 2.029 10/5/10 14:21 381 1.996 2.064 10/5/10 13:39 338 1.970 2.038 10/5/10 14:00 360 1.966 2.034 10/5/10 14:21 381 1.995 2.063 10/5/10 13:39 339 1.950 2.018 10/5/10 14:00 360 1.971 2.039 10/5/10 14:22 381 1.995 2.063 10/5/10 13:40 339 1.961 2.029 10/5/10 14:01 360 1.983 2.051 10/5/10 14:22 382 2.001 2.069	10/5/10 13:37	337	1.969	2.037	10/5/10 13:58	358	1.966	2.034	10/5/10 14:20	379	1.995	2.063
10/5/10 13:38 337 1.975 2.043 10/5/10 13:59 359 1.964 2.032 10/5/10 14:20 380 1.992 2.06 10/5/10 13:38 338 1.974 2.042 10/5/10 13:59 359 1.958 2.026 10/5/10 14:21 380 1.993 2.061 10/5/10 13:38 338 1.974 2.042 10/5/10 14:00 359 1.961 2.029 10/5/10 14:21 381 1.996 2.064 10/5/10 13:39 338 1.970 2.038 10/5/10 14:00 360 1.966 2.034 10/5/10 14:21 381 1.995 2.063 10/5/10 13:39 339 1.950 2.018 10/5/10 14:00 360 1.971 2.039 10/5/10 14:22 381 1.995 2.063 10/5/10 13:40 339 1.961 2.029 10/5/10 14:01 360 1.983 2.051 10/5/10 14:22 382 2.001 2.069 10/5/10 13:40 340 1.949 2.017 10/5/10 14:01 361 1.980 2.048 10/5/10 14:23 382 1.997 2.065	10/5/10 13:37	337	1 971	2 039			1 966	2 034		380	1 996	2 064
10/5/10 13:38 338 1.974 2.042 10/5/10 13:59 359 1.958 2.026 10/5/10 14:21 380 1.993 2.061 10/5/10 13:38 338 1.974 2.042 10/5/10 14:00 359 1.961 2.029 10/5/10 14:21 381 1.996 2.064 10/5/10 13:39 338 1.970 2.038 10/5/10 14:00 360 1.966 2.034 10/5/10 14:21 381 1.995 2.063 10/5/10 13:39 339 1.950 2.018 10/5/10 14:00 360 1.971 2.039 10/5/10 14:22 381 1.995 2.063 10/5/10 13:39 339 1.961 2.029 10/5/10 14:01 360 1.983 2.051 10/5/10 14:22 382 2.001 2.069 10/5/10 13:40 339 1.966 2.034 10/5/10 14:01 361 1.980 2.048 10/5/10 14:22 382 1.999 2.067 10/5/10 13:40 340 1.994 2.017 10/5/10 14:02 361 1.976 2.044 10/5/10 14:23 382 1.997 2.065												
10/5/10 13:38 338 1.974 2.042 10/5/10 14:00 359 1.961 2.029 10/5/10 14:21 381 1.996 2.064 10/5/10 13:39 338 1.970 2.038 10/5/10 14:00 360 1.966 2.034 10/5/10 14:21 381 1.995 2.063 10/5/10 13:39 339 1.950 2.018 10/5/10 14:00 360 1.971 2.039 10/5/10 14:22 381 1.995 2.063 10/5/10 13:39 339 1.961 2.029 10/5/10 14:01 360 1.983 2.051 10/5/10 14:22 382 2.001 2.069 10/5/10 13:40 339 1.966 2.034 10/5/10 14:01 361 1.980 2.048 10/5/10 14:22 382 1.999 2.067 10/5/10 13:40 340 1.949 2.017 10/5/10 14:01 361 1.976 2.044 10/5/10 14:23 382 1.997 2.065 10/5/10 13:40 340 1.955 2.023 10/5/10 14:02 361 1.975 2.043 10/5/10 14:23 383 1.997 2.065												
10/5/10 13:38 338 1.974 2.042 10/5/10 14:00 359 1.961 2.029 10/5/10 14:21 381 1.996 2.064 10/5/10 13:39 338 1.970 2.038 10/5/10 14:00 360 1.966 2.034 10/5/10 14:21 381 1.995 2.063 10/5/10 13:39 339 1.950 2.018 10/5/10 14:00 360 1.971 2.039 10/5/10 14:22 381 1.995 2.063 10/5/10 13:39 339 1.961 2.029 10/5/10 14:01 360 1.983 2.051 10/5/10 14:22 382 2.001 2.069 10/5/10 13:40 339 1.966 2.034 10/5/10 14:01 361 1.980 2.048 10/5/10 14:22 382 1.999 2.067 10/5/10 13:40 340 1.949 2.017 10/5/10 14:01 361 1.976 2.044 10/5/10 14:23 382 1.997 2.065 10/5/10 13:40 340 1.955 2.023 10/5/10 14:02 361 1.975 2.043 10/5/10 14:23 383 1.997 2.066	10/5/10 13:38	338	1.974	2.042	10/5/10 13:59	359	1.958	2.026	10/5/10 14:21	380	1.993	2.061
10/5/10 13:39 338 1.970 2.038 10/5/10 14:00 360 1.966 2.034 10/5/10 14:21 381 1.995 2.063 10/5/10 13:39 339 1.950 2.018 10/5/10 14:00 360 1.971 2.039 10/5/10 14:22 381 1.995 2.063 10/5/10 13:39 339 1.961 2.029 10/5/10 14:01 360 1.983 2.051 10/5/10 14:22 382 2.001 2.069 10/5/10 13:40 340 1.966 2.034 10/5/10 14:01 361 1.980 2.048 10/5/10 14:22 382 1.999 2.067 10/5/10 13:40 340 1.949 2.017 10/5/10 14:01 361 1.976 2.044 10/5/10 14:23 382 1.997 2.065 10/5/10 13:40 340 1.955 2.023 10/5/10 14:02 361 1.975 2.043 10/5/10 14:23 383 1.997 2.065 10/5/10 13:41 340 1.955 2.023 10/5/10 14:02 362 1.973 2.041 10/5/10 14:23 383 1.997 2.065	10/5/10 13:38											
10/5/10 13:39 339 1.950 2.018 10/5/10 14:00 360 1.971 2.039 10/5/10 14:22 381 1.995 2.063 10/5/10 13:39 339 1.961 2.029 10/5/10 14:01 360 1.983 2.051 10/5/10 14:22 382 2.001 2.069 10/5/10 13:40 340 1.966 2.034 10/5/10 14:01 361 1.980 2.048 10/5/10 14:23 382 1.997 2.065 10/5/10 13:40 340 1.949 2.017 10/5/10 14:01 361 1.976 2.044 10/5/10 14:23 382 1.997 2.065 10/5/10 13:40 340 1.955 2.023 10/5/10 14:02 361 1.975 2.043 10/5/10 14:23 383 1.997 2.065 10/5/10 13:41 340 1.955 2.023 10/5/10 14:02 362 1.973 2.041 10/5/10 14:23 383 1.997 2.065												
10/5/10 13:39 339 1.961 2.029 10/5/10 14:01 360 1.983 2.051 10/5/10 14:22 382 2.001 2.069 10/5/10 13:40 339 1.966 2.034 10/5/10 14:01 361 1.980 2.048 10/5/10 14:22 382 1.999 2.067 10/5/10 13:40 340 1.949 2.017 10/5/10 14:01 361 1.976 2.044 10/5/10 14:23 382 1.997 2.065 10/5/10 13:40 340 1.955 2.023 10/5/10 14:02 361 1.975 2.043 10/5/10 14:23 383 1.998 2.066 10/5/10 13:41 340 1.955 2.023 10/5/10 14:02 362 1.973 2.041 10/5/10 14:23 383 1.997 2.065												
10/5/10 13:39 339 1.961 2.029 10/5/10 14:01 360 1.983 2.051 10/5/10 14:22 382 2.001 2.069 10/5/10 13:40 339 1.966 2.034 10/5/10 14:01 361 1.980 2.048 10/5/10 14:22 382 1.999 2.067 10/5/10 13:40 340 1.949 2.017 10/5/10 14:01 361 1.976 2.044 10/5/10 14:23 382 1.997 2.065 10/5/10 13:40 340 1.955 2.023 10/5/10 14:02 361 1.975 2.043 10/5/10 14:23 383 1.998 2.066 10/5/10 13:41 340 1.955 2.023 10/5/10 14:02 362 1.973 2.041 10/5/10 14:23 383 1.997 2.065	10/5/10 13:39	339	1.950	2.018	10/5/10 14:00	360	1.971	2.039	10/5/10 14:22	381	1.995	2.063
10/5/10 13:40 339 1.966 2.034 10/5/10 14:01 361 1.980 2.048 10/5/10 14:22 382 1.999 2.067 10/5/10 13:40 340 1.949 2.017 10/5/10 14:01 361 1.976 2.044 10/5/10 14:23 382 1.997 2.065 10/5/10 13:40 340 1.955 2.023 10/5/10 14:02 361 1.975 2.043 10/5/10 14:23 383 1.998 2.066 10/5/10 13:41 340 1.955 2.023 10/5/10 14:02 362 1.973 2.041 10/5/10 14:23 383 1.997 2.065												
10/5/10 13:40 340 1.949 2.017 10/5/10 14:01 361 1.976 2.044 10/5/10 14:23 382 1.997 2.065 10/5/10 13:40 340 1.955 2.023 10/5/10 14:02 361 1.975 2.043 10/5/10 14:23 383 1.998 2.066 10/5/10 13:41 340 1.955 2.023 10/5/10 14:02 362 1.973 2.041 10/5/10 14:23 383 1.997 2.065				2.020								
10/5/10 13:40 340 1.955 2.023 10/5/10 14:02 361 1.975 2.043 10/5/10 14:23 383 1.998 2.066 10/5/10 13:41 340 1.955 2.023 10/5/10 14:02 362 1.973 2.041 10/5/10 14:23 383 1.997 2.065												
10/5/10 13:40 340 1.955 2.023 10/5/10 14:02 361 1.975 2.043 10/5/10 14:23 383 1.998 2.066 10/5/10 13:41 340 1.955 2.023 10/5/10 14:02 362 1.973 2.041 10/5/10 14:23 383 1.997 2.065	10/5/10 13:40	340	1.949	2.017	10/5/10 14:01	361	1.976	2.044	10/5/10 14:23	382	1.997	2.065
10/5/10 13:41 340 1.955 2.023 10/5/10 14:02 362 1.973 2.041 10/5/10 14:23 383 1.997 2.065		340						2.043				
10/5/10 13:41 341 1.960 2.028 10/5/10 14:02 362 1.977 2.045 10/5/10 14:24 383 2.001 2.069												
	10/5/10 13:41	341	1.960	2.028	10/5/10 14:02	362	1.977	2.045	10/5/10 14:24	383	2.001	2.069

10/5/10 14:24	204	2.042	2.004	10/5/10 11.15	405	2.020	2.407	10/5/10 15:07	406	2.074	2 4 4 2
10/5/10 14:24	384	2.013	2.081	10/5/10 14:45	405	2.039	2.107	10/5/10 15:07	426	2.074	2.142
10/5/10 14:24	384	2.026	2.094	10/5/10 14:46	405	2.038	2.106	10/5/10 15:07	427	2.071	2.139
10/5/10 14:25	384	2.019	2.087	10/5/10 14:46	406	2.042	2.11	10/5/10 15:07	427	2.073	2.141
10/5/10 14:25	385	2.009	2.077	10/5/10 14:46	406	2.044	2.112	10/5/10 15:08	427	2.072	2.14
10/5/10 14:25	385	2.012	2.08	10/5/10 14:47	406	2.042	2.11	10/5/10 15:08	428	2.082	2.15
10/5/10 14:26	385	2.010	2.078	10/5/10 14:47	407	2.041	2.109	10/5/10 15:08	428	2.069	2.137
10/5/10 14:26	386	2.016	2.084	10/5/10 14:47	407	2.042	2.11	10/5/10 15:09	428	2.069	2.137
10/5/10 14:26	386	2.014	2.082	10/5/10 14:48	407	2.043	2.111	10/5/10 15:09	429	2.045	2.113
10/5/10 14:27	386	2.015	2.083	10/5/10 14:48	408	2.046	2.114	10/5/10 15:09	429	2.053	2.121
10/5/10 14:27	387	2.017	2.085	10/5/10 14:48	408	2.058	2.126	10/5/10 15:10	429	2.061	2.129
10/5/10 14:27	387	2.017	2.087	10/5/10 14:49	408	2.049	2.120	10/5/10 15:10	430	2.050	2.118
10/5/10 14:27		2.019	2.091	10/5/10 14:49	409	2.049		10/5/10 15:10		2.054	
	387						2.117		430		2.122
10/5/10 14:28	388	2.018	2.086	10/5/10 14:49	409	2.059	2.127	10/5/10 15:11	430	2.067	2.135
10/5/10 14:28	388	2.022	2.09	10/5/10 14:50	409	2.047	2.115	10/5/10 15:11	431	2.060	2.128
10/5/10 14:29	388	2.020	2.088	10/5/10 14:50	410	2.044	2.112	10/5/10 15:11	431	2.043	2.111
10/5/10 14:29	389	2.022	2.09	10/5/10 14:50	410	2.046	2.114	10/5/10 15:12	431	2.044	2.112
10/5/10 14:29	389	2.020	2.088	10/5/10 14:51	410	2.048	2.116	10/5/10 15:12	432	2.048	2.116
10/5/10 14:30	389	2.021	2.089	10/5/10 14:51	411	2.050	2.118	10/5/10 15:12	432	2.050	2.118
10/5/10 14:30	390	2.033	2.101	10/5/10 14:51	411	2.051	2.119	10/5/10 15:13	432	2.049	2.117
10/5/10 14:30	390	2.021	2.089	10/5/10 14:52	411	2.054	2.122	10/5/10 15:13	433	2.049	2.117
10/5/10 14:31	390	2.023	2.091	10/5/10 14:52	412	2.053	2.121	10/5/10 15:13	433	2.055	2.123
10/5/10 14:31	391	2.021	2.089	10/5/10 14:52	412	2.053	2.121	10/5/10 15:14	433	2.052	2.12
10/5/10 14:31	391	2.024	2.092	10/5/10 14:53	412	2.054	2.122	10/5/10 15:14	434	2.051	2.119
10/5/10 14:32	391	2.036	2.104	10/5/10 14:53	413	2.056	2.124	10/5/10 15:14	434	2.049	2.117
10/5/10 14:32	392	2.027	2.095	10/5/10 14:53	413	2.057	2.125	10/5/10 15:15	434	2.046	2.114
10/5/10 14:32	392	2.026	2.094	10/5/10 14:54	413	2.054	2.122	10/5/10 15:15	435	2.048	2.116
10/5/10 14:33	392	2.025	2.093	10/5/10 14:54	414	2.064	2.132	10/5/10 15:15	435	2.043	2.111
10/5/10 14:33	393	2.026	2.094	10/5/10 14:54	414	2.054	2.122	10/5/10 15:16	435	2.040	2.108
10/5/10 14:33	393	2.027	2.095	10/5/10 14:55	414	2.054	2.122	10/5/10 15:16	436	2.045	2.113
10/5/10 14:34	393	2.025	2.093	10/5/10 14:55	415	2.054	2.122	10/5/10 15:16	436	2.030	2.098
10/5/10 14:34	394	2.030	2.098	10/5/10 14:55	415	2.055	2.123	10/5/10 15:17	436	2.005	2.073
10/5/10 14:34	394	2.033	2.101	10/5/10 14:56	415	2.068	2.136	10/5/10 15:17	437	2.020	2.088
10/5/10 14:35	394	2.027	2.095	10/5/10 14:56	416	2.060	2.128	10/5/10 15:17	437	2.043	2.111
10/5/10 14:35	395	2.027	2.095	10/5/10 14:56	416	2.059	2.127	10/5/10 15:18	437	2.056	2.124
10/5/10 14:35	395	2.026	2.094	10/5/10 14:57	416	2.055	2.123	10/5/10 15:18	438	2.042	2.11
10/5/10 14:36	395	2.027	2.095	10/5/10 14:57	417	2.055	2.123	10/5/10 15:18	438	2.043	2.111
10/5/10 14:36	396	2.029	2.097	10/5/10 14:57	417	2.061	2.129	10/5/10 15:19	438	2.041	2.109
10/5/10 14:36	396	2.028	2.096	10/5/10 14:58	417	2.059	2.127	10/5/10 15:19	439	2.045	2.113
10/5/10 14:37	396	2.040	2.108	10/5/10 14:58	418	2.054	2.122	10/5/10 15:19	439	2.043	2.112
10/5/10 14:37	397	2.030	2.098	10/5/10 14:58	418	2.055	2.123	10/5/10 15:20	439	2.043	2.111
10/5/10 14:37	397	2.027	2.095	10/5/10 14:59	418	2.056	2.124	10/5/10 15:20	440	2.044	2.112
10/5/10 14:38	397	2.027	2.095	10/5/10 14:59	419	2.061	2.129	10/5/10 15:20	440	2.043	2.111
10/5/10 14:38	398	2.028	2.096	10/5/10 14:59	419	2.059	2.127	10/5/10 15:21	440	2.041	2.109
10/5/10 14:38	398	2.029	2.097	10/5/10 15:00	419	2.060	2.128	10/5/10 15:21	441	2.042	2.11
10/5/10 14:39	398	2.028	2.096	10/5/10 15:00	420	2.061	2.129	10/5/10 15:21	441	2.041	2.109
10/5/10 14:39	399	2.029	2.097	10/5/10 15:00	420	2.057	2.125	10/5/10 15:22	441	2.042	2.11
10/5/10 14:39	399	2.032	2.1	10/5/10 15:01	420	2.056	2.124	10/5/10 15:22	442	2.044	2.112
10/5/10 14:40	399	2.033	2.101	10/5/10 15:01	421	2.057	2.125	10/5/10 15:22	442	2.042	2.11
10/5/10 14:40	400	2.035	2.103	10/5/10 15:01	421	2.059	2.127	10/5/10 15:23	442	2.050	2.118
10/5/10 14:40	400	2.034	2.102	10/5/10 15:02	421	2.060	2.128	10/5/10 15:23	443	2.048	2.116
10/5/10 14:41	400	2.051	2.119	10/5/10 15:02	422	2.074	2.142	10/5/10 15:23	443	2.045	2.113
10/5/10 14:41	401	2.040	2.108	10/5/10 15:02	422	2.062	2.13	10/5/10 15:24	443	2.045	2.113
10/5/10 14:41	401	2.035	2.103	10/5/10 15:03	422	2.059	2.127	10/5/10 15:24	444	2.049	2.117
10/5/10 14:42	401	2.034	2.102	10/5/10 15:03	423	2.064	2.132	10/5/10 15:24	444	2.048	2.116
	-			10/5/10 15:05							
10/5/10 14:42	402	2.035	2.103	10/5/10 15:03	423	2.060	2.128	10/5/10 15:25	444	2.052	2.12
10/5/10 14:42	402	2.035	2.103	10/5/10 15:04	423	2.064	2.132	10/5/10 15:25	445	2.051	2.119
10/5/10 14:43	402	2.037	2.105	10/5/10 15:04	424	2.062	2.13	10/5/10 15:25	445	2.049	2.117
10/5/10 14:43	403	2.036	2.104	10/5/10 15:04	424	2.063	2.131	10/5/10 15:26	445	2.046	2.114
10/5/10 14:43	403	2.046	2.114	10/5/10 15:05	424	2.063	2.131	10/5/10 15:26	446	2.041	2.109
10/5/10 14:44	403	2.039	2.107	10/5/10 15:05	425	2.065	2.133	10/5/10 15:26	446	2.045	2.113
10/5/10 14:44	404	2.038	2.106	10/5/10 15:05	425	2.062	2.13	10/5/10 15:27	446	2.045	2.113
10/5/10 14:44	404	2.050	2.118	10/5/10 15:06	425	2.068	2.136	10/5/10 15:27	447	2.053	2.121
10/5/10 14:45	404	2.037	2.105	10/5/10 15:06	426	2.071	2.139	10/5/10 15:27	447	2.049	2.117
10/5/10 14:45	405	2.037	2.105	10/5/10 15:06	426	2.078	2.146	10/5/10 15:28	447	2.047	2.115

10/5/10 15:28	110	2.048	2.116	10/5/10 15	.40 460	2.107	2.175	10/5/10 16:11	490	2.131	2.199
10/5/10 15:28	448 448	2.046	2.114	10/5/10 15		2.107	2.173	10/5/10 16:11	491	2.131	2.199
10/5/10 15:29	448	2.040	2.115	10/5/10 15		2.110	2.176	10/5/10 16:11	491	2.134	2.202
10/5/10 15:29	449	2.047	2.113	10/5/10 15		2.112	2.176	10/5/10 16:11	491		2.204
10/5/10 15:29	449					2.112	2.10		492	2.136 2.134	2.204
		2.047	2.115	10/5/10 15 10/5/10 15				10/5/10 16:12 10/5/10 16:12			
10/5/10 15:30	449	2.046	2.114	10/5/10 15		2.109	2.177		492	2.130	2.198
10/5/10 15:30	450	2.050	2.118			2.108	2.176	10/5/10 16:13	492	2.131	2.199
10/5/10 15:30	450 450	2.048	2.116	10/5/10 15 10/5/10 15		2.110	2.178	10/5/10 16:13 10/5/10 16:13	493	2.133	2.201
10/5/10 15:31	450	2.059	2.127			2.113	2.181		493	2.135	2.203
10/5/10 15:31	451 451	2.049	2.117	10/5/10 15		2.112	2.18	10/5/10 16:14	493	2.137	2.205
10/5/10 15:31	451	2.047	2.115	10/5/10 15		2.114	2.182	10/5/10 16:14	494	2.148	2.216
10/5/10 15:32	451	2.044	2.112	10/5/10 15		2.111	2.179	10/5/10 16:14	494	2.136	2.204
10/5/10 15:32 10/5/10 15:32	452	2.047	2.115	10/5/10 15		2.111 2.112	2.179	10/5/10 16:15	494 495	2.133 2.133	2.201
10/5/10 15:32	452 452	2.050 2.049	2.118 2.117	10/5/10 15 10/5/10 15			2.18 2.177	10/5/10 16:15 10/5/10 16:15	495 495	2.133	2.201
10/5/10 15:33		2.049	2.117	10/5/10 15		2.109 2.109	2.177	10/5/10 16:15		2.134	2.202 2.206
10/5/10 15:33	453	2.053				2.109	2.177	10/5/10 16:16	495 496	2.130	2.200
10/5/10 15:33	453 453	2.059	2.127	10/5/10 15 10/5/10 15		2.111	2.179		496	2.159	
			2.133					10/5/10 16:16			2.219
10/5/10 15:34	454 454	2.077 2.065	2.145	10/5/10 15		2.111	2.179	10/5/10 16:17	496	2.139	2.207
10/5/10 15:34	454 454	2.065	2.133	10/5/10 15 10/5/10 15		2.114 2.114	2.182 2.182	10/5/10 16:17	497 497	2.139 2.140	2.207
10/5/10 15:35 10/5/10 15:35		2.063	2.133 2.13	10/5/10 15		2.114	2.182	10/5/10 16:17 10/5/10 16:18		2.140	2.208 2.206
	455	2.062					2.103		497 498	2.130	
10/5/10 15:35 10/5/10 15:36	455 455	2.062	2.13 2.134	10/5/10 15 10/5/10 15		2.111 2.117	2.179	10/5/10 16:18 10/5/10 16:18	498	2.137	2.205 2.207
10/5/10 15:36		2.085	2.154	10/5/10 15		2.117	2.105	10/5/10 16:19	498		2.212
10/5/10 15:36	456 456	2.003	2.179	10/5/10 15		2.120	2.196	10/5/10 16:19	499	2.144 2.144	2.212
10/5/10 15:37	456 456	2.111	2.179	10/5/10 15		2.117	2.165	10/5/10 16:19	499	2.144	2.212
10/5/10 15:37		2.113	2.16	10/5/10 15		2.119	2.172	10/5/10 16:19	499		2.216
10/5/10 15:37	457 457	2.092	2.159	10/5/10 15		2.104	2.172	10/5/10 16:20	500	2.148 2.145	2.213
10/5/10 15:38	457 457	2.091	2.166	10/5/10 15		2.109	2.177	10/5/10 16:20	500	2.143	2.213
10/5/10 15:38	458	2.097	2.165	10/5/10 15		2.120	2.182	10/5/10 16:21	500	2.141	2.214
10/5/10 15:38	458 458	2.101	2.169	10/5/10 16		2.114	2.182	10/5/10 16:21	501	2.140	2.214
10/5/10 15:39	458	2.097	2.165	10/5/10 16		2.114	2.184	10/5/10 16:21	501	2.144	2.21
10/5/10 15:39	459	2.097	2.165	10/5/10 16		2.110	2.189	10/5/10 16:21	501	2.139	2.207
10/5/10 15:39	459	2.099	2.167	10/5/10 16		2.118	2.186	10/5/10 16:22	502	2.145	2.213
10/5/10 15:40	459	2.100	2.168	10/5/10 16		2.120	2.188	10/5/10 16:22	502	2.142	2.21
10/5/10 15:40	460	2.096	2.164	10/5/10 16		2.126	2.194	10/5/10 16:22	502	2.144	2.212
10/5/10 15:40	460	2.104	2.172	10/5/10 16		2.136	2.204	10/5/10 16:23	503	2.144	2.212
10/5/10 15:41	460	2.101	2.169	10/5/10 16		2.124	2.192	10/5/10 16:23	503	2.149	2.217
10/5/10 15:41	461	2.100	2.168	10/5/10 16		2.121	2.189	10/5/10 16:24	503	2.149	2.217
10/5/10 15:41	461	2.106	2.174	10/5/10 16		2.125	2.193	10/5/10 16:24	504	2.149	2.217
10/5/10 15:42	461	2.100	2.168	10/5/10 16		2.120	2.188	10/5/10 16:24	504	2.149	2.217
10/5/10 15:42	462	2.104	2.172	10/5/10 16		2.117	2.185	10/5/10 16:25	504	2.151	2.219
10/5/10 15:42	462	2.102	2.17	10/5/10 16		2.114	2.182	10/5/10 16:25	505	2.148	2.216
10/5/10 15:43	462	2.102	2.17	10/5/10 16		2.121	2.189	10/5/10 16:25	505	2.155	2.223
10/5/10 15:43	463	2.106	2.174	10/5/10 16		2.123	2.191	10/5/10 16:26	505	2.149	2.217
10/5/10 15:43	463	2.107	2.175	10/5/10 16		2.120	2.188	10/5/10 16:26	506	2.146	2.214
10/5/10 15:44	463	2.104	2.172	10/5/10 16		2.123	2.191	10/5/10 16:26	506	2.146	2.214
10/5/10 15:44	464	2.102	2.17	10/5/10 16	:05 485	2.123	2.191	10/5/10 16:27	506	2.149	2.217
10/5/10 15:44	464	2.103	2.171	10/5/10 16		2.123	2.191	10/5/10 16:27	507	2.147	2.215
10/5/10 15:45	464	2.104	2.172	10/5/10 16		2.137	2.205	10/5/10 16:27	507	2.151	2.219
10/5/10 15:45	465	2.104	2.172	10/5/10 16	:06 486	2.122	2.19	10/5/10 16:28	507	2.144	2.212
10/5/10 15:45	465	2.104	2.172	10/5/10 16	:07 486	2.127	2.195	10/5/10 16:28	508	2.146	2.214
10/5/10 15:46	465	2.103	2.171	10/5/10 16		2.121	2.189	10/5/10 16:28	508	2.148	2.216
10/5/10 15:46	466	2.104	2.172	10/5/10 16	:07 487	2.127	2.195	10/5/10 16:29	508	2.147	2.215
10/5/10 15:46	466	2.110	2.178	10/5/10 16	:08 487	2.128	2.196	10/5/10 16:29	509	2.151	2.219
10/5/10 15:47	466	2.108	2.176	10/5/10 16		2.125	2.193	10/5/10 16:29	509	2.148	2.216
10/5/10 15:47	467	2.104	2.172	10/5/10 16		2.126	2.194	10/5/10 16:30	509	2.147	2.215
10/5/10 15:47	467	2.112	2.18	10/5/10 16		2.121	2.189	10/5/10 16:30	510	2.151	2.219
10/5/10 15:48	467	2.110	2.178	10/5/10 16		2.130	2.198	10/5/10 16:30	510	2.151	2.219
10/5/10 15:48	468	2.110	2.178	10/5/10 16		2.130	2.198	10/5/10 16:31	510	2.152	2.22
10/5/10 15:48	468	2.108	2.176	10/5/10 16		2.132	2.2	10/5/10 16:31	511	2.155	2.223
10/5/10 15:49	468	2.107	2.175	10/5/10 16		2.134	2.202	10/5/10 16:31	511	2.154	2.222
10/5/10 15:49	469	2.107	2.175	10/5/10 16	:10 490	2.130	2.198	10/5/10 16:32	511	2.154	2.222

40/F/40 46:22	E40	0.456	0.004	10/5/10 16:50	F22	0.476	2 244	10/5/10 17:15	EE A	2 205	2 272
10/5/10 16:32	512	2.156	2.224	10/5/10 16:53	533	2.176	2.244	10/5/10 17:15	554	2.205	2.273
10/5/10 16:32	512	2.156	2.224	10/5/10 16:54	533	2.178	2.246	10/5/10 17:15	555	2.216	2.284
10/5/10 16:33	512	2.156	2.224	10/5/10 16:54	534	2.177	2.245	10/5/10 17:15	555	2.214	2.282
10/5/10 16:33	513	2.155	2.223	10/5/10 16:54	534	2.179	2.247	10/5/10 17:16	555	2.206	2.274
10/5/10 16:33	513	2.163	2.231	10/5/10 16:55	534	2.181	2.249	10/5/10 17:16	556	2.207	2.275
10/5/10 16:34	513	2.167	2.235	10/5/10 16:55	535	2.177	2.245	10/5/10 17:16	556	2.207	2.275
10/5/10 16:34	514	2.161	2.229	10/5/10 16:55	535	2.178	2.246	10/5/10 17:17	556	2.209	2.277
	514		2.23		535	2.170	2.240	10/5/10 17:17	557	2.211	
10/5/10 16:34		2.162		10/5/10 16:56							2.279
10/5/10 16:35	514	2.162	2.23	10/5/10 16:56	536	2.180	2.248	10/5/10 17:17	557	2.213	2.281
10/5/10 16:35	515	2.161	2.229	10/5/10 16:56	536	2.183	2.251	10/5/10 17:18	557	2.212	2.28
10/5/10 16:35	515	2.160	2.228	10/5/10 16:57	536	2.183	2.251	10/5/10 17:18	558	2.211	2.279
10/5/10 16:36	515	2.161	2.229	10/5/10 16:57	537	2.184	2.252	10/5/10 17:18	558	2.208	2.276
10/5/10 16:36	516	2.168	2.236	10/5/10 16:57	537	2.185	2.253	10/5/10 17:19	558	2.220	2.288
10/5/10 16:36	516	2.163	2.231	10/5/10 16:58	537	2.186	2.254	10/5/10 17:19	559	2.216	2.284
10/5/10 16:37	516	2.159	2.227	10/5/10 16:58	538	2.186	2.254	10/5/10 17:19	559	2.213	2.281
10/5/10 16:37	517	2.158	2.226	10/5/10 16:58	538	2.183	2.251	10/5/10 17:20	559	2.218	2.286
10/5/10 16:37	517	2.165	2.233	10/5/10 16:59	538	2.183	2.251	10/5/10 17:20	560	2.214	2.282
10/5/10 16:38	517	2.166	2.234	10/5/10 16:59	539	2.180	2.248	10/5/10 17:20	560	2.206	2.274
10/5/10 16:38	518	2.158	2.226	10/5/10 16:59	539	2.184	2.252	10/5/10 17:21	560	2.207	2.275
10/5/10 16:38	518	2.162	2.23	10/5/10 17:00	539	2.187	2.255	10/5/10 17:21	561	2.212	2.28
10/5/10 16:39	518	2.159	2.227	10/5/10 17:00	540	2.186	2.254	10/5/10 17:21	561	2.216	2.284
10/5/10 16:39	519	2.163	2.231	10/5/10 17:00	540	2.185	2.253	10/5/10 17:22	561	2.218	2.286
10/5/10 16:39	519	2.168	2.236	10/5/10 17:01	540	2.182	2.25	10/5/10 17:22	562	2.215	2.283
10/5/10 16:40	519	2.163	2.231	10/5/10 17:01	541	2.189	2.257	10/5/10 17:22	562	2.215	2.283
10/5/10 16:40	520	2.159	2.227	10/5/10 17:01	541	2.190	2.258	10/5/10 17:23	562	2.218	2.286
10/5/10 16:40	520	2.164	2.232	10/5/10 17:02	541	2.187	2.255	10/5/10 17:23	563	2.232	2.3
10/5/10 16:41	520	2.161	2.229	10/5/10 17:02	542	2.185	2.253	10/5/10 17:23	563	2.212	2.28
10/5/10 16:41											
	521	2.161	2.229	10/5/10 17:02	542	2.187	2.255	10/5/10 17:24	563	2.213	2.281
10/5/10 16:41	521	2.159	2.227	10/5/10 17:03	542	2.199	2.267	10/5/10 17:24	564	2.217	2.285
10/5/10 16:42	521	2.157	2.225	10/5/10 17:03	543	2.197	2.265	10/5/10 17:24	564	2.226	2.294
10/5/10 16:42	522	2.159	2.227	10/5/10 17:03	543	2.186	2.254	10/5/10 17:25	564	2.215	2.283
10/5/10 16:42	522	2.165	2.233	10/5/10 17:04	543	2.183	2.251	10/5/10 17:25	565	2.220	2.288
10/5/10 16:43	522	2.163	2.231	10/5/10 17:04	544	2.184	2.252	10/5/10 17:25	565	2.219	2.287
10/5/10 16:43	523	2.163	2.231	10/5/10 17:04	544	2.183	2.251	10/5/10 17:26	565	2.222	2.29
10/5/10 16:43	523	2.165	2.233	10/5/10 17:05	544	2.187	2.255	10/5/10 17:26	566	2.219	2.287
10/5/10 16:44	523	2.159	2.227	10/5/10 17:05	545	2.187	2.255	10/5/10 17:26	566	2.219	2.287
10/5/10 16:44	524	2.165	2.233	10/5/10 17:05	545	2.188	2.256	10/5/10 17:27	566	2.222	2.29
10/5/10 16:44	524	2.164	2.232	10/5/10 17:06	545	2.202	2.27	10/5/10 17:27	567	2.221	2.289
10/5/10 16:45	524	2.163	2.231	10/5/10 17:06	546	2.188	2.256	10/5/10 17:27	567	2.220	2.288
			2.233				2.255	10/5/10 17:27			
10/5/10 16:45	525	2.165		10/5/10 17:06	546 546	2.187			567	2.221	2.289
10/5/10 16:45	525	2.165	2.233	10/5/10 17:07	546	2.188	2.256	10/5/10 17:28	568	2.221	2.289
10/5/10 16:46	525	2.164	2.232	10/5/10 17:07	547	2.193	2.261	10/5/10 17:28	568	2.222	2.29
10/5/10 16:46	526	2.166	2.234	10/5/10 17:07	547	2.199	2.267	10/5/10 17:29	568	2.221	2.289
10/5/10 16:46	526	2.165	2.233	10/5/10 17:08	547	2.189	2.257	10/5/10 17:29	569	2.222	2.29
10/5/10 16:47	526	2.166	2.234	10/5/10 17:08	548	2.192	2.26	10/5/10 17:29	569	2.214	2.282
10/5/10 16:47	527	2.166	2.234	10/5/10 17:08	548	2.190	2.258	10/5/10 17:30	569	2.221	2.289
10/5/10 16:47	527	2.163	2.231	10/5/10 17:09	548	2.191	2.259	10/5/10 17:30	570	2.220	2.288
10/5/10 16:48	527	2.165	2.233	10/5/10 17:09	549	2.193	2.261	10/5/10 17:30	570	2.219	2.287
10/5/10 16:48	528	2.167	2.235	10/5/10 17:09	549	2.189	2.257	10/5/10 17:31	570	2.215	2.283
10/5/10 16:48	528	2.165	2.233	10/5/10 17:10	549	2.190	2.258	10/5/10 17:31	571	2.213	2.281
10/5/10 16:49	528	2.167	2.235	10/5/10 17:10	550	2.192	2.26	10/5/10 17:31	571	2.216	2.284
10/5/10 16:49	529	2.166	2.234	10/5/10 17:10	550	2.191	2.259	10/5/10 17:32	571	2.219	2.287
	529							10/5/10 17:32		2.213	
10/5/10 16:49		2.167	2.235	10/5/10 17:11	550 551	2.191	2.259		572 572	2.215	2.283
10/5/10 16:50	529	2.181	2.249	10/5/10 17:11	551	2.190	2.258	10/5/10 17:32	572	2.217	2.285
10/5/10 16:50	530	2.169	2.237	10/5/10 17:11	551	2.203	2.271	10/5/10 17:33	572	2.218	2.286
10/5/10 16:50	530	2.171	2.239	10/5/10 17:12	551	2.195	2.263	10/5/10 17:33	573	2.225	2.293
10/5/10 16:51	530	2.170	2.238	10/5/10 17:12	552	2.197	2.265	10/5/10 17:33	573	2.221	2.289
10/5/10 16:51	531	2.169	2.237	10/5/10 17:12	552	2.199	2.267	10/5/10 17:34	573	2.220	2.288
10/5/10 16:51	531	2.176	2.244	10/5/10 17:13	552	2.201	2.269	10/5/10 17:34	574	2.221	2.289
10/5/10 16:52	531	2.176	2.244	10/5/10 17:13	553	2.200	2.268	10/5/10 17:34	574	2.221	2.289
10/5/10 16:52	532	2.176	2.244	10/5/10 17:13	553	2.198	2.266	10/5/10 17:35	574	2.224	2.292
10/5/10 16:52	532	2.179	2.247	10/5/10 17:14	553	2.203	2.271	10/5/10 17:35	575	2.223	2.291
10/5/10 16:53	532	2.177	2.245	10/5/10 17:14	554	2.204	2.272	10/5/10 17:35	575	2.235	2.303
10/5/10 16:53	533	2.187	2.255	10/5/10 17:14	554	2.203	2.271	10/5/10 17:36	575	2.225	2.293
10,0,10 10.00	550	2.107	00	.0/0/10 17.17	004	2.200	/ '	10,0,10 17.00	010	0	00

100F10 17-36												
OSF1017-36 S76 2230 2288 105/1017-58 S97 2246 2314 105/1018-18 1619 2262 238 105/1017-58 S97 2246 2314 105/1018-18 1619 2262 238 105/1018-18 1619 2262 238 105/1018-18 1619 2262 238 105/1018-18 1619 2262 238 105/1018-18 1619 2262 238 105/1018-18 1619 2262 238 105/1018-18 1619 2262 238 238 236 234 105/1018-20 620 2262 238 238 236	40/F/40 47:20	E76	2 220	2.206	10/5/10 17:57	E07	2.250	2 227	10/5/10 10:10	640	2.265	2 222
106/10 17-37 576 2.229 2.297 106/10 17-58 598 2.248 2.314 106/10 18-10 619 2.249 2.315 106/10 17-38 577 2.223 2.291 106/10 17-59 598 2.246 2.313 106/10 18-20 620 2.281 2.399 106/10 17-59 599 2.246 2.313 106/10 18-20 620 2.281 2.399 106/10 17-59 599 2.246 2.313 106/10 18-20 620 2.281 2.399 106/10 17-59 599 2.246 2.314 106/10 18-20 620 2.281 2.399 106/10 17-59 599 2.246 2.314 106/10 18-20 620 2.281 2.399 106/10 18-20 600 2.256 2.324 106/10 18-20 620 2.281 2.399 106/10 18-20 600 2.256 2.324 106/10 18-20 620 2.281 2.399 106/10 18-20 600 2.256 2.324 106/10 18-20 620 2.281 2.399 106/10 18-20 601 2.259 2.344 106/10 18-20 620 2.258 2.344 106/10 18-20 62				2.290								
106/10 17-37 577 2.225 2.293 106/10 17-58 598 2.246 2.314 106/10 18-20 610 2.251 2.319 106/10 17-58 577 2.255 2.384 106/10 17-58 598 2.246 2.314 106/10 18.20 6.00 2.251 2.319 106/10 17-58 578 2.27 2.295 106/10 17-59 559 2.246 2.316 106/10 18.20 6.00 2.251 2.319 106/10 17-59 579 2.237 2.255 2.351 106/10 17-59 579 2.237 2.255 2.351 106/10 18.20 2.257 2.255 2.351 106/10 17-59 579 2.237 2.255 2.351 106/10 18.20 2.257 2.255 106/10 18.20 2.257 2.258 106/10 18.20 2.257 2.258 106/10 18.20 2.257 2.258 106/10 18.20 2.258 2.257 2.258 106/10 18.20 2.258 2.257 2.258 106/10 18.20 2.258 2.257 2.258 106/10 18.20 2.258 2.257 2.258 106/10 18.20 2.258 2.258 106/10 18.20 2.258 2.258 106/10 18.20 2.258 2.258 106/10 18.20 2.258 2.258 106/10 18.20 2.258 2.258 106/10 18.20 2.258 2.258 106/10 18.20 2.258 2.258 106/10 18.20 2.258 2.258 106/10 18.20 2.258 2.258 106/10 18.20 2.258 2.258 106/10 18.20 2.258 2.258 106/10 18.20 2.258 2.258 106/10 18.20 2.258 2.258 106/10 18.20 2												
106/10 17:37 577 226 294 106/10 17:59 598 2246 2344 106/10 18:20 620 2262 234 106/10 17:38 577 2232 2248 106/10 17:38 578 2232 2248 106/10 17:38 578 2232 2248 106/10 17:38 578 2232 2256 106/10 18:00 598 2241 2319 106/10 18:20 620 2261 2259 2327 106/10 17:38 578 2233 2318 106/10 18:00 598 2241 2319 106/10 18:20 620 2251 2258 2324 106/10 18:20 620 2258 2324 106												
106/10 17-38 577 2.223 2.291 106/10 17-59 599 2.245 2.313 106/10 18.20 620 2.281 2.329 106/10 17-59 599 2.245 2.314 106/10 18.20 621 6.265 2.324 106/10 18.20 621 6.265 2.324 106/10 18.20 621 6.265 2.324 106/10 18.20 621 6.265 2.324 106/10 18.20 621 6.265 2.324 106/10 18.20 621 6.265 2.324 106/10 18.20 621 6.265 2.324 106/10 18.20 621 6.265 2.324 106/10 18.20 621 6.265 2.324 106/10 18.20 621 6.265 2.324 106/10 18.20 621 6.265 6	10/5/10 17:37	577	2.225		10/5/10 17:58	598			10/5/10 18:20	619	2.251	2.319
106/10 17-38 577 2.223 2.291 106/10 17-59 599 2.245 2.313 106/10 18.20 620 2.261 2.325 106/10 17-39 578 2.228 2.296 106/10 18.00 509 2.241 2.316 106/10 18.21 620 2.256 2.326 106/10 17-39 578 2.228 2.296 106/10 18.00 600 2.256 2.322 106/10 18.21 621 2.255 2.324 106/10 18.22 621 2.256 2.324 106/10 18.22 621 2.256 2.324 106/10 18.22 621 2.256 2.324 106/10 18.22 621 2.256 2.324 106/10 18.22 621 2.256 2.324 106/10 18.22 621 2.256 2.324 106/10 18.22 621 2.258 2.324 106/10 18.22 621 2.258 2.324 106/10 18.22 621 2.258 2.324 106/10 18.22 621 2.258 2.324 106/10 18.22 621 2.258 2.324 106/10 18.22 621 2.258 2.324 106/10 18.22 622 2.258 2.326 106/10 17-40 590 2.231 2.298 106/10 18.00 601 2.252 2.328 106/10 18.22 622 2.258 2.326 106/10 18.23 623 2.258 2.326 106/10 18	10/5/10 17:37	577	2.226	2.294	10/5/10 17:59	598	2.246	2.314	10/5/10 18:20	620	2.262	2.33
105/10 17-38												
106/10 17-38 578 2.227 2.285 106/10 18:00 609 2.251 2.319 106/10 18:21 621 2.259 2.327 106/10 17:30 579 2.237 2.305 106/10 18:01 601 2.251 2.319 106/10 18:02 622 2.257 2.325 106/10 17:30 579 2.231 2.299 106/10 18:01 601 2.251 2.319 106/10 18:22 622 2.257 2.325 106/10 17:30 579 2.231 2.299 106/10 18:01 601 2.252 2.321 106/10 18:22 622 2.254 2.325 106/10 17:30 579 2.231 2.299 106/10 18:01 601 2.253 2.311 106/10 18:23 622 2.254 2.332 106/10 17:41 580 2.231 2.299 106/10 18:01 601 2.253 2.321 106/10 18:22 622 2.254 2.332 106/10 17:41 580 2.231 2.308 106/10 18:01 601 2.253 2.321 106/10 18:23 622 2.254 2.332 106/10 17:41 580 2.232 2.308 106/10 18:02 602 2.254 2.322 106/10 18:24 623 2.254 2.332 106/10 17:41 581 2.232 2.301 106/10 18:03 602 2.254 2.322 106/10 18:24 623 2.254 2.332 106/10 17:44 580 2.233 2.301 106/10 18:03 602 2.259 2.338 106/10 18:24 623 2.254 2.332 106/10 17:44 580 2.233 2.301 106/10 18:04 603 2.220 2.338 106/10 18:24 623 2.254 2.322 106/10 17:44 582 2.233 2.301 106/10 18:04 603 2.220 2.338 106/10 18:25 624 2.258 2.258 106/10 17:44 582 2.237 2.305 106/10 18:04 603 2.220 2.338 106/10 18:25 624 2.258 2.258 106/10 17:45 582 2.237 2.306 106/10 18:04 603 2.259 2.327 106/10 18:26 625 2.259 2.236 106/10 17:45 583 2.247 2.315 106/10 18:05 606 2.259 2.327 106/10 18:26 626 2.268 2.334 106/10 17:45 583 2.247 2.315 106/10 18:05 606 2.259 2.327 106/10 18:26 628 2.268 2.334 106/10 17:45 586 2.240 2.308 106/10 18:06 606 2.259 2.327 106/10 18:26 628 2.268 2.334 106/10 17:45 586 2.244 2.331 106/10 18:06 606 2.259 2.333 106/10 18:30 603 2.265 2.334 106/10 17:46 586 2.244 2.332 106/10 17												
106/10 17-39 578 2.228 2.296 106/10 18:00 600 2.254 2.322 106/10 18:21 621 2.256 2.324 106/10 18:21 621 2.256 2.324 106/10 18:21 621 2.256 2.324 106/10 18:21 621 2.256 2.324 106/10 18:22 622 2.258 106/10 17:40 578 2.231 2.299 106/10 18:01 601 2.252 2.32 106/10 18:22 622 2.258 2.328 106/10 17:40 580 2.231 2.299 106/10 18:01 601 2.252 2.32 106/10 18:23 622 2.258 2.328 106/10 17:40 580 2.231 2.299 106/10 18:01 601 2.252 2.35 106/10 18:23 623 2.262 2.334 106/10 18:23 623 2.262 2.334 106/10 18:23 623 2.262 2.334 106/10 18:24 624 2.258 2.364 106/10 18:24 624 2.258 2.364 106/10 18:24 624 2.258 2.364 106/10 18:24 624 2.258 2.364 106/10 18:24 624 2.258 2.364 106/10 18:24 624 2.258 2.364 106/10 17:44 581 2.233 2.301 105/10 18:03 603 2.272 2.33 106/10 18:24 624 2.258 2.364 106/10 18:24 624												
1005/1017-39							2.251					
105/1017-340 579 2.237 2.395												
106/1017-40 590 2.231 2.299	10/5/10 17:39	579	2.233		10/5/10 18:00	600		2.324	10/5/10 18:22	621	2.258	2.326
106/10/11-74-00/1-75	10/5/10 17:39	579	2.237	2.305	10/5/10 18:01	600	2.251	2.319		622	2.257	2.325
106/10/11-74-00/1-75	10/5/10 17:40	579	2.231		10/5/10 18:01	601	2.252	2.32	10/5/10 18:22	622	2.264	2.332
1015/10 17-40 580 2.231 2.299 105/10 18:02 601 2.277 2.325 106/10 18:23 623 2.262 2.331 105/10 17-41 580 2.240 2.308 106/10 18:02 602 2.253 2.322 106/10 18:23 623 2.264 2.332 105/10 17-41 580 2.240 2.308 106/10 18:02 602 2.253 2.322 106/10 18:23 623 2.264 2.332 105/10 17-41 681 2.238 2.304 106/10 18:03 603 2.272 2.34 106/10 18:24 623 2.268 2.326 105/10 17-42 581 2.238 2.301 106/10 18:03 603 2.272 2.34 106/10 18:25 624 2.258 2.326 105/10 17-42 582 2.237 2.305 106/10 18:04 603 2.272 2.338 106/10 18:25 624 2.258 2.326 105/10 17-43 583 2.247 2.315 106/10 18:04 603 2.272 2.33 106/10 18:25 625 2.281 2.329 105/10 17-43 583 2.247 2.315 106/10 18:05 605 2.259 2.327 106/10 18:26 626 2.266 2.334 105/10 17-44 584 2.238 2.306 106/10 18:05 605 2.259 2.327 106/10 18:26 626 2.266 2.334 105/10 17-44 584 2.238 2.308 106/10 18:05 605 2.259 2.327 106/10 18:26 626 2.266 2.334 105/10 17-44 584 2.240 2.308 106/10 18:05 605 2.259 2.327 106/10 18:26 626 2.266 2.334 105/10 17-44 584 2.240 2.308 106/10 18:05 605 2.259 2.327 106/10 18:26 626 2.266 2.334 105/10 17-44 584 2.240 2.308 106/10 18:05 605 2.259 2.327 106/10 18:26 626 2.266 2.334 105/10 17-44 584 2.240 2.308 106/10 18:05 605 2.259 2.326 106/10 18:27 626 2.268 2.334 105/10 17-44 584 2.240 2.308 106/10 18:05 605 2.258 2.336 106/10 18:27 626 2.268 2.334 105/10 17-44 584 2.240 2.308 106/10 18:05 605 2.258 2.336 106/10 18:27 626 2.268 2.334 105/10 18:05 605 2.258 2.336 106/10 18:28 626 2.268 2.334 105/10 18:05 605 2.258 2.335 105/10 18:05 605 2.258 2.336 106/10 18:27 6				2 299			2 253	2 321				
1005/10 17.41 580 2.240 2.308 1005/10 18:02 602 2.253 2.321 1005/10 18:23 623 2.264 2.332 1005/10 17.41 581 2.232 2.33 1005/10 18:02 602 2.254 2.322 1005/10 18:24 623 2.264 2.332 1005/10 17.42 582 2.233 2.301 1005/10 18:03 603 2.267 2.338 1005/10 18:25 624 2.258 2.258 1005/10 18:25 625 2.261 2.259 1005/10 17.43 582 2.237 2.305 1005/10 18:04 603 2.262 2.333 1005/10 18:25 625 2.261 2.329 1005/10 17.43 583 2.249 2.315 1005/10 18:04 604 2.259 2.327 1005/10 18:25 625 2.261 2.329 1005/10 17.44 583 2.249 2.316 1005/10 18:04 604 2.259 2.327 1005/10 18:26 625 2.261 2.329 1005/10 17.44 583 2.249 2.308 1005/10 18:05 605 2.258 2.327 1005/10 18:26 625 2.261 2.329 1005/10 17.44 583 2.249 2.308 1005/10 18:05 605 2.258 2.327 1005/10 18:26 625 2.261 2.329 1005/10 17.44 583 2.249 2.308 1005/10 18:05 605 2.258 2.327 1005/10 18:26 625 2.261 2.329 1005/10 17.44 583 2.240 2.308 1005/10 18:05 605 2.258 2.323 1005/10 18:27 626 2.268 2.338 1005/10 17.44 584 2.240 2.308 1005/10 18:05 605 2.258 2.323 1005/10 18:27 627 2.270 2.338 1005/10 17.44 584 2.240 2.308 1005/10 18:05 605 2.258 2.323 1005/10 18:27 627 2.270 2.338 1005/10 18:27 627 2.270 2.338 1005/10 18:27 627 2.270 2.338 1005/10 17.45 586 2.249 2.311 1005/10 18:05 605 2.258 2.323 1005/10 18:27 627 2.270 2.338 1005/10 18:27 627 2.270 2.338 1005/10 18:27 627 2.272 2.338 1005/10 18:28 628 2.272 2.344 1005/10 18:05 605 2.259 2.323 1005/10 18:27 627 2.272 2.338 1005/10 17.45 586 2.249 2.311 1005/10 18:05 605 2.255 2.333 1005/10 18:27 627 2.272 2.338 1005/10 18:28 628 2.238 2.305 1005/10 18:28 628 2.249 2.332 1005/10 18:28 628 2.249 2.332 1005/10 18:28 628 2.249 2				2.200								
105/10 17:41	10/5/10 17:40			2.200								
105/10 17:44												
10 10 17 142 58 2.236												
10\(\sigma(10)\) 1742 582 2.233 2.301 10\(\sigma(10)\) 1804 603 2.267 2.338 10\(\sigma(10)\) 10\(\sigma(10)\) 1742 582 2.237 2.305 10\(\sigma(10)\) 10\(\sigma(10)\) 1804 603 2.267 2.335 10\(\sigma(10)\) 10\(\sigma(10)\) 1743 583 2.237 2.305 10\(\sigma(10)\) 10\(\sigma(10)\) 1804 604 2.259 2.337 10\(\sigma(10)\) 10\(\sigma(10)\) 10\(\sigma(10)\) 1805 605 2.259 2.337 10\(\sigma(10)\) 10\(\sigma(10)\) 1805 605 2.259 2.327 10\(\sigma(10)\) 10\(\sigma(10)\) 1805 606 2.255 2.323 10\(\sigma(10)\) 10\(\sigma(10)\) 10\(\sigma(10)\) 1805 606 2.255 2.323 10\(\sigma(10)\) 10\(\sigma(10)\) 1805 606 2.255 2.323 10\(\sigma(10)\) 10\(\sigma(10)\) 1805 606 2.255 2.323 10\(\sigma(10)\) 10\(\sigma(10)\) 10\(\sigma(10)\) 1805 606 2.255 2.323 10\(\sigma(10)\) 10\(\sigma(10)\) 10\(\sigma(10)\) 1805 606 2.255 2.323 10\(\sigma(10)\) 10\(\sigma(10												
105/1017/42 582 2.237 2.305 105/1018/04 603 2.262 2.33 105/1018/25 625 2.261 2.329 105/1017/43 582 2.237 2.305 105/1018/04 604 2.257 2.339 105/1018/25 625 2.261 2.329 105/1017/43 583 2.249 2.317 105/1018/04 604 2.271 2.339 105/1018/25 625 2.259 2.327 105/1018/25 625 2.259 2.327 105/1018/25 625 2.259 2.327 105/1018/25 625 2.259 2.327 105/1018/25 625 2.259 2.327 105/1018/25 625 2.259 2.327 105/1018/25 625 2.259 2.327 105/1018/25 625 2.259 2.327 105/1018/25 625 2.259 2.327 105/1018/25 625 2.259 2.327 105/1018/25 625 2.259 2.327 105/1018/25 625 2.259 2.327 105/1018/25 625 2.259 2.327 105/1018/25 625 2.259 2.327 105/1018/25 625 2.259 2.327 105/1018/25 625 2.259 2.327 105/1018/25 625 2.259 2.335 105/1018/25 625 2.259 2.327 105/1018/25 625 2.259 2.335 105/1018/25 625 2.259 2.327 105/1018/25 625 2.259 2.335 105/1018/25 625 2.259 2.335 105/1018/25 625 2.259 2.335 105/1018/25 625 2.259 2.335 105/1018/25 625 2.259 2.335 105/1018/25 625 2.259 2.327 105/1018/25 625 2.259 2.335 105/1018/25 625 2.259 2.335 105/1018/25 625 2.259 2.335 105/1018/25 625 2.259 2.335 105/1018/25 625 2.259 2.335 105/1018/25 625 2.259 2.335 105/1018/25 625 2.259 2.335 105/1018/25 625 2.259 2.335 105/1018/25 625 2.259 2.335 105/1018/25 625 2.259 2.335 105/1018/25 625 2.259 2.335 105/1018/25 625 2.259 2.335 105/1018/25 625 2.259 2.335 105/1018/25 625 2.259 2.335 105/1018/25 625 2.259 2.335 105/1018/25 625 2.259 2.335 105/1018/25 625 2.259 2.335 105/1018/25 625 2.259 2.335 105/1018/25 625 2.258 2.335 105/1018/25 625 2.258 2.335 105/1018/25 625 2.258 2.335 105/1018/25 625 2.258 2.335 105/1018/25 625 2.258 2	10/5/10 17:42	581	2.236	2.304	10/5/10 18:03	603	2.272	2.34	10/5/10 18:24	624	2.258	2.326
105/1017/42 582 2.237 2.305 105/1018/04 603 2.262 2.33 105/1018/25 625 2.261 2.329 105/1017/43 582 2.237 2.305 105/1018/04 604 2.257 2.339 105/1018/25 625 2.261 2.329 105/1017/43 583 2.249 2.317 105/1018/04 604 2.271 2.339 105/1018/25 625 2.259 2.327 105/1018/25 625 2.259 2.327 105/1018/25 625 2.259 2.327 105/1018/25 625 2.259 2.327 105/1018/25 625 2.259 2.327 105/1018/25 625 2.259 2.327 105/1018/25 625 2.259 2.327 105/1018/25 625 2.259 2.327 105/1018/25 625 2.259 2.327 105/1018/25 625 2.259 2.327 105/1018/25 625 2.259 2.327 105/1018/25 625 2.259 2.327 105/1018/25 625 2.259 2.327 105/1018/25 625 2.259 2.327 105/1018/25 625 2.259 2.327 105/1018/25 625 2.259 2.327 105/1018/25 625 2.259 2.335 105/1018/25 625 2.259 2.327 105/1018/25 625 2.259 2.335 105/1018/25 625 2.259 2.327 105/1018/25 625 2.259 2.335 105/1018/25 625 2.259 2.335 105/1018/25 625 2.259 2.335 105/1018/25 625 2.259 2.335 105/1018/25 625 2.259 2.335 105/1018/25 625 2.259 2.327 105/1018/25 625 2.259 2.335 105/1018/25 625 2.259 2.335 105/1018/25 625 2.259 2.335 105/1018/25 625 2.259 2.335 105/1018/25 625 2.259 2.335 105/1018/25 625 2.259 2.335 105/1018/25 625 2.259 2.335 105/1018/25 625 2.259 2.335 105/1018/25 625 2.259 2.335 105/1018/25 625 2.259 2.335 105/1018/25 625 2.259 2.335 105/1018/25 625 2.259 2.335 105/1018/25 625 2.259 2.335 105/1018/25 625 2.259 2.335 105/1018/25 625 2.259 2.335 105/1018/25 625 2.259 2.335 105/1018/25 625 2.259 2.335 105/1018/25 625 2.259 2.335 105/1018/25 625 2.258 2.335 105/1018/25 625 2.258 2.335 105/1018/25 625 2.258 2.335 105/1018/25 625 2.258 2.335 105/1018/25 625 2.258 2	10/5/10 17:42	582	2.233	2.301	10/5/10 18:03	603	2.270	2.338	10/5/10 18:25	624	2.258	2.326
105/1017/43 583 2.249 2.317 105/1018.04 604 2.259 2.327 105/1018.25 625 2.261 2.329 105/1017/43 583 2.247 2.315 105/1018.05 605 2.252 2.337 105/1018.26 625 2.256 2.329 105/1018.26 625 2.256 2.329 105/1018.26 625 2.256 2.329 105/1018.26 625 2.266 2.334 105/1018.26 625 2.266 2.334 105/1018.26 625 2.266 2.334 105/1018.26 625 2.266 2.334 105/1018.26 625 2.266 2.334 105/1018.26 625 2.266 2.334 105/1018.26 625 2.266 2.334 105/1018.26 625 2.266 2.334 105/1018.26 625 2.266 2.334 105/1018.26 625 2.268 2.336 105/1018.26 625 2.268 2.336 105/1018.26 625 2.268 2.336 105/1018.26 625 2.268 2.336 105/1018.26 625 2.268 2.336 105/1018.27 627 2.276 2.335 105/1017.45 584 2.240 2.308 105/1018.06 606 2.268 2.336 105/1018.26 627 2.264 2.332 105/1017.45 585 2.242 2.314 105/1018.06 606 2.268 2.336 105/1018.28 628 2.266 2.334 105/1018.26 626 2.268 2.336 105/1018.28 628 2.266 2.334 105/1018.26 626 2.268 2.336 105/1018.28 628 2.266 2.334 105/1018.26 626 2.268 2.366 2.368 105/1018.29 628 2.266 2.334 105/1018.29 628												
105/1017/43 583 2.249 2.317 105/1018.04 604 2.271 2.339 105/1018.26 626 2.259 2.327 105/10174.4 583 2.238 2.308 105/1018.05 605 2.259 2.327 105/1018.26 626 2.266 2.334 105/1018.04 583 2.233 2.308 105/1018.05 605 2.259 2.327 105/1018.26 626 2.266 2.334 105/1018.07 607 2.258 2.327 105/1018.26 626 2.266 2.334 105/1018.07 607 2.258 2.327 105/1018.26 626 2.266 2.334 105/1018.07 607 2.258 2.327 105/1018.27 627 2.267 2.338 105/1018.74 584 2.237 2.305 105/1018.06 606 2.259 2.327 105/1018.28 627 2.267 2.335 105/1018.74 585 2.242 2.311 105/1018.07 606 2.259 2.328 105/1018.28 627 2.267 2.335 105/1018.74 585 2.246 2.314 105/1018.07 607 2.258 2.331 105/1018.28 628 2.266 2.334 105/1018.07 607 2.258 2.331 105/1018.28 628 2.266 2.334 105/1018.48 628 2.263 2.368 105/1018.28 628 2.266 2.334 105/1018.74 586 2.243 2.311 105/1018.07 607 2.278 2.344 105/1018.07 607 2.278 2.344 105/1018.29 628 2.273 2.341 105/1018.07 607 2.278 2.345 105/1018.29 628 2.273 2.341 105/1018.07 607 2.278 2.345 105/1018.29 628 2.267 2.335 105/1017.47 587 2.234 2.309 105/1018.08 608 2.262 2.33 105/1018.09 628 2.267 2.335 105/1017.48 587 2.234 2.309 105/1018.09 608 2.262 2.33 105/1018.30 630 2.268 2.336 105/1018.30 630 2.268 2.336 105/1018.30 630 2.268 2.336 105/1018.30 630 2.268 2.336 105/1018.31 631 2.267 2.335 105/1017.48 588 2.243 2.311 105/1018.09 609 2.264 2.332 105/1018.31 631 2.267 2.335 105/1017.49 589 2.244 2.312 105/1018.11 610 2.272 2.34 105/1018.31 631 2.267 2.335 105/1017.59 589 2.244 2.312 105/1018.11 611 2.268 2.336 105/1018.33 632 2.272 2.341 105/1017.59 589 2.246 2.313 105/1018.11 611 2.268 2.3							2 259					
1005/1017:44							2.233					
105/10 17:44 583											2.239	
105/10 17:44 584												
105/10 17:44							2.259					
105/10 17:45 584 2.237 2.305 105/10 18:06 606 2.259 2.327 2.326 2.332 105/10 18:28 627 2.267 2.335 105/10 17:45 585 2.246 2.314 105/10 18:07 606 2.260 2.328 105/10 18:28 628 2.262 2.334 105/10 18:07 606 2.263 2.331 105/10 18:28 628 2.263 2.334 105/10 18:08 628 2.273 2.334 105/10 18:07 607 2.263 2.331 105/10 18:28 628 2.273 2.334 105/10 18:08 607 2.263 2.333 105/10 18:28 628 2.273 2.341 105/10 18:08 607 2.263 2.333 105/10 18:28 628 2.272 2.34 105/10 18:08 607 2.265 2.333 105/10 18:29 628 2.261 2.329 105/10 17:47 586 2.239 2.307 105/10 18:08 607 2.265 2.333 105/10 18:29 628 2.227 2.34 105/10 18:09 608 2.272 2.34 105/10 18:09 608 2.272 2.34 105/10 18:09 608 2.272 2.34 105/10 18:09 608 2.272 2.34 105/10 18:09 609 2.264 2.332 105/10 18:30 630 2.266 2.333 105/10 18:30 630 2.266 2.334 105/10 18:30 630 2.268 2.336 105/10 18:30 630 2.268 2.336 105/10 18:30 630 2.268 2.336 105/10 18:30 630 2.268 2.336 105/10 18:30 630 2.268 2.336 105/10 18:30 630 2.268 2.336 105/10 18:30 630 2.268 2.336 105/10 18:30 630 2.268 2.336 105/10 18:30 630 2.268 2.336 105/10 18:30 630 2.268 2.336 105/10 18:30 630 2.268 2.336 105/10 18:30 630 2.268 2.336 105/10 18:30 630 2.268 2.336 105/10 18:30 630 2.268 2.336 105/10 18:30 630 2.268 2.336 105/10 18:30 630 2.268 2.336 105/10 18:30 630 2.268 2.336 105/10 18:30 630 2.268 2.336 105/10 18:30 630 2.267 2.335 105/10 18:30 630 2.267 2.335 105/10 18:30 630 2.267 2.335 105/10 18:30 630 2.267 2.335 105/10 18:30 630 2.267 2.335 105/10 18:30 630 2.267 2.335 105/10 18:30 630 2.267 2.335 105/10 18:30 630 2.267 2.335 105/10 18:30 630 2.267 2.335 105/10 18:30 630 2.267 2.335												
10/5/10 17:45 584 2.237 2.305 10/5/10 18:06 606 2.259 2.327 10/5/10 18:27 627 2.264 2.332 10/5/10 17:45 585 2.246 2.314 10/5/10 18:07 606 2.268 2.336 10/5/10 18:28 628 2.266 2.334 10/5/10 17:46 585 2.248 2.311 10/5/10 18:07 606 2.263 2.331 10/5/10 18:28 628 2.266 2.334 10/5/10 17:46 586 2.243 2.311 10/5/10 18:07 607 2.278 2.346 10/5/10 18:28 628 2.263 2.334 10/5/10 17:46 586 2.243 2.307 10/5/10 18:08 607 2.278 2.346 10/5/10 18:29 628 2.273 2.341 10/5/10 18:09 608 2.249 2.333 10/5/10 18:29 628 2.261 2.329 10/5/10 18:09 608 2.262 2.333 10/5/10 18:30 629 2.277 2.345 10/5/10 18:09 608 2.262 2.334 10/5/10 18:30 629 2.267 2.334 10/5/10 18:30 629 2.267 2.334 10/5/10 18:30 629 2.267 2.334 10/5/10 18:30 629 2.267 2.334 10/5/10 18:30 629 2.267 2.335 10/5/10 18:30 629 2.267 2.335 10/5/10 18:30 629 2.267 2.335 10/5/10 18:30 629 2.267 2.335 10/5/10 18:30 629 2.267 2.335 10/5/10 18:30 629 2.267 2.335 10/5/10 18:30 629 2.267 2.335 10/5/10 18:30 629 2.267 2.335 10/5/10 18:30 629 2.267 2.335 10/5/10 18:30 629 2.267 2.335 10/5/10 18:30 629 2.267 2.335 10/5/10 18:30 629 2.267 2.335 10/5/10 18:30 629 2.266 2.334 10/5/10 18:30 629 2.266 2.334 10/5/10 18:30 629 2.266 2.334 10/5/10 18:30 629 2.266 2.334 10/5/10 18:30 629 2.266 2.334 10/5/10 18:30 629 2.266 2.334 10/5/10 18:30 629 2.266 2.335 10/5/10 18:30 630 2.268 2.335 10/5/10 18:30 630 2.268 2.335 10/5/10 18:30 630 2.268 2.335 10/5/10 18:30 630 2.268 2.335 10/5/10 18:30 630 2.268 2.335 10/5/10 18:30 630 2.268 2.335 10/5/10 18:30 630 2.268 2.335 10/5/10 18:30 630 2.268 2.335 10/5/10 18:30 630 2.268 2.335 10/5/10 18:30 630 2.268 2.335 10/5/10 18:30 630 2.268 2.335 10/5/10 18:30 630 2.268 2.335 10/5/10 18:30 630 2.268 2.335 10/5/10 18:30 630 2.268 2.335 10/5/10 18:30 630 2.268 2.335 10/5/10 18:30 630 2.268 2.335 10/5/10 18:30 630 2.269 2.335 10/5/10 18:30 630 2.268 2.335 10/5/10 18:30 630 2.268 2.335 10/5/10 18:30 630 2.268 2.335 10/5/10 18:30 630 2.268 2.335 10/5/10 18:30 630 2.268 2.335 10/5/10 18:30 630 2.268 2.335 10/5/10 18:30 630 2.268 2.335 10/5/10 18:30 630 2.268 2.335 10/5/1	10/5/10 17:44	584	2.240	2.308	10/5/10 18:06	605	2.255	2.323		627	2.270	2.338
10/5/10 17:45 585 2,246 2,314 10/5/10 18:06 606 2,268 2,336 10/5/10 18:28 627 2,267 2,335 10/5/10 17:45 585 2,243 2,311 10/5/10 18:07 607 2,263 2,331 10/5/10 18:28 628 2,263 2,334 10/5/10 17:46 586 2,240 2,308 10/5/10 18:08 607 2,263 2,331 10/5/10 18:29 628 2,273 2,341 10/5/10 18:08 608 2,273 2,346 10/5/10 18:29 628 2,273 2,341 10/5/10 18:08 607 2,265 2,333 10/5/10 18:29 629 2,272 2,345 10/5/10 17:47 586 2,239 2,307 10/5/10 18:08 608 2,272 2,344 10/5/10 18:39 629 2,277 2,335 10/5/10 17:47 587 2,236 2,304 10/5/10 18:08 608 2,272 2,344 10/5/10 18:30 629 2,267 2,335 10/5/10 17:47 587 2,234 2,302 10/5/10 18:09 608 2,262 2,273 2,341 10/5/10 18:30 630 2,266 2,334 10/5/10 18:30 630 2,266 2,334 10/5/10 18:30 630 2,266 2,334 10/5/10 18:30 630 2,266 2,334 10/5/10 18:40 588 2,249 2,317 10/5/10 18:09 609 2,264 2,332 10/5/10 18:30 630 2,268 2,334	10/5/10 17:45	584	2.237		10/5/10 18:06	606	2.259		10/5/10 18:27	627		2.332
10/5/10 17:46 585 2,243 2,314 10/5/10 18:07 606 2,260 2,328 10/5/10 18:28 628 2,266 2,334 10/5/10 17:46 586 2,239 2,307 10/5/10 18:07 607 2,278 2,346 10/5/10 18:29 629 2,261 2,324 10/5/10 17:46 586 2,240 2,308 10/5/10 18:08 607 2,278 2,346 10/5/10 18:29 629 2,272 2,34 10/5/10 17:47 586 2,239 2,307 10/5/10 18:08 608 2,272 2,34 10/5/10 18:29 629 2,267 2,335 10/5/10 17:47 587 2,236 2,304 10/5/10 18:08 608 2,272 2,34 10/5/10 18:30 629 2,267 2,335 10/5/10 17:47 587 2,234 2,302 10/5/10 18:08 608 2,272 2,34 10/5/10 18:30 630 2,266 2,334 10/5/10 18:30 630 2,266 2,334 10/5/10 18:30 630 2,266 2,334 10/5/10 18:30 630 2,266 2,334 10/5/10 18:30 630 2,266 2,334 10/5/10 18:30 630 2,266 2,334 10/5/10 18:30 630 2,266 2,334 10/5/10 18:30 630 2,266 2,334 10/5/10 18:30 630 2,266 2,334 10/5/10 18:30 630 2,266 2,334 10/5/10 18:30 630 2,266 2,334 10/5/10 18:30 630 2,266 2,334 10/5/10 18:30 630 2,266 2,334 10/5/10 18:30 630 2,266 2,334 10/5/10 18:30 630 2,266 2,334 10/5/10 18:30 630 2,266 2,334 10/5/10 18:30 630 2,266 2,334 10/5/10 18:30 630 2,266 2,334 10/5/10 18:31 631 2,267 2,335 10/5/10 18:31 631 2,267 2,335 10/5/10 18:31 631 2,267 2,335 10/5/10 18:31 631 2,267 2,335 10/5/10 18:31 631 2,267 2,335 10/5/10 18:31 631 2,267 2,335 10/5/10 18:31 631 2,269 2,333 10/5/10 18:32 631 2,341 10/5/10 18:10 610 2,263 2,331 10/5/10 18:33 633 2,264 2,332 10/5/10 18:33 633 2,264 2,332 10/5/10 18:33 633 2,264 2,332 10/5/10 18:33 633 2,264 2,332 10/5/10 18:33 633 2,264 2,332 10/5/10 18:33 633 2,277 2,335 10/5/10 18:33 633 2,277 2,335 10/5/10 18:33 633 2,277 2,335 10/5/10 18:33 633 2,277 2,335 10/5/10 18:33 633 2,277 2,335 10/5/10 18:33 633 2,277 2,335 10/5/10 17:55 591 2,244 2,312 10/5/10 18:13 612 2,268 2,333 10/5/10 18:33 633 2,277 2,335 10/5/10 17:55 591 2,244 2,312 10/5/10 18:13 612 2,268 2,333 10/5/10 18:33 633 2,277 2,335 10/5/10 17:55 591 2,244 2,312 10/5/10 18:13 612 2,268 2,333 10/5/10 18:34 633 2,277 2,335 10/5/10 18:35 633 2,246 2,332 10/5/10 18:35 633 2,247 2,335 10/5/10 18:35 633 2,247 2,335 10/5/10 18:35 633 2,248 2,341 10/5/10 18:35 63												
10/5/10 17:46 585 2,243 2,311 10/5/10 18:07 607 2,263 2,331 10/5/10 18:28 628 2,273 2,342 10/5/10 17:46 586 2,239 2,307 10/5/10 18:08 607 2,265 2,333 10/5/10 18:29 628 2,272 2,34 10/5/10 18:29 629 2,272 2,34 10/5/10 18:29 629 2,272 2,34 10/5/10 18:29 629 2,272 2,34 10/5/10 18:29 629 2,267 2,335 10/5/10 17:47 587 2,236 2,304 10/5/10 18:08 608 2,262 2,33 10/5/10 18:30 629 2,267 2,335 10/5/10 17:47 587 2,234 2,302 10/5/10 18:08 608 2,262 2,33 10/5/10 18:30 629 2,267 2,335 10/5/10 17:47 587 2,234 2,302 10/5/10 18:09 609 2,264 2,332 10/5/10 18:30 630 2,268 2,334 10/5/10 17:48 587 2,249 2,317 10/5/10 18:09 609 2,264 2,332 10/5/10 18:30 630 2,268 2,334 10/5/10 17:48 588 2,251 2,319 10/5/10 18:09 609 2,264 2,332 10/5/10 18:31 630 2,268 2,335 10/5/10 17:49 588 2,243 2,311 10/5/10 18:10 609 2,261 2,329 10/5/10 18:31 631 2,267 2,335 10/5/10 17:49 588 2,243 2,311 10/5/10 18:10 609 2,261 2,232 10/5/10 18:31 631 2,267 2,335 10/5/10 17:49 589 2,244 2,312 10/5/10 18:10 609 2,263 2,331 10/5/10 18:32 632 2,244 2,312 10/5/10 18:11 610 2,272 2,34 10/5/10 18:32 632 2,264 2,332 10/5/10 18:32 632 2,244 2,332 10/5/10 18:33 631 2,267 2,335 10/5/10 17:49 589 2,244 2,312 10/5/10 18:10 610 2,263 2,331 10/5/10 18:33 631 2,267 2,335 10/5/10 18:33 631 2,267 2,335 10/5/10 18:33 631 2,267 2,335 10/5/10 18:33 633 2,268 2,333 10/5/10 18:33 633 2,228 2,333 10/5/10 18:33 633 2,228 2,333 10/5/10 18:33 633 2,228 2,333 10/5/10 18:33 633 2,228 2,333 10/5/10 18:33 633 2,228 2,333 10/5/10 18:33 633 2,228 2,333 10/5/10 18:33 633 2,228 2,333 10/5/10 18:33 633 2,228 2,333 10/5/10 18:33 633 2,228 2,333 10/5/10 18:33 633 2,228 2,333 10/5/10 18:33 633 2,223 2,334 10/5/10 18:33 633 2,223 2,334 10/5/10 18:33 633 2,223 2,334 10/5/10 18:33 633 2,223 2,334 10/5/10 18:33 633 2,223 2,334 10/5/10 18:33 633 2,223 2,334 10/5/10 18:33 633 2,223 2,334 10/5/10 18:33 633 2,223 2,334 10/5/10 18:33 633 2,223 2,334 10/5/10 18:33 633 2,223 2,334 10/5/10 18:33 633 2,223 2,334 10/5/10 18:33 633 2,223 2,334 10/5/10 18:33 633 2,223 2,334 10/5/10 18:33 633 2,223 2,334 10/5/10 18:33												
10/5/10 17:46 586 2.239 2.307 10/5/10 18:08 607 2.265 2.333 10/5/10 18:29 629 2.272 2.34 10/5/10 18:29 629 2.272 2.34 10/5/10 18:29 629 2.272 2.34 10/5/10 18:29 629 2.272 2.34 10/5/10 18:29 629 2.272 2.34 10/5/10 18:30 630 2.266 2.335 10/5/10 17:47 587 2.236 2.304 10/5/10 18:08 608 2.262 2.33 10/5/10 18:30 630 2.266 2.334 10/5/10 18:30 630 2.266 2.334 10/5/10 18:30 630 2.266 2.334 10/5/10 18:30 630 2.266 2.334 10/5/10 18:30 630 2.266 2.334 10/5/10 18:30 630 2.266 2.334 10/5/10 18:30 630 2.266 2.334 10/5/10 18:30 630 2.266 2.335 10/5/10 17:48 588 2.243 2.311 10/5/10 18:09 609 2.264 2.332 10/5/10 18:31 630 2.267 2.335 10/5/10 17:48 588 2.243 2.311 10/5/10 18:10 609 2.261 2.329 10/5/10 18:31 631 2.267 2.335 10/5/10 17:49 588 2.242 2.31 10/5/10 18:10 609 2.261 2.329 10/5/10 18:31 631 2.269 2.337 10/5/10 17:49 589 2.244 2.312 10/5/10 18:10 610 2.263 2.331 10/5/10 18:32 631 2.265 2.333 10/5/10 17:50 589 2.244 2.312 10/5/10 18:11 610 2.272 2.34 10/5/10 18:32 632 2.264 2.332 10/5/10 18:32 631 2.265 2.333 10/5/10 17:50 589 2.245 2.313 10/5/10 18:11 611 2.267 2.335 10/5/10 18:33 633 2.277 2.345 10/5/10 18:31 631 2.269 2.333 10/5/10 17:50 590 2.240 2.308 10/5/10 18:11 611 2.268 2.333 10/5/10 18:33 633 2.277 2.345 10/5/10 18:33 633 2.277 2.345 10/5/10 18:13 631 2.269 2.333 10/5/10 18:33 633 2.277 2.345 10/5/10 18:13 631 2.269 2.333 10/5/10 18:33 633 2.277 2.345 10/5/10 18:33 633 2.277 2.345 10/5/10 18:33 633 2.277 2.345 10/5/10 18:33 633 2.277 2.345 10/5/10 18:33 633 2.277 2.345 10/5/10 18:33 633 2.277 2.345 10/5/10 18:33 633 2.277 2.345 10/5/10 18:33 633 2.277 2.345 10/5/10 18:33 633 2.277 2.345 10/5/10 18:33 633 2.277 2.345 10/5/10 18:33 633 2.277 2.345 10/5/10 18:33 633 2.277 2.345 10/5/10 18:33 633 2.277 2.345 10/5/10 18:33 633 2.277 2.345 10/5/10 18:33 633 2.277 2.345 10/5/10 18:34 634 2.277 2.345 10/5/10 18:34 634 2.277 2.345 10/5/10 18:34 634 2.277 2.345 10/5/10 18:34 634 2.277 2.345 10/5/10 18:34 634 2.277 2.345 10/5/10 18:34 634 2.277 2.345 10/5/10 18:34 634 2.277 2.345 10/5/10 18:34 634 2.273 2.341 10/5/10 18:36									10/5/10 10:20			
10/5/10 17:46 586 2.240 2.308 10/5/10 18:08 607 2.265 2.333 10/5/10 18:29 629 2.272 2.34 10/5/10 17:47 587 2.236 2.304 10/5/10 18:08 608 2.272 2.34 10/5/10 18:30 629 2.267 2.335 10/5/10 17:47 587 2.234 2.302 10/5/10 18:09 608 2.272 2.34 10/5/10 18:30 630 2.266 2.334 10/5/10 18:30 630 2.266 2.334 10/5/10 18:30 630 2.268 2.336 10/5/10 17:48 587 2.234 2.302 10/5/10 18:09 609 2.264 2.332 10/5/10 18:30 630 2.268 2.336 10/5/10 17:48 588 2.251 2.319 10/5/10 18:09 609 2.264 2.332 10/5/10 18:31 631 2.267 2.335 10/5/10 17:49 588 2.243 2.311 10/5/10 18:10 609 2.261 2.329 10/5/10 18:31 631 2.267 2.335 10/5/10 17:49 588 2.243 2.311 10/5/10 18:10 609 2.264 2.332 10/5/10 18:31 631 2.267 2.335 10/5/10 17:49 589 2.244 2.311 10/5/10 18:10 610 2.263 2.331 10/5/10 18:31 631 2.269 2.337 10/5/10 17:49 589 2.244 2.312 10/5/10 18:11 610 2.272 2.34 10/5/10 18:32 631 2.265 2.333 10/5/10 17:50 589 2.245 2.313 10/5/10 18:11 610 2.272 2.34 10/5/10 18:32 632 2.264 2.332 10/5/10 18:32 632 2.264 2.332 10/5/10 17:50 589 2.245 2.313 10/5/10 18:11 611 2.268 2.336 10/5/10 18:33 633 2.272 2.341 10/5/10 18:11 611 2.268 2.336 10/5/10 18:33 633 2.272 2.341 10/5/10 18:11 611 2.268 2.336 10/5/10 18:33 633 2.272 2.341 10/5/10 18:11 611 2.268 2.336 10/5/10 18:33 633 2.272 2.341 10/5/10 18:12 611 2.265 2.333 10/5/10 18:33 633 2.272 2.341 10/5/10 18:12 611 2.265 2.333 10/5/10 18:33 633 2.272 2.341 10/5/10 18:13 611 2.268 2.336 10/5/10 18:33 633 2.272 2.341 10/5/10 18:13 611 2.268 2.336 10/5/10 18:33 633 2.272 2.341 10/5/10 18:13 611 2.268 2.336 10/5/10 18:33 633 2.272 2.341 10/5/10 18:13 611 2.268 2.336 10/5/10 18:34 634 2.272 2.344 10/5/10 18:34 634 2.272 2.344 10/5/10 18:34 634 2.272 2.344 10/5/10 18:34 634 2.272 2.344 10/5/10 18:35 635 2.276 2.334 10/5/10 18:35 635 2.276 2.334 10/5/10 18:36 636 2.272 2.344 10/5/10 18:36 636 2.272 2.344 10/5/10 18:36 636 2.272 2.344 10/5/10 18:36 636 2.272 2.344 10/5/10 18:36 636 2.275 2.343 10/5/10 18:36 636 2.275 2.343 10/5/10 18:36 636 2.275 2.343 10/5/10 18:36 636 2.275 2.343 10/5/10 18:36 636 2.275 2.343 10/5/10 18:							2.203					
10/5/10 17:47 586 2.239 2.307 10/5/10 18:08 608 2.262 2.33 10/5/10 18:09 629 2.267 2.335 10/5/10 17:47 587 2.234 2.302 10/5/10 18:09 608 2.262 2.33 10/5/10 18:30 630 2.266 2.334 10/5/10 17:48 587 2.249 2.317 10/5/10 18:09 609 2.264 2.332 10/5/10 18:30 630 2.268 2.336 10/5/10 17:48 588 2.261 2.319 10/5/10 18:09 609 2.264 2.332 10/5/10 18:31 630 2.267 2.335 10/5/10 17:48 588 2.261 2.319 10/5/10 18:09 609 2.264 2.332 10/5/10 18:31 630 2.267 2.335 10/5/10 17:49 588 2.242 2.311 10/5/10 18:10 609 2.261 2.329 10/5/10 18:31 631 2.267 2.335 10/5/10 17:49 589 2.243 2.311 10/5/10 18:10 610 2.268 2.336 10/5/10 18:31 631 2.265 2.333 10/5/10 17:49 589 2.244 2.312 10/5/10 18:10 610 2.268 2.331 10/5/10 18:31 631 2.265 2.333 10/5/10 17:50 589 2.244 2.312 10/5/10 18:11 610 2.272 2.34 10/5/10 18:32 632 2.264 2.332 10/5/10 18:31 631 2.265 2.333 10/5/10 17:50 589 2.244 2.312 10/5/10 18:11 611 2.267 2.335 10/5/10 18:32 632 2.267 2.335 10/5/10 17:50 589 2.244 2.312 10/5/10 18:11 611 2.267 2.335 10/5/10 18:33 633 2.273 2.341 10/5/10 18:11 611 2.268 2.336 10/5/10 18:33 632 2.272 2.34 10/5/10 18:13 611 2.268 2.336 10/5/10 18:33 633 2.273 2.341 10/5/10 18:12 611 2.265 2.333 10/5/10 18:33 633 2.273 2.341 10/5/10 18:12 611 2.265 2.333 10/5/10 18:33 633 2.273 2.341 10/5/10 18:12 611 2.265 2.333 10/5/10 18:33 633 2.273 2.341 10/5/10 18:12 611 2.265 2.333 10/5/10 18:34 633 2.273 2.341 10/5/10 18:12 612 2.265 2.333 10/5/10 18:34 633 2.273 2.341 10/5/10 18:13 613 2.273 2.341 10/5/10 18:34 633 2.273 2.341 10/5/10 18:13 613 2.273 2.341 10/5/10 18:34 634 2.277 2.335 10/5/10 17:51 591 2.244 2.312 10/5/10 18:12 612 2.265 2.337 10/5/10 18:34 634 2.277 2.335 10/5/10 17:52 591 2.244 2.312 10/5/10 18:13 613 2.273 2.341 10/5/10 18:34 634 2.277 2.345 10/5/10 18:35 635 2.276 2.334 10/5/10 18:35 635 2.276 2.334 10/5/10 18:35 635 2.276 2.334 10/5/10 18:35 635 2.276 2.334 10/5/10 18:35 635 2.276 2.334 10/5/10 18:36 636 2.289 2.337 10/5/10 18:36 636 2.289 2.337 10/5/10 18:36 636 2.289 2.337 10/5/10 18:36 636 2.289 2.337 10/5/10 18:38 638 2.275 2.334 10/5/10 18												
10/5/10 17:47 587 2.236 2.304 10/5/10 18:08 608 2.262 2.33 10/5/10 18:30 629 2.267 2.334 10/5/10 18:30 630 2.268 2.334 10/5/10 18:30 630 2.268 2.334 10/5/10 17:48 587 2.249 2.317 10/5/10 18:09 609 2.264 2.332 10/5/10 18:31 630 2.268 2.335 10/5/10 17:48 588 2.251 2.319 10/5/10 18:09 609 2.264 2.332 10/5/10 18:31 630 2.267 2.335 10/5/10 17:48 588 2.243 2.311 10/5/10 18:10 609 2.261 2.329 10/5/10 18:31 631 2.267 2.335 10/5/10 17:49 588 2.243 2.311 10/5/10 18:10 609 2.261 2.329 10/5/10 18:31 631 2.267 2.335 10/5/10 17:49 589 2.243 2.311 10/5/10 18:10 610 2.263 2.331 10/5/10 18:32 631 2.265 2.337 10/5/10 17:49 589 2.244 2.312 10/5/10 18:10 610 2.263 2.331 10/5/10 18:32 631 2.265 2.333 10/5/10 17:50 589 2.244 2.312 10/5/10 18:11 611 2.267 2.335 10/5/10 18:32 632 2.264 2.332 10/5/10 17:50 589 2.245 2.313 10/5/10 18:11 611 2.265 2.333 10/5/10 18:32 632 2.267 2.335 10/5/10 17:50 590 2.240 2.308 10/5/10 18:11 611 2.265 2.333 10/5/10 18:33 633 2.272 2.341 10/5/10 18:12 612 2.265 2.333 10/5/10 18:33 633 2.273 2.341 10/5/10 18:12 612 2.265 2.333 10/5/10 18:33 633 2.270 2.338 10/5/10 18:34 633 2.270 2.338 10/5/10 17:51 590 2.240 2.308 10/5/10 18:12 612 2.265 2.333 10/5/10 18:33 633 2.270 2.338 10/5/10 18:34 634 2.270 2.338 10/5/10 18:34 634 2.270 2.338 10/5/10 18:34 634 2.270 2.338 10/5/10 18:34 634 2.270 2.338 10/5/10 18:35 591 2.244 2.312 10/5/10 18:13 613 2.262 2.337 10/5/10 18:34 634 2.270 2.338 10/5/10 18:35 592 2.246 2.314 10/5/10 18:13 613 2.273 2.341 10/5/10 18:34 634 2.270 2.338 10/5/10 18:35 592 2.246 2.314 10/5/10 18:13 613 2.273 2.341 10/5/10 18:35 635 2.270 2.338 10/5/10 18:35 635 2.270 2.338 10/5/10 18:35 635 2.270 2.338 10/5/10 18:35 635 2.270 2.338 10/5/10 18:35 635 2.270 2.338 10/5/10 18:35 635 2.270 2.338 10/5/10 18:36 636 2.273 2.341 10/5/10 18:36 636 2.273 2.341 10/5/10 18:36 636 2.273 2.341 10/5/10 18:36 636 2.273 2.341 10/5/10 18:36 636 2.273 2.341 10/5/10 18:36 636 2.273 2.341 10/5/10 18:37 636 636 2.273 2.341 10/5/10 18:37 636 636 2.273 2.341 10/5/10 18:37 636 638 2.275 2.343 10/5/10 18:37 636 638 2.2	10/5/10 17:46	586				607		2.333				2.34
105/10 17:47 587 2.236 2.304 10/5/10 18:08 608 2.262 2.33 10/5/10 18:30 629 2.267 2.334 10/5/10 18:30 630 2.268 2.334 10/5/10 18:30 630 2.268 2.334 10/5/10 17:48 587 2.249 2.317 10/5/10 18:09 609 2.264 2.332 10/5/10 18:31 630 2.268 2.335 10/5/10 17:48 588 2.251 2.319 10/5/10 18:10 609 2.264 2.332 10/5/10 18:31 630 2.267 2.335 10/5/10 17:48 588 2.243 2.311 10/5/10 18:10 609 2.261 2.329 10/5/10 18:31 631 2.267 2.335 10/5/10 17:49 589 2.243 2.311 10/5/10 18:10 610 2.252 2.331 10/5/10 18:31 631 2.267 2.335 10/5/10 17:49 589 2.244 2.312 10/5/10 18:10 610 2.252 2.331 10/5/10 18:31 631 2.269 2.337 10/5/10 17:49 589 2.244 2.312 10/5/10 18:10 610 2.263 2.331 10/5/10 18:32 632 2.264 2.332 10/5/10 17:50 589 2.245 2.313 10/5/10 18:11 610 2.267 2.335 10/5/10 18:32 632 2.264 2.332 10/5/10 17:50 589 2.247 2.305 10/5/10 18:11 611 2.267 2.335 10/5/10 18:33 632 2.272 2.34 10/5/10 17:50 590 2.237 2.305 10/5/10 18:11 611 2.265 2.333 10/5/10 18:33 633 2.273 2.341 10/5/10 18:12 612 2.265 2.333 10/5/10 18:33 633 2.273 2.341 10/5/10 17:51 591 2.244 2.312 10/5/10 18:12 612 2.265 2.333 10/5/10 18:33 633 2.273 2.341 10/5/10 17:51 591 2.244 2.312 10/5/10 18:12 612 2.265 2.333 10/5/10 18:33 633 2.273 2.341 10/5/10 18:13 631 2.267 2.335 10/5/10 18:33 633 2.273 2.341 10/5/10 17:51 591 2.244 2.312 10/5/10 18:12 612 2.265 2.333 10/5/10 18:33 633 2.273 2.334 10/5/10 1	10/5/10 17:47	586	2.239	2.307	10/5/10 18:08	608	2.272	2.34	10/5/10 18:29	629	2.267	2.335
10/5/10 17:47 587 2.234 2.302 10/5/10 18:09 608 2.272 2.34 10/5/10 18:30 630 2.266 2.334 10/5/10 17:48 587 2.249 2.317 10/5/10 18:09 609 2.264 2.332 10/5/10 18:30 630 2.268 2.335 10/5/10 17:48 588 2.243 2.311 10/5/10 18:09 609 2.264 2.332 10/5/10 18:31 630 2.267 2.335 10/5/10 17:48 588 2.243 2.311 10/5/10 18:10 609 2.261 2.329 10/5/10 18:31 631 2.267 2.335 10/5/10 17:49 589 2.243 2.311 10/5/10 18:10 610 2.258 2.366 10/5/10 18:31 631 2.267 2.335 10/5/10 17:49 589 2.244 2.312 10/5/10 18:11 610 2.263 2.331 10/5/10 18:32 631 2.265 2.333 10/5/10 17:50 589 2.244 2.312 10/5/10 18:11 610 2.263 2.331 10/5/10 18:32 632 2.264 2.332 10/5/10 17:50 589 2.245 2.313 10/5/10 18:11 611 2.267 2.335 10/5/10 17:50 589 2.245 2.313 10/5/10 18:11 611 2.267 2.335 10/5/10 17:50 580 2.237 2.305 10/5/10 18:11 611 2.268 2.333 10/5/10 18:33 632 2.267 2.334 10/5/10 18:33 632 2.267 2.334 10/5/10 17:50 580 2.237 2.305 10/5/10 18:12 611 2.268 2.333 10/5/10 18:33 632 2.272 2.34 10/5/10 17:51 580 2.237 2.305 10/5/10 18:12 612 2.265 2.333 10/5/10 18:33 633 2.273 2.341 10/5/10 18:33 633 2.273 2.341 10/5/10 18:35 635 2.273 2.341 10/5/10 18:36 636 2.273 2.341 10/5/10 18:36 636 2.273 2.341 10/5/10 18:36 636 2.273 2.341 10/5/10 18:37 639 2.246 2.314 10/5/10 18:16 615 2.275 2.343 10/5/10 18:38 638 2.275 2.343 10/5/10 18:38 638 2.275 2.343 10/5/10 18:38 638 2.275 2.343 10/5/10 18:39 639 2.246 2.334 10/5/10 18:39 639 2.246 2.334 10/5/10						608	2.262					
10/5/10 17:48 587 2.249 2.317 10/5/10 18:09 609 2.264 2.332 10/5/10 18:30 630 2.265 2.335 10/5/10 17:48 588 2.251 2.319 10/5/10 18:10 609 2.261 2.329 10/5/10 18:31 631 2.267 2.335 10/5/10 17:48 588 2.243 2.311 10/5/10 18:10 609 2.261 2.329 10/5/10 18:31 631 2.267 2.335 10/5/10 17:49 589 2.243 2.311 10/5/10 18:10 610 2.258 2.366 10/5/10 18:31 631 2.269 2.337 10/5/10 17:49 589 2.243 2.311 10/5/10 18:10 610 2.258 2.366 10/5/10 18:31 631 2.269 2.337 10/5/10 17:49 589 2.244 2.312 10/5/10 18:10 610 2.263 2.331 10/5/10 18:32 631 2.265 2.333 10/5/10 17:50 589 2.244 2.312 10/5/10 18:11 610 2.272 2.34 10/5/10 18:32 632 2.264 2.332 10/5/10 17:50 589 2.245 2.313 10/5/10 18:11 611 2.267 2.335 10/5/10 18:32 632 2.264 2.332 10/5/10 17:50 590 2.240 2.308 10/5/10 18:11 611 2.268 2.333 10/5/10 18:33 632 2.272 2.34 10/5/10 18:33 633 2.273 2.341 10/5/10 18:34 634 2.372 2.305 10/5/10 18:12 612 2.265 2.333 10/5/10 18:33 633 2.273 2.341 10/5/10 18:34 634 2.372 2.305 10/5/10 18:12 612 2.265 2.333 10/5/10 18:33 633 2.273 2.341 10/5/10 18:34 634 2.277 2.335 10/5/10 17:51 591 2.244 2.312 10/5/10 18:13 612 2.269 2.337 10/5/10 18:34 634 2.277 2.335 10/5/10 18:34 634 2.277 2.335 10/5/10 18:34 634 2.277 2.335 10/5/10 18:34 634 2.277 2.335 10/5/10 18:34 634 2.277 2.335 10/5/10 18:35 635 2.270 2.338 10/5/10 18:35 635 2.276 2.334 10/5/10 18:35 635 2.276 2.334 10/5/10												
10/5/10 17:48 588 2.251 2.319 10/5/10 18:09 609 2.264 2.332 10/5/10 18:31 630 2.267 2.335 10/5/10 17:48 588 2.243 2.311 10/5/10 18:10 610 2.258 2.326 10/5/10 18:31 631 2.269 2.337 10/5/10 17:49 589 2.243 2.311 10/5/10 18:10 610 2.258 2.326 10/5/10 18:31 631 2.269 2.337 10/5/10 17:49 589 2.243 2.311 10/5/10 18:10 610 2.258 2.326 10/5/10 18:32 631 2.265 2.333 10/5/10 17:49 589 2.244 2.312 10/5/10 18:11 610 2.272 2.34 10/5/10 18:32 632 2.264 2.332 10/5/10 17:50 589 2.245 2.313 10/5/10 18:11 610 2.272 2.34 10/5/10 18:32 632 2.267 2.335 10/5/10 17:50 589 2.237 2.305 10/5/10 18:11 611 2.268 2.336 10/5/10 18:33 632 2.272 2.34 10/5/10 18:33 632 2.272 2.34 10/5/10 18:33 633 2.273 2.351 10/5/10 18:11 611 2.268 2.333 10/5/10 18:33 633 2.273 2.341 10/5/10 18:15 590 2.237 2.305 10/5/10 18:12 612 2.265 2.333 10/5/10 18:33 633 2.273 2.341 10/5/10 17:51 590 2.237 2.305 10/5/10 18:12 612 2.265 2.333 10/5/10 18:33 633 2.273 2.341 10/5/10 17:51 591 2.244 2.312 10/5/10 18:12 612 2.265 2.333 10/5/10 18:33 633 2.273 2.341 10/5/10 18:34 633 2.273 2.341 10/5/10 17:51 591 2.244 2.312 10/5/10 18:13 612 2.265 2.333 10/5/10 18:34 633 2.273 2.341 10/5/10 18:34 633 2.273 2.341 10/5/10 18:34 634 2.270 2.335 10/5/10 17:52 591 2.240 2.308 10/5/10 18:13 612 2.268 2.336 10/5/10 18:34 634 2.270 2.335 10/5/10 17:52 591 2.240 2.308 10/5/10 18:13 613 2.272 2.341 10/5/10 18:34 634 2.277 2.345 10/5/10 17:52 592 2.246 2.314 10/5/10 18:13 613 2.273 2.341 10/5/10 18:35 635 2.270 2.338 10/5/10 17:52 592 2.246 2.314 10/5/10 18:14 614 2.268 2.353 10/5/10 18:35 635 2.270 2.338 10/5/10 17:53 593 2.245 2.313 10/5/10 18:14 614 2.268 2.353 10/5/10 18:35 635 2.270 2.338 10/5/10 17:53 593 2.245 2.313 10/5/10 18:14 614 2.268 2.363 10/5/10 18:35 635 2.270 2.338 10/5/10 18:35 635 2.276 2.344 10/5/10 18:36 636 2.272 2.341 10/5/10 18:36 636 2.272 2.341 10/5/10 18:37 636 2.272 2.341 10/5/10 18:37 636 2.272 2.341 10/5/10 18:37 636 2.272 2.341 10/5/10 18:37 636 2.272 2.341 10/5/10 18:37 636 2.272 2.341 10/5/10 18:37 636 2.272 2.344 10/5/10 18:37 636 2.272 2.344 10/5/10 18												
10/5/10 17:48 588 2.242 2.311 10/5/10 18:10 609 2.261 2.329 10/5/10 18:31 631 2.267 2.335 10/5/10 17:49 588 2.242 2.311 10/5/10 18:10 610 2.258 2.326 10/5/10 18:32 631 2.265 2.337 10/5/10 17:49 589 2.244 2.312 10/5/10 18:11 610 2.272 2.34 10/5/10 18:32 632 2.264 2.332 10/5/10 17:50 589 2.244 2.312 10/5/10 18:11 611 2.267 2.335 10/5/10 18:32 632 2.267 2.335 10/5/10 17:50 589 2.245 2.313 10/5/10 18:11 611 2.267 2.335 10/5/10 18:33 632 2.267 2.335 10/5/10 18:33 632 2.272 2.34 10/5/10 17:50 590 2.237 2.305 10/5/10 18:11 611 2.268 2.336 10/5/10 18:33 632 2.272 2.34 10/5/10 17:50 590 2.240 2.308 10/5/10 18:12 611 2.268 2.333 10/5/10 18:33 633 2.273 2.341 10/5/10 17:51 590 2.237 2.305 10/5/10 18:12 612 2.265 2.333 10/5/10 18:33 633 2.273 2.341 10/5/10 17:51 591 2.244 2.312 10/5/10 18:12 612 2.265 2.333 10/5/10 18:33 633 2.273 2.341 10/5/10 17:51 591 2.244 2.309 10/5/10 18:12 612 2.268 2.336 10/5/10 18:34 634 2.270 2.338 10/5/10 18:34 634 2.270 2.338 10/5/10 18:34 634 2.270 2.338 10/5/10 18:35 635 10/5/10 18:34 634 2.270 2.338 10/5/10 18:35 635 2.273 2.341 10/5/10 18:35 635 2.273 2.341 10/5/10 18:35 635 2.273 2.341 10/5/10 18:35 635 2.273 2.341 10/5/10 18:35 635 2.273 2.345 10/5/10 17:55 592 2.246 2.314 10/5/10 18:14 614 2.268 2.366 10/5/10 18:35 635 2.273 2.345 10/5/10 18:35 635 2.273 2.345 10/5/10 18:35 635 2.273 2.345 10/5/10 18:35 635 2.273 2.345 10/5/10 18:35 635 2.273 2.345 10/5/10 18:35 635 2.275 2.343 10/5/10 18:37 637 2.2												
10/5/10 17:49 588 2.242 2.31 10/5/10 18:10 610 2.258 2.326 10/5/10 18:31 631 2.269 2.337 10/5/10 17:49 589 2.244 2.312 10/5/10 18:10 610 2.263 2.331 10/5/10 18:32 631 2.265 2.333 10/5/10 17:50 589 2.245 2.313 10/5/10 18:11 611 2.267 2.335 10/5/10 18:32 632 2.264 2.335 10/5/10 17:50 590 2.237 2.305 10/5/10 18:11 611 2.267 2.335 10/5/10 18:33 632 2.277 2.345 10/5/10 17:50 590 2.240 2.308 10/5/10 18:11 611 2.268 2.336 10/5/10 18:33 632 2.273 2.341 10/5/10 17:51 590 2.237 2.305 10/5/10 18:12 611 2.265 2.333 10/5/10 18:33 633 2.273 2.341 10/5/10 17:51 591 2.244 2.312 10/5/10 18:12 612 2.265 2.333 10/5/10 18:33 633 2.273 2.341 10/5/10 17:51 591 2.244 2.312 10/5/10 18:12 612 2.265 2.333 10/5/10 18:34 633 2.273 2.341 10/5/10 17:51 591 2.244 2.309 10/5/10 18:13 612 2.268 2.336 10/5/10 18:34 633 2.273 2.341 10/5/10 17:52 591 2.240 2.308 10/5/10 18:13 612 2.268 2.336 10/5/10 18:34 634 2.277 2.345 10/5/10 17:52 592 2.246 2.314 10/5/10 18:13 613 2.272 2.34 10/5/10 18:35 635 2.270 2.338 10/5/10 17:52 592 2.246 2.314 10/5/10 18:13 613 2.272 2.341 10/5/10 18:35 635 2.270 2.338 10/5/10 17:53 593 2.245 2.313 10/5/10 18:14 613 2.275 2.343 10/5/10 18:35 635 2.270 2.338 10/5/10 17:53 593 2.245 2.313 10/5/10 18:14 614 2.285 2.353 10/5/10 18:35 635 2.270 2.344 10/5/10 18:36 635 2.270 2.344 10/5/10 18:36 635 2.273 2.341 10/5/10 17:53 593 2.245 2.313 10/5/10 18:14 614 2.285 2.353 10/5/10 18:36 635 2.270 2.344 10/5/10 18:36 636 2.272 2.34 10/5/10 17:54 594 2.249 2.317 10/5/10 18:15 615 2.275 2.343 10/5/10 18:36 636 2.272 2.34 10/5/10 18:37 636 2.272 2.34 10/5/10 17:55 595 2.249 2.317 10/5/10 18:16 615 2.275 2.343 10/5/10 18:38 638 2.275 2.343 10/5/10 18:38 638 2.275 2.343 10/5/10 18:38 638 2.275 2.343 10/5/10 18:38 638 2.275 2.343 10/5/10 18:38 638 2.275 2.344 10/5/10 18:38 638 2.275 2.344 10/5/10 18:38 638 2.275 2.344 10/5/10 18:38 638 2.275 2.343 10/5/10 18:38 638 2.275 2.343 10/5/10 17:55 595 2.246 2.314 10/5/10 18:17 616 2.276 2.344 10/5/10 18:38 638 2.275 2.343 10/5/10 17:55 595 2.246 2.314 10/5/10 18:17 616 2.276 2.344 10/5/10 18:												
10/5/10 17:49 589 2.244 2.312 10/5/10 18:10 610 2.263 2.331 10/5/10 18:32 632 2.264 2.332 10/5/10 17:50 589 2.245 2.313 10/5/10 18:11 611 2.267 2.335 10/5/10 18:32 632 2.264 2.335 10/5/10 17:50 589 2.245 2.313 10/5/10 18:11 611 2.267 2.335 10/5/10 18:33 632 2.267 2.335 10/5/10 17:50 590 2.237 2.305 10/5/10 18:11 611 2.268 2.336 10/5/10 18:33 632 2.272 2.34 10/5/10 17:50 590 2.240 2.308 10/5/10 18:12 611 2.265 2.333 10/5/10 18:33 633 2.273 2.341 10/5/10 17:51 590 2.237 2.305 10/5/10 18:12 612 2.265 2.333 10/5/10 18:33 633 2.270 2.338 10/5/10 17:51 591 2.244 2.312 10/5/10 18:12 612 2.265 2.333 10/5/10 18:34 633 2.270 2.338 10/5/10 17:51 591 2.244 2.309 10/5/10 18:13 612 2.268 2.337 10/5/10 18:34 633 2.273 2.341 10/5/10 17:52 591 2.240 2.308 10/5/10 18:13 613 2.272 2.34 10/5/10 17:52 591 2.240 2.308 10/5/10 18:13 613 2.272 2.34 10/5/10 18:34 634 2.277 2.345 10/5/10 17:52 592 2.246 2.314 10/5/10 18:13 613 2.273 2.341 10/5/10 18:35 634 2.287 2.355 10/5/10 17:52 592 2.246 2.314 10/5/10 18:14 614 2.268 2.353 10/5/10 18:35 635 2.270 2.338 10/5/10 17:53 592 2.249 2.317 10/5/10 18:14 614 2.268 2.353 10/5/10 18:35 635 2.270 2.338 10/5/10 17:53 592 2.249 2.317 10/5/10 18:14 614 2.268 2.353 10/5/10 18:36 635 2.270 2.338 10/5/10 17:54 593 2.245 2.313 10/5/10 18:14 614 2.268 2.353 10/5/10 18:36 635 2.270 2.334 10/5/10 17:54 593 2.245 2.313 10/5/10 18:15 615 2.275 2.343 10/5/10 18:36 636 2.273 2.341 10/5/10 18:36 636 2.273 2.341 10/5/10 18:36 636 2.273 2.341 10/5/10 18:36 636 2.273 2.341 10/5/10 18:36 636 2.273 2.341 10/5/10 18:36 636 2.273 2.341 10/5/10 18:36 636 2.273 2.341 10/5/10 18:36 636 2.273 2.341 10/5/10 18:36 636 2.273 2.341 10/5/10 18:36 636 2.273 2.341 10/5/10 18:36 636 2.273 2.341 10/5/10 18:36 636 2.273 2.341 10/5/10 18:36 636 2.273 2.341 10/5/10 18:36 636 2.273 2.341 10/5/10 18:36 636 2.276 2.344 10/5/10 18:36 636 2.276 2.344 10/5/10 18:36 636 2.276 2.344 10/5/10 18:36 636 2.276 2.344 10/5/10 18:37 637 2.278 2.343 10/5/10 18:38 638 2.275 2.343 10/5/10 18:38 638 2.275 2.343 10/5/10 18:38 638 2.275 2.343 10/5/10 1								2.329				
10/5/10 17:49 589 2.244 2.312 10/5/10 18:11 610 2.272 2.34 10/5/10 18:32 632 2.264 2.335 10/5/10 17:50 589 2.245 2.313 10/5/10 18:11 611 2.267 2.335 10/5/10 18:32 632 2.267 2.335 10/5/10 17:50 590 2.237 2.305 10/5/10 18:11 611 2.268 2.336 10/5/10 18:33 633 2.272 2.34 10/5/10 17:51 590 2.240 2.308 10/5/10 18:12 612 2.265 2.333 10/5/10 18:33 633 2.273 2.341 10/5/10 17:51 591 2.244 2.312 10/5/10 18:12 612 2.265 2.333 10/5/10 18:34 633 2.273 2.341 10/5/10 17:51 591 2.244 2.312 10/5/10 18:13 612 2.268 2.336 10/5/10 18:34 633 2.273 2.341 10/5/10 17:52 591 2.240 2.308 10/5/10 18:13 613 2.272 2.34 10/5/10 18:34 634 2.277 2.345 10/5/10 17:52 591 2.240 2.308 10/5/10 18:13 613 2.272 2.34 10/5/10 18:34 634 2.277 2.345 10/5/10 17:52 592 2.246 2.314 10/5/10 18:13 613 2.273 2.341 10/5/10 18:35 634 2.287 2.355 10/5/10 17:52 592 2.246 2.314 10/5/10 18:13 613 2.273 2.341 10/5/10 18:35 634 2.287 2.358 10/5/10 17:53 592 2.246 2.314 10/5/10 18:14 614 2.285 2.353 10/5/10 18:35 635 2.270 2.338 10/5/10 17:53 593 2.245 2.313 10/5/10 18:14 614 2.285 2.353 10/5/10 18:35 635 2.270 2.338 10/5/10 17:53 593 2.245 2.313 10/5/10 18:14 614 2.285 2.353 10/5/10 18:35 635 2.276 2.344 10/5/10 17:54 593 2.245 2.313 10/5/10 18:15 614 2.273 2.341 10/5/10 18:36 635 2.272 2.34 10/5/10 17:55 594 2.246 2.314 10/5/10 18:15 614 2.275 2.343 10/5/10 18:36 636 2.272 2.344 10/5/10 17:54 593 2.245 2.313 10/5/10 18:15 614 2.273 2.341 10/5/10 18:36 636 2.272 2.344 10/5/10 17:54 594 2.249 2.317 10/5/10 18:15 615 2.275 2.343 10/5/10 18:37 637 2.278 2.344 10/5/10 17:55 595 2.249 2.317 10/5/10 18:16 615 2.275 2.343 10/5/10 18:37 637 2.278 2.344 10/5/10 17:55 595 2.249 2.317 10/5/10 18:16 616 2.276 2.344 10/5/10 18:38 638 2.276 2.344 10/5/10 17:55 595 2.249 2.317 10/5/10 18:16 616 2.276 2.344 10/5/10 18:38 638 2.276 2.344 10/5/10 17:55 595 2.249 2.317 10/5/10 18:16 616 2.276 2.344 10/5/10 18:38 638 2.275 2.343 10/5/10 17:55 595 2.249 2.317 10/5/10 18:16 616 2.276 2.344 10/5/10 18:39 639 2.298 2.357 10/5/10 17:56 596 2.246 2.314 10/5/10 18:17 617 2.269 2.337 10/5/10 18:							2.258					
10/5/10 17:50 589 2.245 2.313 10/5/10 18:11 611 2.267 2.335 10/5/10 18:32 632 2.267 2.335 10/5/10 17:50 590 2.237 2.305 10/5/10 18:11 611 2.268 2.336 10/5/10 18:33 632 2.272 2.34 10/5/10 17:50 590 2.240 2.308 10/5/10 18:12 611 2.265 2.333 10/5/10 18:33 633 2.273 2.341 10/5/10 17:51 590 2.237 2.305 10/5/10 18:12 612 2.265 2.333 10/5/10 18:33 633 2.270 2.338 10/5/10 17:51 591 2.244 2.312 10/5/10 18:12 612 2.269 2.337 10/5/10 18:33 633 2.273 2.341 10/5/10 17:51 591 2.244 2.309 10/5/10 18:13 612 2.269 2.337 10/5/10 18:34 634 2.270 2.338 10/5/10 17:52 591 2.240 2.308 10/5/10 18:13 612 2.268 2.336 10/5/10 18:34 634 2.277 2.345 10/5/10 17:52 592 2.246 2.314 10/5/10 18:13 613 2.272 2.344 10/5/10 18:35 635 2.270 2.345 10/5/10 17:52 592 2.246 2.314 10/5/10 18:14 613 2.275 2.343 10/5/10 18:35 635 2.270 2.338 10/5/10 17:53 593 2.245 2.313 10/5/10 18:14 614 2.268 2.366 10/5/10 18:35 635 2.270 2.334 10/5/10 17:53 593 2.245 2.313 10/5/10 18:14 614 2.268 2.366 10/5/10 18:35 635 2.276 2.344 10/5/10 17:53 593 2.245 2.313 10/5/10 18:14 614 2.268 2.366 10/5/10 18:36 636 2.273 2.341 10/5/10 17:53 593 2.245 2.313 10/5/10 18:14 614 2.268 2.366 10/5/10 18:36 636 2.272 2.344 10/5/10 17:54 593 2.245 2.313 10/5/10 18:15 615 2.275 2.343 10/5/10 18:36 636 2.272 2.344 10/5/10 17:54 593 2.245 2.313 10/5/10 18:15 615 2.273 2.341 10/5/10 18:36 636 2.272 2.344 10/5/10 17:54 594 2.249 2.317 10/5/10 18:15 615 2.273 2.341 10/5/10 18:36 636 2.272 2.344 10/5/10 17:55 594 2.246 2.314 10/5/10 18:15 615 2.273 2.341 10/5/10 18:37 637 2.273 2.341 10/5/10 18:37 637 2.273 2.341 10/5/10 18:37 637 2.273 2.341 10/5/10 18:38 638 2.275 2.343 10/5/10 17:55 595 2.249 2.317 10/5/10 18:16 616 2.276 2.344 10/5/10 18:38 638 2.275 2.343 10/5/10 17:55 595 2.249 2.317 10/5/10 18:16 616 2.276 2.344 10/5/10 18:38 638 2.275 2.343 10/5/10 17:55 595 2.249 2.317 10/5/10 18:16 616 2.276 2.344 10/5/10 18:38 638 2.275 2.343 10/5/10 17:55 595 2.249 2.313 10/5/10 18:17 617 2.269 2.337 10/5/10 18:39 639 2.298 2.357 10/5/10 17:56 596 2.246 2.314 10/5/10 18:18 617 2.269 2.337 10/5/10	10/5/10 17:49					610						
10/5/10 17:50 590 2.237 2.305 10/5/10 18:11 611 2.268 2.336 10/5/10 18:33 632 2.272 2.34 10/5/10 17:50 590 2.237 2.308 10/5/10 18:12 611 2.265 2.333 10/5/10 18:33 633 2.273 2.341 10/5/10 17:51 590 2.237 2.305 10/5/10 18:12 612 2.265 2.333 10/5/10 18:33 633 2.273 2.341 10/5/10 17:51 591 2.244 2.312 10/5/10 18:13 612 2.268 2.337 10/5/10 18:34 633 2.273 2.341 10/5/10 17:51 591 2.244 2.312 10/5/10 18:13 612 2.268 2.337 10/5/10 18:34 633 2.273 2.341 10/5/10 17:52 591 2.240 2.308 10/5/10 18:13 612 2.268 2.336 10/5/10 18:34 634 2.277 2.345 10/5/10 17:52 591 2.240 2.308 10/5/10 18:13 613 2.272 2.34 10/5/10 18:34 634 2.277 2.345 10/5/10 17:52 592 2.246 2.314 10/5/10 18:13 613 2.273 2.341 10/5/10 18:35 634 2.277 2.345 10/5/10 17:52 592 2.246 2.314 10/5/10 18:14 613 2.275 2.343 10/5/10 18:35 635 2.270 2.338 10/5/10 17:53 592 2.249 2.317 10/5/10 18:14 613 2.275 2.343 10/5/10 18:35 635 2.270 2.338 10/5/10 17:53 593 2.245 2.313 10/5/10 18:14 614 2.268 2.353 10/5/10 18:36 635 2.273 2.341 10/5/10 18:36 635 2.273 2.341 10/5/10 18:36 635 2.273 2.341 10/5/10 18:36 635 2.273 2.341 10/5/10 18:36 635 2.273 2.341 10/5/10 17:54 593 2.245 2.313 10/5/10 18:15 614 2.275 2.343 10/5/10 18:36 636 2.279 2.344 10/5/10 17:54 594 2.249 2.317 10/5/10 18:15 614 2.275 2.343 10/5/10 18:36 636 2.299 2.357 10/5/10 18:36 636 2.299 2.357 10/5/10 18:36 636 2.299 2.344 10/5/10 17:54 594 2.249 2.317 10/5/10 18:15 615 2.275 2.343 10/5/10 18:36 636 2.299 2.357 10/5/10 18:16 616 2.275 2.343 10/5/10 18:37 637 2.278 2.344 10/5/10 17:55 595 2.246 2.314 10/5/10 18:16 616 2.275 2.343 10/5/10 18:38 638 2.275 2.344 10/5/10 18:38 638 2.275 2.344 10/5/10 18:38 638 2.275 2.344 10/5/10 17:55 595 2.246 2.314 10/5/10 18:16 616 2.275 2.343 10/5/10 18:39 638 2.236 2.344 10/5/10 18:16 616 2.275 2.343 10/5/10 18:39 638 2.275 2.344 10/5/10 17:55 595 2.246 2.314 10/5/10 18:17 617 2.269 2.337 10/5/10 18:39 638 2.275 2.343 10/5/10 18:39 638 2.275 2.343 10/5/10 17:56 596 2.246 2.314 10/5/10 18:18 617 2.269 2.337 10/5/10 18:39 639 2.298 2.357 10/5/10 17:56 596 2.246 2.314 10/5/10	10/5/10 17:49	589	2.244	2.312	10/5/10 18:11	610	2.272	2.34	10/5/10 18:32	632	2.264	2.332
10/5/10 17:50 590 2.237 2.305 10/5/10 18:11 611 2.268 2.336 10/5/10 18:33 632 2.272 2.34 10/5/10 17:51 590 2.237 2.305 10/5/10 18:12 611 2.265 2.333 10/5/10 18:33 633 2.273 2.341 10/5/10 17:51 591 2.244 2.312 10/5/10 18:12 612 2.265 2.333 10/5/10 18:33 633 2.273 2.341 10/5/10 17:51 591 2.244 2.312 10/5/10 18:13 612 2.269 2.337 10/5/10 18:34 633 2.273 2.341 10/5/10 17:52 591 2.240 2.308 10/5/10 18:13 612 2.268 2.336 10/5/10 18:34 634 2.270 2.338 10/5/10 17:52 591 2.240 2.308 10/5/10 18:13 612 2.268 2.336 10/5/10 18:34 634 2.277 2.345 10/5/10 17:52 592 2.246 2.314 10/5/10 18:13 613 2.273 2.341 10/5/10 18:34 634 2.277 2.345 10/5/10 17:52 592 2.246 2.314 10/5/10 18:13 613 2.273 2.341 10/5/10 18:35 634 2.287 2.355 10/5/10 17:53 592 2.249 2.317 10/5/10 18:14 613 2.275 2.343 10/5/10 18:35 635 2.270 2.338 10/5/10 17:53 593 2.245 2.313 10/5/10 18:14 614 2.268 2.353 10/5/10 18:36 635 2.273 2.341 10/5/10 18:36 635 2.273 2.341 10/5/10 18:36 635 2.273 2.341 10/5/10 18:36 635 2.273 2.341 10/5/10 18:36 635 2.273 2.341 10/5/10 18:36 635 2.273 2.341 10/5/10 18:36 635 2.273 2.341 10/5/10 18:36 635 2.273 2.341 10/5/10 18:36 635 2.273 2.341 10/5/10 18:36 635 2.273 2.341 10/5/10 18:36 635 2.273 2.341 10/5/10 18:36 635 2.273 2.341 10/5/10 18:36 635 2.273 2.341 10/5/10 18:36 636 2.293 2.344 10/5/10 17:54 593 2.245 2.313 10/5/10 18:15 614 2.275 2.343 10/5/10 18:36 636 2.299 2.357 10/5/10 17:54 594 2.249 2.317 10/5/10 18:15 615 2.275 2.343 10/5/10 18:37 637 2.278 2.344 10/5/10 17:55 595 2.249 2.314 10/5/10 18:16 616 2.275 2.343 10/5/10 18:37 637 2.278 2.344 10/5/10 17:55 595 2.249 2.314 10/5/10 18:16 616 2.275 2.343 10/5/10 18:38 638 2.275 2.344 10/5/10 18:36 636 2.299 2.357 10/5/10 18:16 616 2.275 2.343 10/5/10 18:38 638 2.275 2.344 10/5/10 18:38 638 2.275 2.344 10/5/10 17:55 595 2.249 2.314 10/5/10 18:16 616 2.275 2.343 10/5/10 18:39 638 2.275 2.344 10/5/10 18:38 638 2.275 2.343 10/5/10 18:38 638 2.275 2.343 10/5/10 18:38 638 2.275 2.343 10/5/10 18:38 638 2.275 2.343 10/5/10 18:38 638 2.275 2.343 10/5/10 18:38 638 2.275 2.343 10/5/10	10/5/10 17:50	589	2.245	2.313	10/5/10 18:11	611	2.267	2.335	10/5/10 18:32	632	2.267	2.335
10/5/10 17:50 590 2.240 2.308 10/5/10 18:12 611 2.265 2.333 10/5/10 18:33 633 2.273 2.341 10/5/10 17:51 590 2.237 2.305 10/5/10 18:12 612 2.269 2.337 10/5/10 18:33 633 2.270 2.338 10/5/10 17:51 591 2.241 2.309 10/5/10 18:13 612 2.268 2.336 10/5/10 18:34 634 2.270 2.338 10/5/10 17:52 591 2.240 2.308 10/5/10 18:13 612 2.268 2.336 10/5/10 18:34 634 2.277 2.345 10/5/10 17:52 591 2.240 2.308 10/5/10 18:13 613 2.272 2.34 10/5/10 18:35 634 2.287 2.345 10/5/10 17:52 592 2.246 2.314 10/5/10 18:13 613 2.273 2.341 10/5/10 18:35 635 2.270 2.338 10/5/10 17:53 593 2.245 2.313 10/5/10 18:14 614							2 268					
10/5/10 17:51 590 2.237 2.305 10/5/10 18:12 612 2.265 2.333 10/5/10 18:33 633 2.270 2.338 10/5/10 17:51 591 2.244 2.312 10/5/10 18:13 612 2.268 2.336 10/5/10 18:34 633 2.273 2.348 10/5/10 17:52 591 2.240 2.308 10/5/10 18:13 613 2.272 2.34 10/5/10 18:34 634 2.277 2.345 10/5/10 17:52 591 2.240 2.308 10/5/10 18:13 613 2.272 2.34 10/5/10 18:34 634 2.277 2.345 10/5/10 17:52 592 2.246 2.314 10/5/10 18:13 613 2.273 2.341 10/5/10 18:35 635 2.270 2.338 10/5/10 17:53 592 2.249 2.317 10/5/10 18:14 614 2.285 2.353 10/5/10 18:35 635 2.270 2.338 10/5/10 17:53 593 2.245 2.313 10/5/10 18:14 614 <												
10/5/10 17:51 591 2.244 2.312 10/5/10 18:12 612 2.269 2.337 10/5/10 18:34 633 2.273 2.341 10/5/10 17:51 591 2.240 2.309 10/5/10 18:13 612 2.268 2.336 10/5/10 18:34 634 2.270 2.338 10/5/10 17:52 591 2.240 2.308 10/5/10 18:13 613 2.272 2.344 10/5/10 18:34 634 2.277 2.345 10/5/10 17:52 592 2.246 2.314 10/5/10 18:13 613 2.273 2.341 10/5/10 18:35 635 2.270 2.338 10/5/10 17:52 592 2.246 2.314 10/5/10 18:14 613 2.275 2.343 10/5/10 18:35 635 2.270 2.338 10/5/10 17:53 592 2.246 2.317 10/5/10 18:14 614 2.285 2.353 10/5/10 18:35 635 2.270 2.338 10/5/10 17:53 593 2.245 2.313 10/5/10 18:14 614 2.268 2.336 10/5/10 18:36 635 2.273 2.341												
10/5/10 17:51 591 2.241 2.309 10/5/10 18:13 612 2.268 2.336 10/5/10 18:34 634 2.270 2.338 10/5/10 17:52 591 2.240 2.308 10/5/10 18:13 613 2.272 2.34 10/5/10 18:34 634 2.277 2.345 10/5/10 17:52 592 2.246 2.314 10/5/10 18:14 613 2.275 2.343 10/5/10 18:35 635 2.270 2.338 10/5/10 17:53 592 2.249 2.317 10/5/10 18:14 613 2.275 2.343 10/5/10 18:35 635 2.270 2.338 10/5/10 17:53 593 2.245 2.317 10/5/10 18:14 614 2.285 2.353 10/5/10 18:35 635 2.276 2.344 10/5/10 17:53 593 2.245 2.313 10/5/10 18:15 614 2.285 2.353 10/5/10 18:36 635 2.277 2.344 10/5/10 17:54 593 2.245 2.313 10/5/10 18:15 615 2.275 2.343 10/5/10 18:36 636 2.289 2.357												
10/5/10 17:52 591 2,240 2,308 10/5/10 18:13 613 2,272 2,34 10/5/10 18:34 634 2,277 2,345 10/5/10 17:52 592 2,246 2,314 10/5/10 18:14 613 2,275 2,343 10/5/10 18:35 634 2,287 2,338 10/5/10 17:53 592 2,249 2,317 10/5/10 18:14 614 2,285 2,353 10/5/10 18:35 635 2,276 2,344 10/5/10 17:53 593 2,245 2,313 10/5/10 18:14 614 2,285 2,353 10/5/10 18:35 635 2,276 2,344 10/5/10 17:53 593 2,245 2,313 10/5/10 18:15 614 2,273 2,341 10/5/10 18:36 635 2,276 2,344 10/5/10 17:54 593 2,245 2,313 10/5/10 18:15 614 2,273 2,341 10/5/10 18:36 635 2,272 2,34 10/5/10 17:54 594 2,249 2,317 10/5/10 18:15 615 <												
10/5/10 17:52 592 2.246 2.314 10/5/10 18:13 613 2.273 2.341 10/5/10 18:35 634 2.287 2.355 10/5/10 17:52 592 2.246 2.314 10/5/10 18:14 613 2.275 2.343 10/5/10 18:35 635 2.270 2.338 10/5/10 17:53 593 2.249 2.313 10/5/10 18:14 614 2.285 2.353 10/5/10 18:36 635 2.273 2.341 10/5/10 17:53 593 2.245 2.313 10/5/10 18:15 614 2.268 2.336 10/5/10 18:36 635 2.273 2.341 10/5/10 17:54 593 2.245 2.313 10/5/10 18:15 614 2.273 2.341 10/5/10 18:36 636 2.272 2.34 10/5/10 17:54 594 2.249 2.317 10/5/10 18:15 615 2.275 2.343 10/5/10 18:36 636 2.289 2.357 10/5/10 17:55 594 2.249 2.317 10/5/10 18:15 615 2.275 2.343 10/5/10 18:37 636 2.278 2.346	10/5/10 17:51						2.268		10/5/10 18:34			
10/5/10 17:52 592 2.246 2.314 10/5/10 18:14 613 2.275 2.343 10/5/10 18:35 635 2.270 2.338 10/5/10 17:53 592 2.249 2.317 10/5/10 18:14 614 2.285 2.353 10/5/10 18:35 635 2.276 2.344 10/5/10 17:53 593 2.245 2.313 10/5/10 18:15 614 2.273 2.341 10/5/10 18:36 635 2.273 2.341 10/5/10 17:54 593 2.245 2.313 10/5/10 18:15 615 2.273 2.341 10/5/10 18:36 636 2.289 2.357 10/5/10 17:54 593 2.245 2.313 10/5/10 18:15 615 2.275 2.343 10/5/10 18:36 636 2.289 2.357 10/5/10 17:54 594 2.249 2.317 10/5/10 18:15 615 2.273 2.341 10/5/10 18:37 636 2.276 2.344 10/5/10 17:55 594 2.246 2.314 10/5/10 18:16 615 2.275 2.343 10/5/10 18:37 637 2.278 2.344	10/5/10 17:52	591	2.240	2.308	10/5/10 18:13	613				634	2.277	2.345
10/5/10 17:52 592 2.246 2.314 10/5/10 18:14 613 2.275 2.343 10/5/10 18:35 635 2.270 2.338 10/5/10 17:53 592 2.249 2.317 10/5/10 18:14 614 2.285 2.353 10/5/10 18:35 635 2.276 2.344 10/5/10 17:53 593 2.245 2.313 10/5/10 18:15 614 2.273 2.341 10/5/10 18:36 635 2.273 2.341 10/5/10 17:54 593 2.245 2.313 10/5/10 18:15 615 2.273 2.341 10/5/10 18:36 636 2.289 2.357 10/5/10 17:54 593 2.245 2.313 10/5/10 18:15 615 2.275 2.343 10/5/10 18:36 636 2.289 2.357 10/5/10 17:54 594 2.249 2.317 10/5/10 18:15 615 2.273 2.341 10/5/10 18:37 636 2.276 2.344 10/5/10 17:55 594 2.246 2.314 10/5/10 18:16 615 2.275 2.343 10/5/10 18:37 637 2.278 2.344	10/5/10 17:52	592	2.246	2.314	10/5/10 18:13	613	2.273	2.341	10/5/10 18:35	634	2.287	2.355
10/5/10 17:53 592 2.249 2.317 10/5/10 18:14 614 2.285 2.353 10/5/10 18:35 635 2.276 2.344 10/5/10 17:53 593 2.245 2.313 10/5/10 18:15 614 2.268 2.336 10/5/10 18:36 636 2.273 2.341 10/5/10 17:54 593 2.245 2.313 10/5/10 18:15 615 2.275 2.343 10/5/10 18:36 636 2.289 2.357 10/5/10 17:54 593 2.245 2.313 10/5/10 18:15 615 2.275 2.343 10/5/10 18:36 636 2.289 2.357 10/5/10 17:54 594 2.249 2.317 10/5/10 18:15 615 2.273 2.341 10/5/10 18:37 636 2.289 2.357 10/5/10 17:54 594 2.244 2.312 10/5/10 18:16 615 2.275 2.343 10/5/10 18:37 637 2.278 2.344 10/5/10 17:55 594 2.246 2.314 10/5/10 18:16 616 2.275 2.343 10/5/10 18:37 637 2.273 2.341	10/5/10 17:52	592	2.246	2.314	10/5/10 18:14	613		2.343	10/5/10 18:35	635	2.270	2.338
10/5/10 17:53 593 2.245 2.313 10/5/10 18:14 614 2.268 2.336 10/5/10 18:36 635 2.273 2.341 10/5/10 17:53 593 2.245 2.313 10/5/10 18:15 614 2.273 2.341 10/5/10 18:36 636 2.272 2.34 10/5/10 17:54 593 2.245 2.313 10/5/10 18:15 615 2.275 2.343 10/5/10 18:36 636 2.289 2.357 10/5/10 17:54 594 2.249 2.317 10/5/10 18:15 615 2.273 2.341 10/5/10 18:36 636 2.289 2.357 10/5/10 17:54 594 2.249 2.317 10/5/10 18:16 615 2.273 2.341 10/5/10 18:37 637 2.278 2.346 10/5/10 17:55 594 2.246 2.314 10/5/10 18:16 616 2.276 2.344 10/5/10 18:37 637 2.278 2.341 10/5/10 17:55 595 2.249 2.317 10/5/10 18:16 616 2.275 2.343 10/5/10 18:38 637 2.276 2.344												
10/5/10 17:53 593 2.245 2.313 10/5/10 18:15 614 2.273 2.341 10/5/10 18:36 636 2.272 2.34 10/5/10 17:54 593 2.245 2.313 10/5/10 18:15 615 2.275 2.343 10/5/10 18:36 636 2.289 2.357 10/5/10 17:54 594 2.249 2.317 10/5/10 18:15 615 2.273 2.341 10/5/10 18:37 636 2.276 2.344 10/5/10 17:54 594 2.244 2.312 10/5/10 18:16 615 2.275 2.343 10/5/10 18:37 637 2.278 2.346 10/5/10 17:55 594 2.246 2.314 10/5/10 18:16 616 2.276 2.344 10/5/10 18:37 637 2.273 2.341 10/5/10 17:55 595 2.249 2.317 10/5/10 18:16 616 2.276 2.343 10/5/10 18:37 637 2.273 2.341 10/5/10 17:55 595 2.249 2.317 10/5/10 18:16 616 2.275 2.343 10/5/10 18:38 637 2.276 2.344							2.260					
10/5/10 17:54 593 2.245 2.313 10/5/10 18:15 615 2.275 2.343 10/5/10 18:36 636 2.289 2.357 10/5/10 17:54 594 2.249 2.317 10/5/10 18:15 615 2.273 2.341 10/5/10 18:37 636 2.276 2.344 10/5/10 17:55 594 2.244 2.312 10/5/10 18:16 615 2.275 2.343 10/5/10 18:37 637 2.278 2.344 10/5/10 17:55 594 2.246 2.314 10/5/10 18:16 616 2.276 2.344 10/5/10 18:37 637 2.273 2.341 10/5/10 17:55 595 2.249 2.317 10/5/10 18:16 616 2.276 2.344 10/5/10 18:37 637 2.273 2.341 10/5/10 17:55 595 2.249 2.317 10/5/10 18:16 616 2.275 2.343 10/5/10 18:38 637 2.276 2.344 10/5/10 17:55 595 2.258 2.326 10/5/10 18:17 616 2.276 2.344 10/5/10 18:38 638 2.275 2.343											2.273	
10/5/10 17:54 594 2.249 2.317 10/5/10 18:15 615 2.273 2.341 10/5/10 18:37 636 2.276 2.344 10/5/10 17:55 594 2.244 2.312 10/5/10 18:16 615 2.275 2.343 10/5/10 18:37 637 2.278 2.346 10/5/10 17:55 594 2.246 2.314 10/5/10 18:16 616 2.276 2.344 10/5/10 18:37 637 2.273 2.341 10/5/10 17:55 595 2.249 2.317 10/5/10 18:16 616 2.276 2.344 10/5/10 18:38 637 2.276 2.344 10/5/10 17:55 595 2.248 2.326 10/5/10 18:17 616 2.276 2.344 10/5/10 18:38 638 2.275 2.343 10/5/10 17:56 595 2.245 2.313 10/5/10 18:17 616 2.276 2.344 10/5/10 18:38 638 2.275 2.343 10/5/10 17:56 596 2.246 2.314 10/5/10 18:17 617 2.269 2.337 10/5/10 18:39 638 2.289 2.356												
10/5/10 17:54 594 2.244 2.312 10/5/10 18:16 615 2.275 2.343 10/5/10 18:37 637 2.278 2.346 10/5/10 17:55 594 2.246 2.314 10/5/10 18:16 616 2.276 2.344 10/5/10 18:37 637 2.273 2.341 10/5/10 17:55 595 2.249 2.317 10/5/10 18:16 616 2.275 2.343 10/5/10 18:38 637 2.276 2.344 10/5/10 17:55 595 2.258 2.326 10/5/10 18:17 616 2.276 2.344 10/5/10 18:38 638 2.275 2.343 10/5/10 17:56 595 2.245 2.313 10/5/10 18:17 617 2.271 2.339 10/5/10 18:38 638 2.275 2.343 10/5/10 17:56 596 2.246 2.314 10/5/10 18:17 617 2.269 2.337 10/5/10 18:39 638 2.289 2.357 10/5/10 17:56 596 2.246 2.314 10/5/10 18:18 617 2.269 2.337 10/5/10 18:39 639 2.298 2.366												
10/5/10 17:54 594 2.244 2.312 10/5/10 18:16 615 2.275 2.343 10/5/10 18:37 637 2.278 2.346 10/5/10 17:55 594 2.246 2.314 10/5/10 18:16 616 2.276 2.344 10/5/10 18:37 637 2.273 2.341 10/5/10 17:55 595 2.249 2.317 10/5/10 18:16 616 2.275 2.343 10/5/10 18:38 637 2.276 2.344 10/5/10 17:55 595 2.258 2.326 10/5/10 18:17 616 2.276 2.344 10/5/10 18:38 638 2.275 2.343 10/5/10 17:56 595 2.245 2.313 10/5/10 18:17 617 2.271 2.339 10/5/10 18:38 638 2.275 2.343 10/5/10 17:56 596 2.246 2.314 10/5/10 18:17 617 2.269 2.337 10/5/10 18:39 638 2.289 2.357 10/5/10 17:56 596 2.246 2.314 10/5/10 18:18 617 2.269 2.337 10/5/10 18:39 639 2.298 2.366	10/5/10 17:54				10/5/10 18:15		2.273	2.341	10/5/10 18:37			
10/5/10 17:55 594 2.246 2.314 10/5/10 18:16 616 2.276 2.344 10/5/10 18:37 637 2.273 2.341 10/5/10 17:55 595 2.249 2.317 10/5/10 18:16 616 2.275 2.343 10/5/10 18:38 637 2.276 2.344 10/5/10 17:55 595 2.258 2.326 10/5/10 18:17 616 2.276 2.344 10/5/10 18:38 638 2.275 2.343 10/5/10 17:56 595 2.245 2.313 10/5/10 18:17 617 2.271 2.339 10/5/10 18:38 638 2.275 2.343 10/5/10 17:56 596 2.246 2.314 10/5/10 18:17 617 2.269 2.337 10/5/10 18:39 638 2.289 2.357 10/5/10 17:56 596 2.246 2.314 10/5/10 18:18 617 2.269 2.337 10/5/10 18:39 639 2.298 2.366 10/5/10 17:57 596 2.251 2.319 10/5/10 18:18 618 2.248 2.316 10/5/10 18:39 639 2.296 2.364		594	2.244		10/5/10 18:16	615	2.275		10/5/10 18:37			
10/5/10 17:55 595 2.249 2.317 10/5/10 18:16 616 2.275 2.343 10/5/10 18:38 637 2.276 2.344 10/5/10 17:55 595 2.258 2.326 10/5/10 18:17 616 2.276 2.344 10/5/10 18:38 638 2.275 2.343 10/5/10 17:56 595 2.245 2.313 10/5/10 18:17 617 2.271 2.339 10/5/10 18:38 638 2.275 2.343 10/5/10 17:56 596 2.246 2.314 10/5/10 18:17 617 2.269 2.337 10/5/10 18:39 638 2.289 2.357 10/5/10 17:56 596 2.246 2.314 10/5/10 18:18 617 2.269 2.337 10/5/10 18:39 639 2.298 2.366 10/5/10 17:57 596 2.251 2.319 10/5/10 18:18 617 2.269 2.337 10/5/10 18:39 639 2.298 2.366	10/5/10 17:55	594	2.246	2.314	10/5/10 18:16	616	2.276	2.344	10/5/10 18:37	637	2.273	2.341
10/5/10 17:55 595 2.258 2.326 10/5/10 18:17 616 2.276 2.344 10/5/10 18:38 638 2.275 2.343 10/5/10 17:56 595 2.245 2.313 10/5/10 18:17 617 2.271 2.339 10/5/10 18:38 638 2.275 2.343 10/5/10 17:56 596 2.246 2.314 10/5/10 18:17 617 2.269 2.337 10/5/10 18:39 638 2.289 2.357 10/5/10 17:56 596 2.246 2.314 10/5/10 18:18 617 2.269 2.337 10/5/10 18:39 639 2.298 2.366 10/5/10 17:57 596 2.251 2.319 10/5/10 18:18 618 2.248 2.316 10/5/10 18:39 639 2.296 2.364								2.343				
10/5/10 17:56 595 2.245 2.313 10/5/10 18:17 617 2.271 2.339 10/5/10 18:38 638 2.275 2.343 10/5/10 17:56 596 2.246 2.314 10/5/10 18:17 617 2.269 2.337 10/5/10 18:39 638 2.289 2.357 10/5/10 17:56 596 2.246 2.314 10/5/10 18:18 617 2.269 2.337 10/5/10 18:39 639 2.298 2.366 10/5/10 17:57 596 2.251 2.319 10/5/10 18:18 618 2.248 2.316 10/5/10 18:39 639 2.296 2.364							2 276		10/5/10 18:38			
10/5/10 17:56 596 2.246 2.314 10/5/10 18:17 617 2.269 2.337 10/5/10 18:39 638 2.289 2.357 10/5/10 17:56 596 2.246 2.314 10/5/10 18:18 617 2.269 2.337 10/5/10 18:39 639 2.298 2.366 10/5/10 17:57 596 2.251 2.319 10/5/10 18:18 618 2.248 2.316 10/5/10 18:39 639 2.296 2.364									10/5/10 18:38			
10/5/10 17:56 596 2.246 2.314 10/5/10 18:18 617 2.269 2.337 10/5/10 18:39 639 2.298 2.366 10/5/10 17:57 596 2.251 2.319 10/5/10 18:18 618 2.248 2.316 10/5/10 18:39 639 2.296 2.364								2.000				
10/5/10 17:57 596 2.251 2.319 10/5/10 18:18 618 2.248 2.316 10/5/10 18:39 639 2.296 2.364	10/3/10 17:30											
10/5/10 17:57 596 2:251 2:319 10/5/10 18:18 618 2:248 2:316 10/5/10 18:39 639 2:296 2:364 10/5/10 17:57 597 2:248 2:316 10/5/10 18:18 618 2:269 2:337 10/5/10 18:40 639 2:275 2:343	10/5/10 17:56											
10/5/10 17:57 597 2.248 2.316 10/5/10 18:18 618 2.269 2.337 10/5/10 18:40 639 2.275 2.343									10/5/10 18:39			
	10/5/10 17:57	597	2.248	2.316	10/5/10 18:18	618	2.269	2.337	10/5/10 18:40	639	2.275	2.343

10/5/10 18:40	640	2.282	2.35	10/5/10 19:01	661	2.302	2.37	10/5/10 19:23	682	2.319	2.387
10/5/10 18:40	640	2.282	2.35	10/5/10 19:02	661	2.303	2.371	10/5/10 19:23	683	2.319	2.387
10/5/10 18:41	640	2.282	2.35	10/5/10 19:02	662	2.306	2.374	10/5/10 19:23	683	2.321	2.389
10/5/10 18:41	641	2.286	2.354	10/5/10 19:02	662	2.307	2.375	10/5/10 19:24	683	2.321	2.389
10/5/10 18:41	641		2.353	10/5/10 19:02	662	2.306	2.374	10/5/10 19:24	684	2.323	2.391
		2.285									
10/5/10 18:42	641	2.281	2.349	10/5/10 19:03	663	2.305	2.373	10/5/10 19:24	684	2.322	2.39
10/5/10 18:42	642	2.276	2.344	10/5/10 19:03	663	2.305	2.373	10/5/10 19:25	684	2.324	2.392
10/5/10 18:42	642	2.282	2.35	10/5/10 19:04	663	2.307	2.375	10/5/10 19:25	685	2.328	2.396
10/5/10 18:43	642	2.281	2.349	10/5/10 19:04	664	2.304	2.372	10/5/10 19:25	685	2.328	2.396
10/5/10 18:43	643	2.284	2.352	10/5/10 19:04	664	2.306	2.374	10/5/10 19:26	685	2.324	2.392
10/5/10 18:43	643	2.281	2.349	10/5/10 19:05	664	2.307	2.375	10/5/10 19:26	686	2.325	2.393
10/5/10 18:44	643	2.277	2.345	10/5/10 19:05	665	2.308	2.376	10/5/10 19:26	686	2.328	2.396
10/5/10 18:44	644	2.281	2.349	10/5/10 19:05	665	2.310	2.378	10/5/10 19:27	686	2.325	2.393
10/5/10 18:44	644	2.293	2.361	10/5/10 19:06	665	2.309	2.377	10/5/10 19:27	687	2.329	2.397
10/5/10 18:45	644	2.282	2.35	10/5/10 19:06	666	2.312	2.38	10/5/10 19:27	687	2.326	2.394
10/5/10 18:45	645	2.283	2.351	10/5/10 19:06	666	2.314	2.382	10/5/10 19:28	687	2.327	2.395
10/5/10 18:45	645	2.281	2.349	10/5/10 19:07	666	2.310	2.378	10/5/10 19:28	688	2.327	2.395
10/5/10 18:46	645	2.280	2.348	10/5/10 19:07	667	2.312	2.38	10/5/10 19:28	688	2.326	2.394
10/5/10 18:46	646	2.280	2.348	10/5/10 19:07	667	2.312	2.38	10/5/10 19:29	688	2.329	2.397
10/5/10 18:46	646	2.281	2.349	10/5/10 19:08	667	2.308	2.376	10/5/10 19:29	689	2.331	2.399
10/5/10 18:47	646	2.284	2.352	10/5/10 19:08	668	2.312	2.38	10/5/10 19:29	689	2.335	2.403
10/5/10 18:47	647	2.285	2.353	10/5/10 19:08	668	2.315	2.383	10/5/10 19:30	689	2.333	2.401
10/5/10 18:47	647	2.282	2.35	10/5/10 19:09	668	2.312	2.38	10/5/10 19:30	690	2.330	2.398
10/5/10 18:48	647	2.297	2.365	10/5/10 19:09	669	2.311	2.379	10/5/10 19:30	690	2.336	2.404
10/5/10 18:48	648	2.284	2.352	10/5/10 19:09	669	2.309	2.377	10/5/10 19:31	690	2.338	2.406
10/5/10 18:48	648			10/5/10 19:09	669	2.313	2.381	10/5/10 19:31	691	2.336	2.404
		2.283	2.351								
10/5/10 18:49	648	2.290	2.358	10/5/10 19:10	670	2.311	2.379	10/5/10 19:31	691	2.334	2.402
10/5/10 18:49	649	2.303	2.371	10/5/10 19:10	670	2.312	2.38	10/5/10 19:32	691	2.331	2.399
10/5/10 18:49	649	2.298	2.366	10/5/10 19:11	670	2.316	2.384	10/5/10 19:32	692	2.334	2.402
10/5/10 18:50	649	2.291	2.359	10/5/10 19:11	671	2.315	2.383	10/5/10 19:32	692	2.338	2.406
10/5/10 18:50	650	2.290	2.358	10/5/10 19:11	671	2.317	2.385	10/5/10 19:33	692	2.343	2.411
10/5/10 18:50	650	2.288	2.356	10/5/10 19:12	671	2.316	2.384	10/5/10 19:33	693	2.335	2.403
10/5/10 18:51	650	2.297	2.365	10/5/10 19:12	672	2.314	2.382	10/5/10 19:33	693	2.344	2.412
10/5/10 18:51	651	2.289	2.357	10/5/10 19:12	672	2.312	2.38	10/5/10 19:34	693	2.349	2.417
10/5/10 18:51	651	2.297	2.365	10/5/10 19:13	672	2.317	2.385	10/5/10 19:34	694	2.345	2.413
10/5/10 18:52	651	2.294	2.362	10/5/10 19:13	673	2.317	2.385	10/5/10 19:34	694	2.342	2.41
10/5/10 18:52	652	2.297	2.365	10/5/10 19:13	673	2.326	2.394	10/5/10 19:35	694	2.356	2.424
10/5/10 18:52	652	2.298	2.366	10/5/10 19:13	673	2.325	2.393	10/5/10 19:35	695	2.344	2.424
						2.323					
10/5/10 18:53	652	2.298	2.366	10/5/10 19:14	674	2.318	2.386	10/5/10 19:35	695	2.343	2.411
10/5/10 18:53	653	2.302	2.37	10/5/10 19:14	674	2.315	2.383	10/5/10 19:36	695	2.343	2.411
10/5/10 18:53	653	2.308	2.376	10/5/10 19:15	674	2.317	2.385	10/5/10 19:36	696	2.344	2.412
10/5/10 18:54	653	2.310	2.378	10/5/10 19:15	675	2.317	2.385	10/5/10 19:36	696	2.342	2.41
10/5/10 18:54	654	2.303	2.371	10/5/10 19:15	675	2.317	2.385	10/5/10 19:37	696	2.345	2.413
10/5/10 18:54	654	2.301	2.369	10/5/10 19:16	675	2.315	2.383	10/5/10 19:37	697	2.341	2.409
10/5/10 18:55	654	2.293	2.361	10/5/10 19:16	676	2.318	2.386	10/5/10 19:37	697	2.335	2.403
10/5/10 18:55	655	2.298	2.366	10/5/10 19:16	676	2.314	2.382	10/5/10 19:38	697	2.339	2.407
10/5/10 18:55	655	2.300	2.368	10/5/10 19:17	676	2.318	2.386	10/5/10 19:38	698	2.341	2.409
10/5/10 18:56	655	2.291	2.359	10/5/10 19:17	677	2.316	2.384	10/5/10 19:38	698	2.348	2.416
10/5/10 18:56	656	2.290	2.358	10/5/10 19:17	677	2.313	2.381	10/5/10 19:39	698	2.344	2.412
10/5/10 18:56	656	2.296	2.364	10/5/10 19:18	677	2.318	2.386	10/5/10 19:39	699	2.344	2.412
10/5/10 18:57	656	2.296	2.364	10/5/10 19:18	678	2.318	2.386	10/5/10 19:39	699	2.339	2.407
10/5/10 18:57	657	2.293	2.361	10/5/10 19:18	678	2.319	2.387	10/5/10 19:40	699	2.339	2.407
10/5/10 18:57	657	2.292	2.36	10/5/10 19:19	678	2.320	2.388	10/5/10 19:40	700	2.342	2.41
10/5/10 18:58	657	2.293	2.361	10/5/10 19:19	679	2.323	2.391	10/5/10 19:40	700	2.345	2.413
10/5/10 18:58	658	2.298	2.366	10/5/10 19:19	679	2.324	2.392	10/5/10 19:41	700	2.341	2.409
10/5/10 18:58	658	2.299	2.367	10/5/10 19:20	679	2.321	2.389	10/5/10 19:41	701	2.339	2.407
10/5/10 18:59	658	2.299	2.367	10/5/10 19:20	680	2.319	2.387	10/5/10 19:41	701	2.343	2.411
10/5/10 18:59	659	2.298	2.366	10/5/10 19:20	680	2.322	2.39	10/5/10 19:42	701	2.341	2.409
10/5/10 18:59	659	2.300	2.368	10/5/10 19:21	680	2.326	2.394	10/5/10 19:42	702	2.341	2.409
10/5/10 19:00	659	2.299	2.367	10/5/10 19:21	681	2.321	2.389	10/5/10 19:42	702	2.342	2.41
10/5/10 19:00	660	2.301	2.369	10/5/10 19:21	681	2.322	2.39	10/5/10 19:43	702	2.340	2.408
10/5/10 19:00	660	2.300	2.368	10/5/10 19:22	681	2.322	2.39	10/5/10 19:43	703	2.345	2.413
10/5/10 19:01	660	2.297	2.365	10/5/10 19:22	682	2.324	2.392	10/5/10 19:43	703	2.348	2.416
10/5/10 19:01	661	2.302	2.37	10/5/10 19:22	682	2.328	2.396	10/5/10 19:44	703	2.350	2.418
10/3/10 13.01	001	2.302	2.01	10/3/10 13.22	002	2.320	2.030	10/3/10 13.44	103	2.330	2.410

40/F/40 40:44	704	2 2 4 0	0.446	40/F/4/	0.00.05	705	2.252	0.404	10/5/10 20:27	746	2 277	0.445
10/5/10 19:44	704	2.348	2.416	10/5/10		725	2.353	2.421	10/5/10 20:27	746	2.377	2.445
10/5/10 19:44	704	2.346	2.414		0 20:06	725	2.351	2.419	10/5/10 20:27	747	2.374	2.442
10/5/10 19:45	704	2.346	2.414		0 20:06	726	2.354	2.422	10/5/10 20:27	747	2.377	2.445
10/5/10 19:45	705	2.343	2.411	10/5/10	0 20:06	726	2.355	2.423	10/5/10 20:28	747	2.376	2.444
10/5/10 19:45	705	2.344	2.412	10/5/10	ე 20:07	726	2.352	2.42	10/5/10 20:28	748	2.379	2.447
10/5/10 19:46	705	2.342	2.41	10/5/10		727	2.352	2.42	10/5/10 20:28	748	2.379	2.447
10/5/10 19:46	706	2.343	2.411	10/5/10		727	2.358	2.426	10/5/10 20:29	748	2.382	2.45
				10/5/10								
10/5/10 19:46	706	2.343	2.411			727	2.356	2.424	10/5/10 20:29	749	2.379	2.447
10/5/10 19:47	706	2.341	2.409	10/5/10		728	2.357	2.425	10/5/10 20:29	749	2.379	2.447
10/5/10 19:47	707	2.342	2.41	10/5/10	0 20:08	728	2.360	2.428	10/5/10 20:30	749	2.379	2.447
10/5/10 19:47	707	2.346	2.414	10/5/10	0 20:09	728	2.362	2.43	10/5/10 20:30	750	2.379	2.447
10/5/10 19:48	707	2.345	2.413	10/5/10	0.20:09	729	2.355	2.423	10/5/10 20:30	750	2.383	2.451
10/5/10 19:48	708	2.346	2.414		0 20:09	729	2.358	2.426	10/5/10 20:31	750	2.385	2.453
10/5/10 19:48	708	2.341	2.409		0 20:10	729	2.356	2.424	10/5/10 20:31	751	2.384	2.452
10/5/10 19:49	708	2.344	2.412	10/5/10		730	2.355	2.423	10/5/10 20:31	751	2.383	2.451
10/5/10 19:49	709	2.348	2.416		0 20:10	730	2.356	2.424	10/5/10 20:32	751	2.382	2.45
10/5/10 19:49	709	2.342	2.41	10/5/10		730	2.358	2.426	10/5/10 20:32	752	2.383	2.451
10/5/10 19:50	709	2.350	2.418	10/5/10	ე 20:11	731	2.361	2.429	10/5/10 20:32	752	2.385	2.453
10/5/10 19:50	710	2.349	2.417	10/5/10	0.20:11	731	2.360	2.428	10/5/10 20:33	752	2.387	2.455
10/5/10 19:50	710	2.348	2.416		0 20:12	731	2.362	2.43	10/5/10 20:33	753	2.385	2.453
10/5/10 19:51	710	2.345	2.413		0 20:12	732	2.364	2.432	10/5/10 20:33	753	2.395	2.463
									10/5/10 20.33			
10/5/10 19:51	711	2.338	2.406		0 20:12	732	2.364	2.432	10/5/10 20:34	753	2.384	2.452
10/5/10 19:51	711	2.345	2.413		0 20:13	732	2.363	2.431	10/5/10 20:34	754	2.382	2.45
10/5/10 19:52	711	2.345	2.413	10/5/10	0 20:13	733	2.364	2.432	10/5/10 20:34	754	2.378	2.446
10/5/10 19:52	712	2.349	2.417	10/5/10	0 20:13	733	2.367	2.435	10/5/10 20:35	754	2.386	2.454
10/5/10 19:52	712	2.353	2.421	10/5/10	0.20:14	733	2.364	2.432	10/5/10 20:35	755	2.383	2.451
10/5/10 19:53	712	2.347	2.415	10/5/10		734	2.361	2.429	10/5/10 20:35	755	2.390	2.458
10/5/10 19:53	713	2.347	2.415	10/5/10		734	2.367	2.435	10/5/10 20:36	755	2.389	2.457
10/5/10 19:53	713	2.359	2.427		0 20:15	734	2.372	2.44	10/5/10 20:36	756	2.389	2.457
10/5/10 19:54	713	2.348	2.416		0 20:15	735	2.372	2.44	10/5/10 20:36	756	2.388	2.456
10/5/10 19:54	714	2.346	2.414	10/5/10	0 20:15	735	2.368	2.436	10/5/10 20:37	756	2.385	2.453
10/5/10 19:54	714	2.345	2.413	10/5/10	0 20:16	735	2.373	2.441	10/5/10 20:37	757	2.386	2.454
10/5/10 19:55	714	2.348	2.416		0 20:16	736	2.368	2.436	10/5/10 20:37	757	2.387	2.455
10/5/10 19:55	715	2.350	2.418		0 20:16	736	2.370	2.438	10/5/10 20:38	757	2.385	2.453
10/5/10 19:55	715	2.353	2.421	10/5/10		736	2.372	2.44	10/5/10 20:38	758	2.387	2.455
10/5/10 19:56	715	2.351	2.419	10/5/10		737	2.374	2.442	10/5/10 20:38	758	2.387	2.455
10/5/10 19:56	716	2.350	2.418		0 20:17	737	2.376	2.444	10/5/10 20:39	758	2.386	2.454
10/5/10 19:56	716	2.349	2.417		0 20:18	737	2.377	2.445	10/5/10 20:39	759	2.387	2.455
10/5/10 19:57	716	2.349	2.417	10/5/10	J 20:18	738	2.379	2.447	10/5/10 20:39	759	2.387	2.455
10/5/10 19:57	717	2.350	2.418	10/5/10	0 20:18	738	2.388	2.456	10/5/10 20:40	759	2.387	2.455
10/5/10 19:57	717	2.351	2.419		0 20:19	738	2.379	2.447	10/5/10 20:40	760	2.389	2.457
10/5/10 19:58	717	2.349	2.417		0 20:19	739	2.378	2.446	10/5/10 20:40	760	2.389	2.457
			2.417									
10/5/10 19:58	718	2.349			0 20:19	739	2.375	2.443	10/5/10 20:41	760	2.384	2.452
10/5/10 19:58	718	2.348	2.416	10/5/10		739	2.377	2.445	10/5/10 20:41	761	2.388	2.456
10/5/10 19:59	718	2.351	2.419	10/5/10		740	2.378	2.446	10/5/10 20:41	761	2.391	2.459
10/5/10 19:59	719	2.347	2.415	10/5/10		740	2.376	2.444	10/5/10 20:42	761	2.391	2.459
10/5/10 19:59	719	2.346	2.414	10/5/10	ე 20:21	740	2.376	2.444	10/5/10 20:42	762	2.394	2.462
10/5/10 20:00	719	2.343	2.411	10/5/10	0 20:21	741	2.376	2.444	10/5/10 20:42	762	2.390	2.458
10/5/10 20:00	720	2.340	2.408	10/5/10		741	2.376	2.444	10/5/10 20:43	762	2.387	2.455
10/5/10 20:00	720	2.344	2.412		0 20:22	741	2.378	2.446	10/5/10 20:43	763	2.389	2.457
10/5/10 20:01	720	2.346	2.414	10/5/10		742	2.380	2.448	10/5/10 20:43	763	2.388	2.456
10/5/10 20:01	721	2.344	2.412		0 20:22	742	2.379	2.447	10/5/10 20:44	763	2.392	2.46
10/5/10 20:01	721	2.355	2.423		0 20:23	742	2.378	2.446	10/5/10 20:44	764	2.392	2.46
10/5/10 20:02	721	2.355	2.423		0 20:23	743	2.378	2.446	10/5/10 20:44	764	2.391	2.459
10/5/10 20:02	722	2.346	2.414		0 20:23	743	2.378	2.446	10/5/10 20:45	764	2.390	2.458
10/5/10 20:02	722	2.345	2.413	10/5/10	0 20:24	743	2.374	2.442	10/5/10 20:45	765	2.389	2.457
10/5/10 20:03	722	2.346	2.414	10/5/10	0 20:24	744	2.379	2.447	10/5/10 20:45	765	2.387	2.455
							2.010					
10/5/10 20:03	723	2.347	2.415	10/5/10		744	2.379	2.447	10/5/10 20:46	765	2.388	2.456
10/5/10 20:03	723	2.361	2.429		0 20:25	744	2.379	2.447	10/5/10 20:46	766	2.391	2.459
10/5/10 20:04	723	2.363	2.431		0 20:25	745	2.373	2.441	10/5/10 20:46	766	2.389	2.457
10/5/10 20:04	724	2.352	2.42		0 20:25	745	2.376	2.444	10/5/10 20:47	766	2.391	2.459
10/5/10 20:04	724	2.354	2.422	10/5/10	0 20:26	745	2.375	2.443	10/5/10 20:47	767	2.388	2.456
10/5/10 20:05	724	2.351	2.419		0 20:26	746	2.373	2.441	10/5/10 20:47	767	2.389	2.457
10/5/10 20:05	725	2.356	2.424		0 20:26	746	2.376	2.444	10/5/10 20:48	767	2.389	2.457
10/0/10 20.00	. 20			10,0/10	, _00	0	2.570		10,0,10 20.40			

40/F/40 00.40	760	2 202	0.46	10/5/10 21:00	700	2 200	0.466	10/5/10 21:31	040	2.440	0.470
10/5/10 20:48	768	2.392	2.46	10/5/10 21:09	789	2.398	2.466		810	2.410	2.478
10/5/10 20:48	768	2.387	2.455	10/5/10 21:10	789	2.401	2.469	10/5/10 21:31	811	2.413	2.481
10/5/10 20:49	768	2.387	2.455	10/5/10 21:10	790	2.399	2.467	10/5/10 21:31	811	2.410	2.478
10/5/10 20:49	769	2.388	2.456	10/5/10 21:10	790	2.394	2.462	10/5/10 21:32	811	2.413	2.481
10/5/10 20:49	769	2.387	2.455	10/5/10 21:11	790	2.397	2.465	10/5/10 21:32	812	2.409	2.477
10/5/10 20:50	769	2.387	2.455	10/5/10 21:11	791	2.399	2.467	10/5/10 21:32	812	2.413	2.481
10/5/10 20:50	770	2.391	2.459	10/5/10 21:11	791	2.410	2.478	10/5/10 21:33	812	2.416	2.484
10/5/10 20:50	770	2.388	2.456	10/5/10 21:12	791	2.399	2.467	10/5/10 21:33	813	2.419	2.487
10/5/10 20:51	770	2.392	2.46	10/5/10 21:12	792	2.402	2.47	10/5/10 21:33	813	2.419	2.487
10/5/10 20:51	771	2.388	2.456	10/5/10 21:12	792	2.401	2.469	10/5/10 21:34	813	2.418	2.486
10/5/10 20:51	771	2.388	2.456	10/5/10 21:12	792	2.403	2.471	10/5/10 21:34	814	2.417	2.485
		2.388	2.456	10/5/10 21:13	793	2.403	2.47	10/5/10 21:34	814	2.417	
10/5/10 20:52	771							10/5/10 21:34			2.48
10/5/10 20:52	772	2.388	2.456	10/5/10 21:13	793	2.401	2.469	10/5/10 21:35	814	2.417	2.485
10/5/10 20:52	772	2.401	2.469	10/5/10 21:14	793	2.401	2.469	10/5/10 21:35	815	2.414	2.482
10/5/10 20:53	772	2.389	2.457	10/5/10 21:14	794	2.401	2.469	10/5/10 21:35	815	2.416	2.484
10/5/10 20:53	773	2.391	2.459	10/5/10 21:14	794	2.403	2.471	10/5/10 21:36	815	2.417	2.485
10/5/10 20:53	773	2.388	2.456	10/5/10 21:15	794	2.398	2.466	10/5/10 21:36	816	2.414	2.482
10/5/10 20:54	773	2.391	2.459	10/5/10 21:15	795	2.403	2.471	10/5/10 21:36	816	2.416	2.484
10/5/10 20:54	774	2.394	2.462	10/5/10 21:15	795	2.402	2.47	10/5/10 21:37	816	2.413	2.481
10/5/10 20:54	774	2.388	2.456	10/5/10 21:16	795	2.401	2.469	10/5/10 21:37	817	2.415	2.483
10/5/10 20:55	774	2.386	2.454	10/5/10 21:16	796	2.406	2.474	10/5/10 21:37	817	2.419	2.487
10/5/10 20:55	775	2.390	2.458	10/5/10 21:16	796	2.403	2.471	10/5/10 21:38	817	2.419	2.487
10/5/10 20:55	775	2.388	2.456	10/5/10 21:17	796	2.406	2.474	10/5/10 21:38	818	2.415	2.483
10/5/10 20:56	775	2.389	2.457	10/5/10 21:17	797	2.405	2.473	10/5/10 21:38	818	2.417	2.485
				10/5/10 21:17							
10/5/10 20:56	776	2.400	2.468		797 707	2.404	2.472	10/5/10 21:39	818	2.417	2.485
10/5/10 20:56	776	2.393	2.461	10/5/10 21:18	797	2.403	2.471	10/5/10 21:39	819	2.419	2.487
10/5/10 20:57	776	2.390	2.458	10/5/10 21:18	798	2.409	2.477	10/5/10 21:39	819	2.421	2.489
10/5/10 20:57	777	2.390	2.458	10/5/10 21:18	798	2.406	2.474	10/5/10 21:40	819	2.418	2.486
10/5/10 20:57	777	2.391	2.459	10/5/10 21:19	798	2.404	2.472	10/5/10 21:40	820	2.417	2.485
10/5/10 20:58	777	2.389	2.457	10/5/10 21:19	799	2.403	2.471	10/5/10 21:40	820	2.424	2.492
10/5/10 20:58	778	2.394	2.462	10/5/10 21:19	799	2.401	2.469	10/5/10 21:41	820	2.421	2.489
10/5/10 20:58	778	2.395	2.463	10/5/10 21:20	799	2.412	2.48	10/5/10 21:41	821	2.420	2.488
10/5/10 20:59	778	2.394	2.462	10/5/10 21:20	800	2.404	2.472	10/5/10 21:41	821	2.430	2.498
10/5/10 20:59	779	2.392	2.46	10/5/10 21:20	800	2.405	2.473	10/5/10 21:42	821	2.422	2.49
10/5/10 20:59	779	2.392	2.46	10/5/10 21:21	800	2.405	2.473	10/5/10 21:42	822	2.422	2.49
10/5/10 21:00	779	2.392	2.46	10/5/10 21:21	801	2.403	2.471	10/5/10 21:42	822	2.423	2.491
10/5/10 21:00	780	2.393	2.461	10/5/10 21:21	801	2.404	2.472	10/5/10 21:42	822	2.421	2.489
10/5/10 21:00	780	2.394	2.462	10/5/10 21:22	801	2.405	2.473	10/5/10 21:43	823	2.423	2.491
10/5/10 21:00	780	2.389	2.457	10/5/10 21:22	802	2.409	2.477	10/5/10 21:43	823	2.420	2.488
								10/5/10 21.43			
10/5/10 21:01	781	2.389	2.457	10/5/10 21:22	802	2.406	2.474	10/5/10 21:44	823	2.422	2.49
10/5/10 21:01	781	2.392	2.46	10/5/10 21:23	802	2.406	2.474	10/5/10 21:44	824	2.432	2.5
10/5/10 21:02	781	2.392	2.46	10/5/10 21:23	803	2.411	2.479	10/5/10 21:44	824	2.434	2.502
10/5/10 21:02	782	2.392	2.46	10/5/10 21:23	803	2.406	2.474	10/5/10 21:45	824	2.423	2.491
10/5/10 21:02	782	2.394	2.462	10/5/10 21:24	803	2.407	2.475	10/5/10 21:45	825	2.421	2.489
10/5/10 21:03	782	2.395	2.463	10/5/10 21:24	804	2.407	2.475	10/5/10 21:45	825	2.416	2.484
10/5/10 21:03	783	2.392	2.46	10/5/10 21:24	804	2.410	2.478	10/5/10 21:46	825	2.424	2.492
10/5/10 21:03	783	2.397	2.465	10/5/10 21:25	804	2.407	2.475	10/5/10 21:46	826	2.422	2.49
10/5/10 21:04	783	2.391	2.459	10/5/10 21:25	805	2.411	2.479	10/5/10 21:46	826	2.420	2.488
10/5/10 21:04	784	2.390	2.458	10/5/10 21:25	805	2.409	2.477	10/5/10 21:47	826	2.420	2.488
10/5/10 21:04	784	2.394	2.462	10/5/10 21:26	805	2.417	2.485	10/5/10 21:47	827	2.418	2.486
10/5/10 21:05	784	2.393	2.461	10/5/10 21:26	806	2.405	2.473	10/5/10 21:47	827	2.422	2.49
10/5/10 21:05	785	2.395	2.463	10/5/10 21:26	806	2.406	2.474	10/5/10 21:48	827	2.421	2.489
10/5/10 21:05	785	2.394	2.462	10/5/10 21:27	806	2.405	2.473	10/5/10 21:48	828	2.433	2.501
10/5/10 21:06	785	2.395	2.463	10/5/10 21:27	807	2.408	2.476	10/5/10 21:48	828	2.418	2.486
10/5/10 21:06	786	2.394	2.462	10/5/10 21:27	807	2.404	2.472	10/5/10 21:49	828	2.422	2.49
10/5/10 21:06	786	2.394	2.462	10/5/10 21:28	807	2.407	2.475	10/5/10 21:49	829	2.424	2.492
10/5/10 21:07	786	2.400	2.468	10/5/10 21:28	808	2.407	2.475	10/5/10 21:49	829	2.427	2.495
10/5/10 21:07	787	2.405	2.473	10/5/10 21:28	808	2.411	2.479	10/5/10 21:50	829	2.425	2.493
10/5/10 21:07	787	2.395	2.463	10/5/10 21:29	808	2.407	2.475	10/5/10 21:50	830	2.420	2.488
10/5/10 21:08	787	2.392	2.46	10/5/10 21:29	809	2.408	2.476	10/5/10 21:50	830	2.423	2.491
10/5/10 21:08	788	2.401	2.469	10/5/10 21:29	809	2.406	2.474	10/5/10 21:51	830	2.423	2.491
10/5/10 21:08	788	2.396	2.464	10/5/10 21:30	809	2.410	2.478	10/5/10 21:51	831	2.421	2.489
10/5/10 21:09	788	2.394	2.462	10/5/10 21:30	810	2.407	2.475	10/5/10 21:51	831	2.424	2.492
10/5/10 21:09	789	2.406	2.474	10/5/10 21:30	810	2.413	2.481	10/5/10 21:52	831	2.422	2.49

40/E/40 04.E0	022	2.420	0.407	10/5/10 22:12	052	0.406	2.504	40/E/40 00:0E	074	2 447	2.545
10/5/10 21:52	832	2.429 2.427	2.497	10/5/10 22:13	853	2.436	2.504	10/5/10 22:35	874	2.447 2.443	2.515
10/5/10 21:52	832		2.495	10/5/10 22:14 10/5/10 22:14	853	2.436	2.504	10/5/10 22:35	875 875		2.511
10/5/10 21:53	832	2.428	2.496		854	2.436	2.504	10/5/10 22:35	875	2.445	2.513
10/5/10 21:53	833	2.427	2.495	10/5/10 22:14	854	2.439	2.507	10/5/10 22:36	875	2.443	2.511
10/5/10 21:53	833	2.425	2.493	10/5/10 22:15	854	2.436	2.504	10/5/10 22:36	876	2.445	2.513
10/5/10 21:54	833	2.426	2.494	10/5/10 22:15	855	2.442	2.51	10/5/10 22:36	876	2.443	2.511
10/5/10 21:54	834	2.433	2.501	10/5/10 22:15	855	2.444	2.512	10/5/10 22:37	876	2.447	2.515
10/5/10 21:54	834	2.430	2.498	10/5/10 22:16	855	2.438	2.506	10/5/10 22:37	877	2.448	2.516
10/5/10 21:55	834	2.429	2.497	10/5/10 22:16	856	2.441	2.509	10/5/10 22:37	877	2.449	2.517
10/5/10 21:55	835	2.442	2.51	10/5/10 22:16	856	2.441	2.509	10/5/10 22:38	877	2.446	2.514
10/5/10 21:55	835	2.430	2.498	10/5/10 22:17	856	2.439	2.507	10/5/10 22:38	878	2.456	2.524
10/5/10 21:56	835	2.429	2.497	10/5/10 22:17	857	2.447	2.515	10/5/10 22:38	878	2.443	2.511
10/5/10 21:56	836	2.436	2.504	10/5/10 22:17	857	2.437	2.505	10/5/10 22:39	878	2.448	2.516
10/5/10 21:56	836	2.430	2.498	10/5/10 22:18	857	2.446	2.514	10/5/10 22:39	879	2.444	2.512
10/5/10 21:57	836	2.430	2.498	10/5/10 22:18	858	2.436	2.504	10/5/10 22:39	879	2.446	2.514
10/5/10 21:57	837	2.441	2.509	10/5/10 22:18	858	2.443	2.511	10/5/10 22:40	879	2.446	2.514
10/5/10 21:57	837	2.432	2.5	10/5/10 22:19	858	2.440	2.508	10/5/10 22:40	880	2.442	2.51
10/5/10 21:58	837	2.440	2.508	10/5/10 22:19	859	2.432	2.5	10/5/10 22:40	880	2.448	2.516
10/5/10 21:58	838	2.432	2.5	10/5/10 22:19	859	2.437	2.505	10/5/10 22:41	880	2.449	2.517
10/5/10 21:58	838	2.429	2.497	10/5/10 22:20	859	2.437	2.505	10/5/10 22:41	881	2.450	2.518
10/5/10 21:59	838	2.430	2.498	10/5/10 22:20	860	2.437	2.505	10/5/10 22:41	881	2.443	2.511
10/5/10 21:59	839	2.426	2.494	10/5/10 22:20	860	2.437	2.505	10/5/10 22:42	881	2.443	2.511
10/5/10 21:59	839	2.429	2.497	10/5/10 22:21	860	2.436	2.504	10/5/10 22:42	882	2.445	2.513
10/5/10 22:00	839	2.430	2.498	10/5/10 22:21	861	2.434	2.502	10/5/10 22:42	882	2.448	2.516
10/5/10 22:00	840	2.427	2.495	10/5/10 22:21	861	2.437	2.505	10/5/10 22:43	882	2.444	2.512
10/5/10 22:00	840	2.427	2.495	10/5/10 22:22	861	2.439	2.507	10/5/10 22:43	883	2.443	2.511
10/5/10 22:01	840	2.431	2.499	10/5/10 22:22	862	2.446	2.514	10/5/10 22:43	883	2.446	2.514
10/5/10 22:01	841	2.428	2.496	10/5/10 22:22	862	2.437	2.505	10/5/10 22:44	883	2.447	2.515
10/5/10 22:01	841	2.431	2.499	10/5/10 22:23	862	2.439	2.507	10/5/10 22:44	884	2.445	2.513
10/5/10 22:02	841	2.440	2.508	10/5/10 22:23	863	2.437	2.505	10/5/10 22:44	884	2.446	2.514
10/5/10 22:02	842	2.434	2.502	10/5/10 22:23	863	2.436	2.504	10/5/10 22:45	884	2.444	2.512
10/5/10 22:02	842	2.431	2.499	10/5/10 22:24	863	2.454	2.522	10/5/10 22:45	885	2.447	2.515
10/5/10 22:03	842	2.433	2.501	10/5/10 22:24	864	2.437	2.505	10/5/10 22:45	885	2.446	2.514
10/5/10 22:03	843	2.431	2.499	10/5/10 22:24	864	2.451	2.519	10/5/10 22:46	885	2.456	2.524
10/5/10 22:03	843	2.431	2.499	10/5/10 22:25	864	2.438	2.506	10/5/10 22:46	886	2.446	2.514
10/5/10 22:04	843	2.430	2.498	10/5/10 22:25	865	2.437	2.505	10/5/10 22:46	886	2.450	2.518
10/5/10 22:04	844	2.429	2.497	10/5/10 22:25	865	2.439	2.507	10/5/10 22:47	886	2.455	2.523
10/5/10 22:04	844	2.429	2.497	10/5/10 22:26	865	2.454	2.522	10/5/10 22:47	887	2.449	2.517
10/5/10 22:05	844	2.431	2.499	10/5/10 22:26	866	2.436	2.504	10/5/10 22:47	887	2.445	2.513
10/5/10 22:05	845	2.431	2.499	10/5/10 22:26	866	2.443	2.511	10/5/10 22:48	887	2.449	2.517
10/5/10 22:05	845	2.428	2.499	10/5/10 22:27	866	2.443	2.508	10/5/10 22:48	888	2.448	2.517
10/5/10 22:06	845	2.428	2.496	10/5/10 22:27	867	2.444	2.512	10/5/10 22:48	888	2.456	2.524
	846	2.420	2.502		867	2.451	2.512		888	2.447	2.515
10/5/10 22:06 10/5/10 22:06	846	2.434	2.302	10/5/10 22:27 10/5/10 22:28	867	2.443	2.519	10/5/10 22:49 10/5/10 22:49	889	2.447	2.513
10/5/10 22:07	846	2.431	2.499	10/5/10 22:28	868	2.443	2.51	10/5/10 22:49	889	2.440	2.514
10/5/10 22:07	847	2.432	2.502	10/5/10 22:28	868	2.442	2.511	10/5/10 22:49	889	2.448	2.516
10/5/10 22:07	847	2.434	2.502	10/5/10 22:28	868	2.443	2.51	10/5/10 22:50	890	2.446	2.516
10/5/10 22:07	847	2.432	2.498	10/5/10 22:29	869	2.432	2.52	10/5/10 22:50	890	2.440	
								10/5/10 22:50			2.519
10/5/10 22:08	848	2.432	2.5	10/5/10 22:29	869	2.444	2.512	10/5/10 22:51	890	2.446	2.514
10/5/10 22:08	848	2.433	2.501	10/5/10 22:30	869	2.446	2.514	10/5/10 22:51	891	2.447	2.515
10/5/10 22:09	848	2.433	2.501	10/5/10 22:30	870	2.445	2.513	10/5/10 22:51	891	2.447	2.515
10/5/10 22:09	849	2.443	2.511	10/5/10 22:30	870	2.445	2.513	10/5/10 22:52	891	2.447	2.515
10/5/10 22:09	849	2.431	2.499	10/5/10 22:31	870	2.443	2.511	10/5/10 22:52	892	2.446	2.514
10/5/10 22:10	849	2.441	2.509	10/5/10 22:31	871	2.453	2.521	10/5/10 22:52	892	2.448	2.516
10/5/10 22:10	850	2.431	2.499	10/5/10 22:31	871	2.442	2.51	10/5/10 22:53	892	2.446	2.514
10/5/10 22:10	850	2.442	2.51	10/5/10 22:32	871	2.445	2.513	10/5/10 22:53	893	2.449	2.517
10/5/10 22:11	850	2.433	2.501	10/5/10 22:32	872	2.445	2.513	10/5/10 22:53	893	2.448	2.516
10/5/10 22:11	851	2.435	2.503	10/5/10 22:32	872	2.445	2.513	10/5/10 22:54	893	2.449	2.517
10/5/10 22:11	851	2.434	2.502	10/5/10 22:33	872	2.447	2.515	10/5/10 22:54	894	2.448	2.516
10/5/10 22:12	851	2.433	2.501	10/5/10 22:33	873	2.447	2.515	10/5/10 22:54	894	2.449	2.517
10/5/10 22:12	852	2.436	2.504	10/5/10 22:33	873	2.461	2.529	10/5/10 22:55	894	2.452	2.52
10/5/10 22:12	852	2.435	2.503	10/5/10 22:34	873	2.445	2.513	10/5/10 22:55	895	2.452	2.52
10/5/10 22:13	852	2.448	2.516	10/5/10 22:34	874	2.454	2.522	10/5/10 22:55	895	2.450	2.518
10/5/10 22:13	853	2.439	2.507	10/5/10 22:34	874	2.446	2.514	10/5/10 22:56	895	2.450	2.518

10/5/10 22:56	906	0.440	0.546	10/E/10 00:17	017	0.450	0.540	10/5/10 23:39	020	0.466	0.504
10/5/10 22:56	896	2.448	2.516	10/5/10 23:17	917	2.450	2.518		938	2.466	2.534
10/5/10 22:56	896	2.447	2.515	10/5/10 23:18	917	2.450	2.518	10/5/10 23:39	939	2.462	2.53
10/5/10 22:57	896	2.448	2.516	10/5/10 23:18	918	2.447	2.515	10/5/10 23:39	939	2.462	2.53
10/5/10 22:57	897	2.440	2.508	10/5/10 23:18	918	2.451	2.519	10/5/10 23:40	939	2.464	2.532
10/5/10 22:57	897	2.445	2.513	10/5/10 23:19	918	2.453	2.521	10/5/10 23:40	940	2.465	2.533
10/5/10 22:58	897	2.448	2.516	10/5/10 23:19	919	2.448	2.516	10/5/10 23:40	940	2.462	2.53
10/5/10 22:58	898	2.433	2.501	10/5/10 23:19	919	2.448	2.516	10/5/10 23:41	940	2.464	2.532
10/5/10 22:58	898	2.439	2.507	10/5/10 23:20	919	2.453	2.521	10/5/10 23:41	941	2.465	2.533
10/5/10 22:59	898	2.444	2.512	10/5/10 23:20	920	2.448	2.516	10/5/10 23:41	941	2.466	2.534
10/5/10 22:59	899	2.443	2.511	10/5/10 23:20	920	2.450	2.518	10/5/10 23:42	941	2.467	2.535
10/5/10 22:59	899	2.442	2.51	10/5/10 23:21	920	2.451	2.519	10/5/10 23:42	942	2.462	2.53
10/5/10 22:39	899	2.437	2.505	10/5/10 23:21	921	2.450	2.518	10/5/10 23:42	942	2.465	2.533
								10/5/10 23.42			
10/5/10 23:00	900	2.440	2.508	10/5/10 23:21	921	2.449	2.517	10/5/10 23:43	942	2.465	2.533
10/5/10 23:00	900	2.442	2.51	10/5/10 23:22	921	2.449	2.517	10/5/10 23:43	943	2.467	2.535
10/5/10 23:01	900	2.441	2.509	10/5/10 23:22	922	2.451	2.519	10/5/10 23:43	943	2.466	2.534
10/5/10 23:01	901	2.463	2.531	10/5/10 23:22	922	2.454	2.522	10/5/10 23:44	943	2.464	2.532
10/5/10 23:01	901	2.448	2.516	10/5/10 23:23	922	2.452	2.52	10/5/10 23:44	944	2.467	2.535
10/5/10 23:02	901	2.444	2.512	10/5/10 23:23	923	2.448	2.516	10/5/10 23:44	944	2.465	2.533
10/5/10 23:02	902	2.443	2.511	10/5/10 23:23	923	2.447	2.515	10/5/10 23:45	944	2.472	2.54
10/5/10 23:02	902	2.449	2.517	10/5/10 23:24	923	2.451	2.519	10/5/10 23:45	945	2.466	2.534
10/5/10 23:03	902	2.447	2.515	10/5/10 23:24	924	2.452	2.52	10/5/10 23:45	945	2.471	2.539
10/5/10 23:03	903	2.446	2.514	10/5/10 23:24	924	2.449	2.517	10/5/10 23:46	945	2.469	2.537
10/5/10 23:03	903	2.444	2.512	10/5/10 23:25	924	2.451	2.519	10/5/10 23:46	946	2.470	2.538
10/5/10 23:04	903	2.447	2.515	10/5/10 23:25	925	2.452	2.52	10/5/10 23:46	946	2.470	2.538
10/5/10 23:04	904	2.444	2.512	10/5/10 23:25	925	2.452	2.52	10/5/10 23:47	946	2.467	2.535
10/5/10 23:04	904	2.454	2.522	10/5/10 23:25	925	2.452	2.518	10/5/10 23:47	947	2.468	2.536
								10/5/10 23:47			
10/5/10 23:05	904	2.444	2.512	10/5/10 23:26	926	2.450	2.518	10/5/10 23:47	947	2.468	2.536
10/5/10 23:05	905	2.445	2.513	10/5/10 23:26	926	2.467	2.535	10/5/10 23:48	947	2.469	2.537
10/5/10 23:05	905	2.442	2.51	10/5/10 23:27	926	2.454	2.522	10/5/10 23:48	948	2.467	2.535
10/5/10 23:06	905	2.442	2.51	10/5/10 23:27	927	2.456	2.524	10/5/10 23:48	948	2.467	2.535
10/5/10 23:06	906	2.442	2.51	10/5/10 23:27	927	2.455	2.523	10/5/10 23:49	948	2.470	2.538
10/5/10 23:06	906	2.446	2.514	10/5/10 23:28	927	2.451	2.519	10/5/10 23:49	949	2.469	2.537
10/5/10 23:07	906	2.445	2.513	10/5/10 23:28	928	2.451	2.519	10/5/10 23:49	949	2.466	2.534
10/5/10 23:07	907	2.442	2.51	10/5/10 23:28	928	2.456	2.524	10/5/10 23:50	949	2.468	2.536
10/5/10 23:07	907	2.444	2.512	10/5/10 23:29	928	2.453	2.521	10/5/10 23:50	950	2.469	2.537
10/5/10 23:08	907	2.459	2.527	10/5/10 23:29	929	2.453	2.521	10/5/10 23:50	950	2.467	2.535
10/5/10 23:08	908	2.441	2.509	10/5/10 23:29	929	2.458	2.526	10/5/10 23:51	950	2.465	2.533
10/5/10 23:08	908	2.456	2.524	10/5/10 23:30	929	2.455	2.523	10/5/10 23:51	951	2.466	2.534
10/5/10 23:09	908	2.447	2.515	10/5/10 23:30	930	2.457	2.525	10/5/10 23:51	951	2.477	2.545
							2.525	10/5/10 23.51			
10/5/10 23:09	909	2.444	2.512	10/5/10 23:30	930	2.458	2.526	10/5/10 23:52 10/5/10 23:52	951	2.464	2.532
10/5/10 23:09	909	2.456	2.524	10/5/10 23:31	930	2.459	2.527	10/5/10 23:52	952	2.467	2.535
10/5/10 23:10	909	2.445	2.513	10/5/10 23:31	931	2.470	2.538	10/5/10 23:52	952	2.470	2.538
10/5/10 23:10	910	2.444	2.512	10/5/10 23:31	931	2.461	2.529	10/5/10 23:53	952	2.464	2.532
10/5/10 23:10	910	2.454	2.522	10/5/10 23:32	931	2.459	2.527	10/5/10 23:53	953	2.466	2.534
10/5/10 23:11	910	2.445	2.513	10/5/10 23:32	932	2.457	2.525	10/5/10 23:53	953	2.465	2.533
10/5/10 23:11	911	2.448	2.516	10/5/10 23:32	932	2.458	2.526	10/5/10 23:54	953	2.465	2.533
10/5/10 23:11	911	2.450	2.518	10/5/10 23:33	932	2.457	2.525	10/5/10 23:54	954	2.466	2.534
10/5/10 23:12	911	2.448	2.516	10/5/10 23:33	933	2.458	2.526	10/5/10 23:54	954	2.466	2.534
10/5/10 23:12	912	2.447	2.515	10/5/10 23:33	933	2.460	2.528	10/5/10 23:55	954	2.472	2.54
10/5/10 23:12	912	2.448	2.516	10/5/10 23:34	933	2.460	2.528	10/5/10 23:55	955	2.466	2.534
10/5/10 23:13	912	2.446	2.514	10/5/10 23:34	934	2.459	2.527	10/5/10 23:55	955	2.466	2.534
10/5/10 23:13	913	2.449	2.517	10/5/10 23:34	934	2.458	2.526	10/5/10 23:56	955	2.467	2.535
10/5/10 23:13	913	2.446	2.514	10/5/10 23:35	934	2.461	2.529	10/5/10 23:56	956	2.470	2.538
10/5/10 23:14	913	2.447		10/5/10 23:35	935	2.457	2.525	10/5/10 23:56	956	2.471	2.539
			2.515								
10/5/10 23:14	914	2.451	2.519	10/5/10 23:35	935	2.460	2.528	10/5/10 23:57	956	2.470	2.538
10/5/10 23:14	914	2.451	2.519	10/5/10 23:36	935	2.464	2.532	10/5/10 23:57	957	2.466	2.534
10/5/10 23:15	914	2.450	2.518	10/5/10 23:36	936	2.461	2.529	10/5/10 23:57	957	2.470	2.538
10/5/10 23:15	915	2.449	2.517	10/5/10 23:36	936	2.460	2.528	10/5/10 23:58	957	2.473	2.541
10/5/10 23:15	915	2.449	2.517	10/5/10 23:37	936	2.457	2.525	10/5/10 23:58	958	2.468	2.536
10/5/10 23:16	915	2.449	2.517	10/5/10 23:37	937	2.460	2.528	10/5/10 23:58	958	2.472	2.54
10/5/10 23:16	916	2.452	2.52	10/5/10 23:37	937	2.461	2.529	10/5/10 23:59	958	2.472	2.54
10/5/10 23:16	916	2.445	2.513	10/5/10 23:38	937	2.460	2.528	10/5/10 23:59	959	2.473	2.541
10/5/10 23:17	916	2.453	2.521	10/5/10 23:38	938	2.464	2.532	10/5/10 23:59	959	2.471	2.539
10/5/10 23:17	917	2.448	2.516	10/5/10 23:38	938	2.462	2.53	10/6/10 0:00	959	2.471	2.539

10/6/10 0:00	060	2.400	2.549	10/6/10 0:01	004	0.475	0.540	10/6/10 0.12	1000	2.400	0.540
10/6/10 0:00	960	2.480	2.548	10/6/10 0:21	981	2.475	2.543	10/6/10 0:43	1002	2.480	2.548
10/6/10 0:00	960	2.471	2.539	10/6/10 0:22	981	2.477	2.545	10/6/10 0:43	1003	2.484	2.552
10/6/10 0:01	960	2.474	2.542	10/6/10 0:22	982	2.477	2.545	10/6/10 0:43	1003	2.486	2.554
10/6/10 0:01	961	2.472	2.54	10/6/10 0:22	982	2.476	2.544	10/6/10 0:44	1003	2.482	2.55
10/6/10 0:01	961	2.473	2.541	10/6/10 0:23	982	2.475	2.543	10/6/10 0:44	1004	2.482	2.55
10/6/10 0:02	961	2.485	2.553	10/6/10 0:23	983	2.475	2.543	10/6/10 0:44	1004	2.479	2.547
10/6/10 0:02	962	2.476	2.544	10/6/10 0:23	983	2.474	2.542	10/6/10 0:45	1004	2.482	2.55
10/6/10 0:02	962	2.472	2.54	10/6/10 0:24	983	2.474	2.542	10/6/10 0:45	1005	2.481	2.549
10/6/10 0:03	962	2.475	2.543	10/6/10 0:24	984	2.478	2.546	10/6/10 0:45	1005	2.484	2.552
10/6/10 0:03	963	2.476	2.544	10/6/10 0:24	984	2.478	2.546	10/6/10 0:46	1005	2.480	2.548
10/6/10 0:03	963	2.474	2.542	10/6/10 0:25	984	2.481	2.549	10/6/10 0:46	1006	2.484	2.552
10/6/10 0:04	963	2.476	2.544	10/6/10 0:25	985	2.476	2.544	10/6/10 0:46	1006	2.482	2.55
				10/6/10 0:25							
10/6/10 0:04	964	2.475	2.543		985	2.476	2.544	10/6/10 0:47	1006	2.482	2.55
10/6/10 0:04	964	2.473	2.541	10/6/10 0:26	985	2.473	2.541	10/6/10 0:47	1007	2.484	2.552
10/6/10 0:05	964	2.476	2.544	10/6/10 0:26	986	2.475	2.543	10/6/10 0:47	1007	2.481	2.549
10/6/10 0:05	965	2.470	2.538	10/6/10 0:26	986	2.472	2.54	10/6/10 0:48	1007	2.485	2.553
10/6/10 0:05	965	2.462	2.53	10/6/10 0:27	986	2.484	2.552	10/6/10 0:48	1008	2.486	2.554
10/6/10 0:06	965	2.475	2.543	10/6/10 0:27	987	2.478	2.546	10/6/10 0:48	1008	2.488	2.556
				10/6/10 0:27							
10/6/10 0:06	966	2.473	2.541		987	2.473	2.541	10/6/10 0:49	1008	2.485	2.553
10/6/10 0:06	966	2.469	2.537	10/6/10 0:28	987	2.474	2.542	10/6/10 0:49	1009	2.485	2.553
10/6/10 0:07	966	2.471	2.539	10/6/10 0:28	988	2.478	2.546	10/6/10 0:49	1009	2.484	2.552
10/6/10 0:07	967	2.473	2.541	10/6/10 0:28	988	2.477	2.545	10/6/10 0:50	1009	2.484	2.552
10/6/10 0:07	967	2.474	2.542	10/6/10 0:29	988	2.479	2.547	10/6/10 0:50	1010	2.485	2.553
10/6/10 0:08	967	2.472	2.54	10/6/10 0:29	989	2.473	2.541	10/6/10 0:50	1010	2.488	2.556
	968		2.541	10/6/10 0:29		2.474	2.542	10/6/10 0:51			
10/6/10 0:08		2.473		10/0/10 0.29	989				1010	2.487	2.555
10/6/10 0:08	968	2.478	2.546	10/6/10 0:30	989	2.477	2.545	10/6/10 0:51	1011	2.493	2.561
10/6/10 0:09	968	2.475	2.543	10/6/10 0:30	990	2.477	2.545	10/6/10 0:51	1011	2.488	2.556
10/6/10 0:09	969	2.475	2.543	10/6/10 0:30	990	2.475	2.543	10/6/10 0:52	1011	2.486	2.554
10/6/10 0:09	969	2.474	2.542	10/6/10 0:31	990	2.477	2.545	10/6/10 0:52	1012	2.486	2.554
10/6/10 0:10	969	2.475	2.543	10/6/10 0:31	991	2.476	2.544	10/6/10 0:52	1012	2.488	2.556
10/6/10 0:10	970	2.472	2.54	10/6/10 0:31	991	2.478	2.546	10/6/10 0:52	1012	2.489	2.557
10/6/10 0:10	970	2.478	2.546	10/6/10 0:32	991	2.479	2.547	10/6/10 0:53	1013	2.486	2.554
10/6/10 0:11	970	2.475	2.543	10/6/10 0:32	992	2.477	2.545	10/6/10 0:53	1013	2.489	2.557
10/6/10 0:11	971	2.478	2.546	10/6/10 0:32	992	2.475	2.543	10/6/10 0:54	1013	2.488	2.556
10/6/10 0:11	971	2.475	2.543	10/6/10 0:33	992	2.476	2.544	10/6/10 0:54	1014	2.488	2.556
10/6/10 0:12	971	2.476	2.544	10/6/10 0:33	993	2.476	2.544	10/6/10 0:54	1014	2.488	2.556
10/6/10 0:12	972	2.476	2.544	10/6/10 0:33	993	2.481	2.549	10/6/10 0:55	1014	2.488	2.556
10/6/10 0:12	972	2.475	2.543	10/6/10 0:34	993	2.477	2.545	10/6/10 0:55	1015	2.486	2.554
								10/6/10 0.55			
10/6/10 0:13	972	2.476	2.544	10/6/10 0:34	994	2.477	2.545	10/6/10 0:55	1015	2.486	2.554
10/6/10 0:13	973	2.476	2.544	10/6/10 0:34	994	2.479	2.547	10/6/10 0:56	1015	2.487	2.555
10/6/10 0:13	973	2.472	2.54	10/6/10 0:35	994	2.473	2.541	10/6/10 0:56	1016	2.487	2.555
10/6/10 0:14	973	2.475	2.543	10/6/10 0:35	995	2.475	2.543	10/6/10 0:56	1016	2.488	2.556
10/6/10 0:14	974	2.476	2.544	10/6/10 0:35	995	2.476	2.544	10/6/10 0:57	1016	2.486	2.554
10/6/10 0:14	974	2.474	2.542	10/6/10 0:36	995	2.479	2.547	10/6/10 0:57	1017	2.490	2.558
10/6/10 0:14	974	2.474	2.542	10/6/10 0:36	996	2.477		10/6/10 0:57	1017	2.485	
							2.545				2.553
10/6/10 0:15	975	2.477	2.545	10/6/10 0:36	996	2.486	2.554	10/6/10 0:58	1017	2.488	2.556
10/6/10 0:15	975	2.475	2.543	10/6/10 0:37	996	2.474	2.542	10/6/10 0:58	1018	2.487	2.555
10/6/10 0:16	975	2.475	2.543	10/6/10 0:37	997	2.478	2.546	10/6/10 0:58	1018	2.488	2.556
10/6/10 0:16	976	2.478	2.546	10/6/10 0:37	997	2.476	2.544	10/6/10 0:59	1018	2.485	2.553
10/6/10 0:16	976	2.473	2.541	10/6/10 0:38	997	2.477	2.545	10/6/10 0:59	1019	2.483	2.551
10/6/10 0:17	976	2.477	2.545	10/6/10 0:38	998	2.479	2.547	10/6/10 0:59	1019	2.486	2.554
10/6/10 0:17	977	2.476	2.544	10/6/10 0:38	998	2.479	2.547	10/6/10 1:00	1019	2.487	2.555
10/6/10 0:17	977	2.474	2.542	10/6/10 0:39	998	2.481	2.549	10/6/10 1:00	1020	2.487	2.555
10/6/10 0:18	977	2.476	2.544	10/6/10 0:39	999	2.478	2.546	10/6/10 1:00	1020	2.491	2.559
10/6/10 0:18	978	2.476	2.544	10/6/10 0:39	999	2.475	2.543	10/6/10 1:01	1020	2.492	2.56
10/6/10 0:18	978	2.477	2.545	10/6/10 0:40	999	2.479	2.547	10/6/10 1:01	1021	2.485	2.553
10/6/10 0:10	978	2.476	2.544	10/6/10 0:40	1000	2.481	2.549	10/6/10 1:01	1021	2.489	2.557
			2.544			2.401					
10/6/10 0:19	979	2.478	2.546	10/6/10 0:40	1000	2.482	2.55	10/6/10 1:02	1021	2.488	2.556
10/6/10 0:19	979	2.479	2.547	10/6/10 0:41	1000	2.485	2.553	10/6/10 1:02	1022	2.486	2.554
10/6/10 0:20	979	2.476	2.544	10/6/10 0:41	1001	2.479	2.547	10/6/10 1:02	1022	2.487	2.555
10/6/10 0:20	980	2.474	2.542	10/6/10 0:41	1001	2.482	2.55	10/6/10 1:03	1022	2.486	2.554
10/6/10 0:20	980	2.475	2.543	10/6/10 0:42	1001	2.483	2.551	10/6/10 1:03	1023	2.487	2.555
10/6/10 0:21	980	2.475	2.543	10/6/10 0:42	1002	2.480	2.548	10/6/10 1:03	1023	2.484	2.552
10/6/10 0:21	981	2.475	2.543	10/6/10 0:42	1002	2.483	2.551	10/6/10 1:04	1023	2.487	2.555
10/0/10 0.21	901	2.413	2.040	10/0/10 0.42	1002	2.403	2.001	10/0/10 1.04	1023	2.407	2.000

10/6/10 1:04	1004	2.407	0.555	10/6/10 1:05	1045	2.405	2.562	10/6/10 1:47	1000	0.544	2.502
10/6/10 1:04	1024	2.487	2.555	10/6/10 1:25	1045	2.495	2.563	10/6/10 1:47	1066	2.514	2.582
10/6/10 1:04	1024	2.490	2.558	10/6/10 1:26	1045	2.497	2.565	10/6/10 1:47	1067	2.510	2.578
10/6/10 1:05	1024	2.489	2.557	10/6/10 1:26	1046	2.503	2.571	10/6/10 1:47	1067	2.514	2.582
10/6/10 1:05	1025	2.484	2.552	10/6/10 1:26	1046	2.495	2.563	10/6/10 1:48	1067	2.514	2.582
10/6/10 1:05	1025	2.490	2.558	10/6/10 1:27	1046	2.496	2.564	10/6/10 1:48	1068	2.512	2.58
10/6/10 1:06	1025	2.494	2.562	10/6/10 1:27	1047	2.499	2.567	10/6/10 1:48	1068	2.509	2.577
10/6/10 1:06	1026	2.494	2.562	10/6/10 1:27	1047	2.499	2.567	10/6/10 1:49	1068	2.514	2.582
10/6/10 1:06	1026	2.495	2.563	10/6/10 1:28	1047	2.501	2.569	10/6/10 1:49	1069	2.517	2.585
10/6/10 1:07	1026	2.501	2.569	10/6/10 1:28	1048	2.500	2.568	10/6/10 1:49	1069	2.517	2.585
10/6/10 1:07	1027	2.503	2.571	10/6/10 1:28	1048	2.500	2.568	10/6/10 1:50	1069	2.516	2.584
10/6/10 1:07	1027	2.494	2.562	10/6/10 1:29	1048	2.500	2.568	10/6/10 1:50	1070	2.513	2.581
10/6/10 1:08	1027	2.492	2.56	10/6/10 1:29	1049	2.502	2.57	10/6/10 1:50	1070	2.516	2.584
10/6/10 1:08	1028	2.498	2.566	10/6/10 1:29	1049	2.500	2.568	10/6/10 1:51	1070	2.515	2.583
10/6/10 1:08	1028	2.497	2.565	10/6/10 1:30	1049	2.501	2.569	10/6/10 1:51	1071	2.515	2.583
10/6/10 1:09	1028	2.491	2.559	10/6/10 1:30	1050	2.502	2.57	10/6/10 1:51	1071	2.512	2.58
10/6/10 1:09	1029	2.492	2.56	10/6/10 1:30	1050	2.500	2.568	10/6/10 1:52	1071	2.513	2.581
10/6/10 1:09	1029	2.498	2.566	10/6/10 1:31	1050	2.500	2.568	10/6/10 1:52	1072	2.514	2.582
10/6/10 1:10	1029	2.494	2.562	10/6/10 1:31	1051	2.503	2.571	10/6/10 1:52	1072	2.517	2.585
10/6/10 1:10	1030	2.496	2.564	10/6/10 1:31	1051	2.500	2.568	10/6/10 1:53	1072	2.513	2.581
10/6/10 1:10	1030	2.495	2.563	10/6/10 1:32	1051	2.503	2.571	10/6/10 1:53	1073	2.512	2.58
10/6/10 1:11	1030	2.497	2.565	10/6/10 1:32	1052	2.504	2.572	10/6/10 1:53	1073	2.514	2.582
10/6/10 1:11	1030	2.496	2.564	10/6/10 1:32	1052	2.502	2.57	10/6/10 1:54	1073	2.514	2.582
	1031							10/6/10 1:54			
10/6/10 1:11		2.497	2.565	10/6/10 1:33	1052	2.501	2.569	10/6/10 1:54	1074	2.518	2.586
10/6/10 1:12	1031	2.494	2.562	10/6/10 1:33	1053	2.503	2.571	10/6/10 1:54	1074	2.520	2.588
10/6/10 1:12	1032	2.508	2.576	10/6/10 1:33	1053	2.506	2.574	10/6/10 1:55	1074	2.515	2.583
10/6/10 1:12	1032	2.498	2.566	10/6/10 1:34	1053	2.502	2.57	10/6/10 1:55	1075	2.516	2.584
10/6/10 1:13	1032	2.497	2.565	10/6/10 1:34	1054	2.502	2.57	10/6/10 1:55	1075	2.517	2.585
10/6/10 1:13	1033	2.497	2.565	10/6/10 1:34	1054	2.504	2.572	10/6/10 1:56	1075	2.519	2.587
10/6/10 1:13	1033	2.500	2.568	10/6/10 1:35	1054	2.504	2.572	10/6/10 1:56	1076	2.515	2.583
10/6/10 1:14	1033	2.501	2.569	10/6/10 1:35	1055	2.507	2.575	10/6/10 1:56	1076	2.515	2.583
10/6/10 1:14	1034	2.500	2.568	10/6/10 1:35	1055	2.505	2.573	10/6/10 1:57	1076	2.517	2.585
10/6/10 1:14	1034	2.496	2.564	10/6/10 1:36	1055	2.504	2.572	10/6/10 1:57	1077	2.515	2.583
10/6/10 1:15	1034	2.498	2.566	10/6/10 1:36	1056	2.507	2.575	10/6/10 1:57	1077	2.518	2.586
10/6/10 1:15	1035	2.498	2.566	10/6/10 1:36	1056	2.507	2.575	10/6/10 1:58	1077	2.516	2.584
10/6/10 1:15	1035	2.498	2.566	10/6/10 1:36	1056	2.507	2.573	10/6/10 1:58	1077	2.514	2.582
				10/6/10 1:37		2.505		10/6/10 1.56			
10/6/10 1:16	1035	2.497	2.565	10/0/10 1.37	1057	2.505	2.573	10/6/10 1:58	1078	2.515	2.583
10/6/10 1:16	1036	2.498	2.566	10/6/10 1:37	1057	2.508	2.576	10/6/10 1:59	1078	2.517	2.585
10/6/10 1:16	1036	2.498	2.566	10/6/10 1:38	1057	2.506	2.574	10/6/10 1:59	1079	2.515	2.583
10/6/10 1:17	1036	2.500	2.568	10/6/10 1:38	1058	2.507	2.575	10/6/10 1:59	1079	2.515	2.583
10/6/10 1:17	1037	2.501	2.569	10/6/10 1:38	1058	2.506	2.574	10/6/10 2:00	1079	2.515	2.583
10/6/10 1:17	1037	2.509	2.577	10/6/10 1:39	1058	2.507	2.575	10/6/10 2:00	1080	2.519	2.587
10/6/10 1:18	1037	2.500	2.568	10/6/10 1:39	1059	2.507	2.575	10/6/10 2:00	1080	2.520	2.588
10/6/10 1:18	1038	2.497	2.565	10/6/10 1:39	1059	2.507	2.575	10/6/10 2:01	1080	2.516	2.584
10/6/10 1:18	1038	2.499	2.567	10/6/10 1:40	1059	2.508	2.576	10/6/10 2:01	1081	2.519	2.587
10/6/10 1:19	1038	2.500	2.568	10/6/10 1:40	1060	2.509	2.577	10/6/10 2:01	1081	2.518	2.586
10/6/10 1:19	1039	2.500	2.568	10/6/10 1:40	1060	2.507	2.575	10/6/10 2:02	1081	2.518	2.586
10/6/10 1:19	1039	2.505	2.573	10/6/10 1:41	1060	2.509	2.577	10/6/10 2:02	1082	2.521	2.589
10/6/10 1:10	1039	2.499	2.567	10/6/10 1:41	1061	2.508	2.576	10/6/10 2:02	1082	2.520	2.588
10/6/10 1:20	1040	2.502	2.57	10/6/10 1:41	1061	2.509	2.577	10/6/10 2:03	1082	2.523	2.591
	1040	2.499	2.567	10/6/10 1:41		2.509	2.577	10/6/10 2:03	1082	2.520	
10/6/10 1:20					1061			10/6/10 2.03		2.520	2.588
10/6/10 1:21	1040	2.497	2.565	10/6/10 1:42	1062	2.508	2.576	10/6/10 2:03	1083	2.519	2.587
10/6/10 1:21	1041	2.497	2.565	10/6/10 1:42	1062	2.508	2.576	10/6/10 2:04	1083	2.515	2.583
10/6/10 1:21	1041	2.497	2.565	10/6/10 1:43	1062	2.512	2.58_	10/6/10 2:04	1084	2.518	2.586
10/6/10 1:22	1041	2.496	2.564	10/6/10 1:43	1063	2.509	2.577	10/6/10 2:04	1084	2.520	2.588
10/6/10 1:22	1042	2.498	2.566	10/6/10 1:43	1063	2.511	2.579	10/6/10 2:05	1084	2.522	2.59
10/6/10 1:22	1042	2.500	2.568	10/6/10 1:44	1063	2.509	2.577	10/6/10 2:05	1085	2.531	2.599
10/6/10 1:23	1042	2.499	2.567	10/6/10 1:44	1064	2.510	2.578	10/6/10 2:05	1085	2.521	2.589
10/6/10 1:23	1043	2.500	2.568	10/6/10 1:44	1064	2.510	2.578	10/6/10 2:06	1085	2.520	2.588
10/6/10 1:23	1043	2.500	2.568	10/6/10 1:45	1064	2.512	2.58	10/6/10 2:06	1086	2.522	2.59
10/6/10 1:24	1043	2.499	2.567	10/6/10 1:45	1065	2.513	2.581	10/6/10 2:06	1086	2.523	2.591
10/6/10 1:24	1044	2.500	2.568	10/6/10 1:45	1065	2.511	2.579	10/6/10 2:07	1086	2.522	2.59
10/6/10 1:24	1044	2.498	2.566	10/6/10 1:46	1065	2.510	2.578	10/6/10 2:07	1087	2.522	2.59
10/6/10 1:25	1044	2.498	2.566	10/6/10 1:46	1066	2.509	2.577	10/6/10 2:07	1087	2.527	2.595
								10/0/10 2.07			
10/6/10 1:25	1045	2.499	2.567	10/6/10 1:46	1066	2.511	2.579	10/6/10 2:08	1087	2.520	2.588

40/0/40 0 00	4000	0.500	0.0	40/0/40 0 00	4400	0.505	0.500	40/0/40 0 54	4400	0.500	0.500
10/6/10 2:08	1088	2.532	2.6	10/6/10 2:29	1109	2.525	2.593	10/6/10 2:51	1130	2.530	2.598
10/6/10 2:08	1088	2.521	2.589	10/6/10 2:30	1109	2.530	2.598	10/6/10 2:51	1131	2.532	2.6
10/6/10 2:09	1088	2.524	2.592	10/6/10 2:30	1110	2.528	2.596	10/6/10 2:51	1131	2.534	2.602
10/6/10 2:09	1089	2.522	2.59	10/6/10 2:30	1110	2.528	2.596	10/6/10 2:52	1131	2.532	2.6
10/6/10 2:09	1089	2.522	2.59	10/6/10 2:31	1110	2.529	2.597	10/6/10 2:52	1132	2.531	2.599
10/6/10 2:10	1089	2.522	2.59	10/6/10 2:31	1111	2.539	2.607	10/6/10 2:52	1132	2.531	2.599
10/6/10 2:10	1090		2.591	10/6/10 2:31	1111	2.530	2.598	10/6/10 2:53	1132	2.532	
		2.523		10/0/10 2.31		2.550		10/0/10 2.55			2.6
10/6/10 2:10	1090	2.522	2.59	10/6/10 2:32	1111	2.529	2.597	10/6/10 2:53	1133	2.533	2.601
10/6/10 2:11	1090	2.526	2.594	10/6/10 2:32	1112	2.529	2.597	10/6/10 2:53	1133	2.534	2.602
10/6/10 2:11	1091	2.522	2.59	10/6/10 2:32	1112	2.527	2.595	10/6/10 2:54	1133	2.532	2.6
10/6/10 2:11	1091	2.525	2.593	10/6/10 2:33	1112	2.532	2.6	10/6/10 2:54	1134	2.531	2.599
10/6/10 2:12	1091	2.523	2.591	10/6/10 2:33	1113	2.528	2.596	10/6/10 2:54	1134	2.537	2.605
10/6/10 2:12	1092	2.522	2.59	10/6/10 2:33	1113	2.533	2.601	10/6/10 2:55	1134	2.534	2.602
10/6/10 2:12	1092	2.521	2.589	10/6/10 2:34	1113	2.529	2.597	10/6/10 2:55	1135	2.535	2.603
10/6/10 2:13	1092	2.522	2.59	10/6/10 2:34	1114	2.529	2.597	10/6/10 2:55	1135	2.534	2.602
10/6/10 2:13	1093	2.521	2.589	10/6/10 2:34	1114	2.528	2.596	10/6/10 2:56	1135	2.538	2.606
		2.521		10/6/10 2:35		2.520		10/0/10 2.50		2.535	
10/6/10 2:13	1093	2.523	2.591	10/6/10 2:35	1114	2.528	2.596	10/6/10 2:56	1136	2.535	2.603
10/6/10 2:14	1093	2.523	2.591	10/6/10 2:35	1115	2.528	2.596	10/6/10 2:56	1136	2.531	2.599
10/6/10 2:14	1094	2.525	2.593	10/6/10 2:35	1115	2.538	2.606	10/6/10 2:57	1136	2.535	2.603
10/6/10 2:14	1094	2.524	2.592	10/6/10 2:36	1115	2.527	2.595	10/6/10 2:57	1137	2.534	2.602
10/6/10 2:15	1094	2.521	2.589	10/6/10 2:36	1116	2.527	2.595	10/6/10 2:57	1137	2.533	2.601
10/6/10 2:15	1095	2.524	2.592	10/6/10 2:36	1116	2.530	2.598	10/6/10 2:58	1137	2.533	2.601
10/6/10 2:15	1095	2.523	2.591	10/6/10 2:37	1116	2.531	2.599	10/6/10 2:58	1138	2.534	2.602
10/6/10 2:16	1095	2.524	2.592	10/6/10 2:37	1117	2.531	2.599	10/6/10 2:58	1138	2.533	2.601
10/6/10 2:16	1096	2.523	2.591	10/6/10 2:37	1117	2.532	2.6	10/6/10 2:59	1138	2.535	2.603
10/6/10 2:16	1096	2.526	2.594	10/6/10 2:38	1117	2.530	2.598	10/6/10 2:59	1139	2.532	2.6
10/6/10 2:17		2.523		10/6/10 2:38		2.529		10/6/10 2:59		2.532	2.6
	1096		2.591	10/0/10 2.30	1118	2.529	2.597	10/0/10 2.39	1139		
10/6/10 2:17	1097	2.522	2.59	10/6/10 2:38	1118	2.529	2.597	10/6/10 3:00	1139	2.531	2.599
10/6/10 2:17	1097	2.535	2.603	10/6/10 2:39	1118	2.529	2.597	10/6/10 3:00	1140	2.531	2.599
10/6/10 2:18	1097	2.521	2.589	10/6/10 2:39	1119	2.529	2.597	10/6/10 3:00	1140	2.532	2.6
10/6/10 2:18	1098	2.527	2.595	10/6/10 2:39	1119	2.532	2.6	10/6/10 3:01	1140	2.531	2.599
10/6/10 2:18	1098	2.523	2.591	10/6/10 2:40	1119	2.533	2.601	10/6/10 3:01	1141	2.531	2.599
10/6/10 2:19	1098	2.527	2.595	10/6/10 2:40	1120	2.529	2.597	10/6/10 3:01	1141	2.533	2.601
10/6/10 2:19	1099	2.523	2.591	10/6/10 2:40	1120	2.532	2.6	10/6/10 3:02	1141	2.529	2.597
10/6/10 2:19	1099	2.521	2.589	10/6/10 2:41	1120	2.531	2.599	10/6/10 3:02	1142	2.530	2.598
10/6/10 2:20	1099	2.523	2.591	10/6/10 2:41	1121	2.528	2.596	10/6/10 3:02	1142	2.529	2.597
10/6/10 2:20	1100	2.526	2.594	10/6/10 2:41	1121	2.530	2.598	10/6/10 3:03	1142	2.531	2.599
10/6/10 2:20	1100	2.524	2.592	10/6/10 2:42	1121	2.530	2.598	10/6/10 3:03	1143	2.534	
				10/6/10 2.42		2.550		10/6/10 3.03			2.602
10/6/10 2:21	1100	2.528	2.596	10/6/10 2:42	1122	2.527	2.595	10/6/10 3:03	1143	2.539	2.607
10/6/10 2:21	1101	2.527	2.595	10/6/10 2:42	1122	2.532	2.6	10/6/10 3:04	1143	2.530	2.598
10/6/10 2:21	1101	2.524	2.592	10/6/10 2:43	1122	2.532	2.6	10/6/10 3:04	1144	2.531	2.599
10/6/10 2:22	1101	2.524	2.592	10/6/10 2:43	1123	2.532	2.6	10/6/10 3:04	1144	2.533	2.601
10/6/10 2:22	1102	2.526	2.594	10/6/10 2:43	1123	2.530	2.598	10/6/10 3:05	1144	2.534	2.602
10/6/10 2:22	1102	2.526	2.594	10/6/10 2:44	1123	2.528	2.596	10/6/10 3:05	1145	2.527	2.595
10/6/10 2:23	1102	2.528	2.596	10/6/10 2:44	1124	2.529	2.597	10/6/10 3:05	1145	2.541	2.609
10/6/10 2:23	1103	2.528	2.596	10/6/10 2:44	1124	2.527	2.595	10/6/10 3:06	1145	2.531	2.599
10/6/10 2:23	1103	2.527	2.595	10/6/10 2:45	1124	2.531	2.599	10/6/10 3:06	1146	2.532	2.6
10/6/10 2:24	1103	2.527	2.595	10/6/10 2:45	1125	2.532	2.6	10/6/10 3:06	1146	2.528	2.596
10/6/10 2:24	1104	2.526	2.594	10/6/10 2:45	1125	2.532	2.6	10/6/10 3:07	1146	2.533	2.601
10/6/10 2:24	1104	2.525	2.593	10/6/10 2:46	1125	2.532	2.6	10/6/10 3:07	1147	2.532	2.6
10/6/10 2:25		2.526	2.594	10/6/10 2:46		2.527	2.595	10/6/10 3:07		2.532	2.6
	1104			10/0/10 2.40	1126	2.527			1147		
10/6/10 2:25	1105	2.531	2.599	10/6/10 2:46	1126	2.529	2.597	10/6/10 3:08	1147	2.534	2.602
10/6/10 2:25	1105	2.526	2.594	10/6/10 2:47	1126	2.530	2.598	10/6/10 3:08	1148	2.527	2.595
10/6/10 2:26	1105	2.526	2.594	10/6/10 2:47	1127	2.528	2.596	10/6/10 3:08	1148	2.532	2.6
10/6/10 2:26	1106	2.527	2.595	10/6/10 2:47	1127	2.531	2.599	10/6/10 3:09	1148	2.530	2.598
10/6/10 2:26	1106	2.527	2.595	10/6/10 2:48	1127	2.530	2.598	10/6/10 3:09	1149	2.532	2.6
10/6/10 2:27	1106	2.529	2.597	10/6/10 2:48	1128	2.531	2.599	10/6/10 3:09	1149	2.531	2.599
10/6/10 2:27	1107	2.529	2.597	10/6/10 2:48	1128	2.530	2.598	10/6/10 3:10	1149	2.529	2.597
10/6/10 2:27	1107	2.528	2.596	10/6/10 2:49	1128	2.530	2.598	10/6/10 3:10	1150	2.534	2.602
10/6/10 2:28	1107	2.528	2.596	10/6/10 2:49	1129	2.532	2.6	10/6/10 3:10	1150	2.530	2.598
10/6/10 2:28	1108	2.530	2.598	10/6/10 2:49	1129	2.530	2.598	10/6/10 3:11	1150	2.533	2.601
10/6/10 2:28	1108	2.525	2.593	10/6/10 2:50	1129	2.533	2.601	10/6/10 3:11	1151	2.533	2.601
10/6/10 2:29	1108	2.525	2.593	10/6/10 2:50	1130	2.532	2.6	10/6/10 3:11	1151	2.532	2.6
						2.JJZ 2.F26					
10/6/10 2:29	1109	2.526	2.594	10/6/10 2:50	1130	2.536	2.604	10/6/10 3:12	1151	2.535	2.603

40/0/40 0:40	4450	0.504	0.500	40/0/40 0.00	4470	0.505	0.000	40/0/40 2:55	4404	0.544	0.040
10/6/10 3:12	1152	2.531	2.599	10/6/10 3:33	1173	2.535	2.603	10/6/10 3:55	1194	2.544	2.612
10/6/10 3:12	1152	2.528	2.596	10/6/10 3:34	1173	2.536	2.604	10/6/10 3:55	1195	2.549	2.617
10/6/10 3:13	1152	2.533	2.601	10/6/10 3:34	1174	2.536	2.604	10/6/10 3:55	1195	2.549	2.617
10/6/10 3:13	1153	2.533	2.601	10/6/10 3:34	1174	2.535	2.603	10/6/10 3:56	1195	2.546	2.614
10/6/10 3:13	1153	2.533	2.601	10/6/10 3:35	1174	2.537	2.605	10/6/10 3:56	1196	2.549	2.617
		2.000		10/0/10 0.00		2.007					
10/6/10 3:14	1153	2.532	2.6	10/6/10 3:35	1175	2.538	2.606	10/6/10 3:56	1196	2.547	2.615
10/6/10 3:14	1154	2.532	2.6	10/6/10 3:35	1175	2.535	2.603	10/6/10 3:57	1196	2.551	2.619
10/6/10 3:14	1154	2.534	2.602	10/6/10 3:36	1175	2.534	2.602	10/6/10 3:57	1197	2.544	2.612
						2.554					
10/6/10 3:15	1154	2.536	2.604	10/6/10 3:36	1176	2.536	2.604	10/6/10 3:57	1197	2.552	2.62
10/6/10 3:15	1155	2.534	2.602	10/6/10 3:36	1176	2.547	2.615	10/6/10 3:58	1197	2.550	2.618
10/6/10 3:15	1155	2.534	2.602	10/6/10 3:37	1176	2.536	2.604	10/6/10 3:58	1198	2.546	2.614
10/6/10 3:16	1155	2.531	2.599	10/6/10 3:37	1177	2.536	2.604	10/6/10 3:58	1198	2.548	2.616
10/6/10 3:16	1156	2.533	2.601	10/6/10 3:37	1177	2.537	2.605	10/6/10 3:59	1198	2.553	2.621
10/6/10 3:16	1156	2.537	2.605	10/6/10 3:38	1177	2.537	2.605	10/6/10 3:59	1199	2.550	2.618
10/6/10 3:17	1156	2.533	2.601	10/6/10 3:38	1178	2.536	2.604	10/6/10 3:59	1199	2.551	2.619
10/6/10 3:17	1157	2.540	2.608	10/6/10 3:38	1178	2.534	2.602	10/6/10 4:00	1199	2.551	2.619
10/6/10 3:17	1157	2.532	2.6	10/6/10 3:39	1178	2.534	2.602	10/6/10 4:00	1200	2.550	2.618
10/6/10 3:18	1157	2.534	2.602	10/6/10 3:39	1179	2.549	2.617	10/6/10 4:00	1200	2.549	2.617
										2.549	
10/6/10 3:18	1158	2.533	2.601	10/6/10 3:39	1179	2.549	2.617	10/6/10 4:01	1200	2.548	2.616
10/6/10 3:18	1158	2.532	2.6	10/6/10 3:40	1179	2.536	2.604	10/6/10 4:01	1201	2.548	2.616
									1201		
10/6/10 3:19	1158	2.533	2.601	10/6/10 3:40	1180	2.535	2.603	10/6/10 4:01		2.551	2.619
10/6/10 3:19	1159	2.533	2.601	10/6/10 3:40	1180	2.538	2.606	10/6/10 4:02	1201	2.552	2.62
10/6/10 3:19	1159	2.533	2.601	10/6/10 3:41	1180	2.536	2.604	10/6/10 4:02	1202	2.554	2.622
										2.554	
10/6/10 3:20	1159	2.534	2.602	10/6/10 3:41	1181	2.537	2.605	10/6/10 4:02	1202	2.552	2.62
10/6/10 3:20	1160	2.533	2.601	10/6/10 3:41	1181	2.537	2.605	10/6/10 4:03	1202	2.552	2.62
10/6/10 3:20		2.530	2.598	10/6/10 3:42	1181	2.538	2.606	10/6/10 4:03	1203	2.552	2.62
	1160	2.530	2.598	10/6/10 3.42		2.536				2.552	2.02
10/6/10 3:21	1160	2.546	2.614	10/6/10 3:42	1182	2.538	2.606	10/6/10 4:03	1203	2.552	2.62
10/6/10 3:21	1161	2.533	2.601	10/6/10 3:42	1182	2.539	2.607	10/6/10 4:04	1203	2.552	2.62
		2.000	2.001			2.000				2.552	
10/6/10 3:21	1161	2.531	2.599	10/6/10 3:43	1182	2.541	2.609	10/6/10 4:04	1204	2.552	2.62
10/6/10 3:22	1161	2.534	2.602	10/6/10 3:43	1183	2.543	2.611	10/6/10 4:04	1204	2.551	2.619
10/6/10 3:22	1162	2.532	2.6	10/6/10 3:43	1183	2.543	2.611	10/6/10 4:05	1204	2.552	2.62
				10/0/10 3.43				10/0/10 4.03		2.552	
10/6/10 3:22	1162	2.546	2.614	10/6/10 3:44	1183	2.542	2.61	10/6/10 4:05	1205	2.551	2.619
10/6/10 3:23	1162	2.530	2.598	10/6/10 3:44	1184	2.544	2.612	10/6/10 4:05	1205	2.555	2.623
				10/6/10 3:44	1184	2.543					
10/6/10 3:23	1163	2.532	2.6				2.611	10/6/10 4:06	1205	2.550	2.618
10/6/10 3:23	1163	2.535	2.603	10/6/10 3:45	1184	2.540	2.608	10/6/10 4:06	1206	2.552	2.62
10/6/10 3:24	1163	2.543	2.611	10/6/10 3:45	1185	2.543	2.611	10/6/10 4:06	1206	2.554	2.622
10/6/10 3:24	1164	2.534	2.602	10/6/10 3:45	1185	2.540	2.608	10/6/10 4:07	1206	2.554	2.622
10/6/10 3:24	1164	2.533	2.601	10/6/10 3:46	1185	2.543	2.611	10/6/10 4:07	1207	2.556	2.624
10/6/10 3:25	1164	2.534	2.602	10/6/10 3:46	1186	2.542	2.61	10/6/10 4:07	1207	2.552	2.62
10/6/10 3:25	1165	2.535	2.603	10/6/10 3:46	1186	2.546	2.614	10/6/10 4:08	1207	2.553	2.621
10/6/10 3:25	1165	2.534	2.602	10/6/10 3:47	1186	2.544	2.612	10/6/10 4:08	1208	2.554	2.622
10/6/10 3:26	1165	2.531	2.599	10/6/10 3:47	1187	2.545	2.613	10/6/10 4:08	1208	2.556	2.624
10/6/10 3:26	1166	2.536	2.604	10/6/10 3:47	1187	2.544	2.612	10/6/10 4:09	1208	2.556	2.624
10/6/10 3:26	1166	2.535	2.603	10/6/10 3:48	1187	2.548	2.616	10/6/10 4:09	1209	2.559	2.627
10/6/10 3:27	1166	2.534	2.602	10/6/10 3:48	1188	2.543	2.611	10/6/10 4:09	1209	2.555	2.623
		2.554									
10/6/10 3:27	1167	2.537	2.605	10/6/10 3:48	1188	2.547	2.615	10/6/10 4:10	1209	2.555	2.623
10/6/10 3:27	1167	2.535	2.603	10/6/10 3:49	1188	2.543	2.611	10/6/10 4:10	1210	2.556	2.624
	1167		2.613	10/6/10 3:49	1189	2.547	2.615	10/6/10 4:10	1210	2.556	
10/6/10 3:28		2.545									2.624
10/6/10 3:28	1168	2.532	2.6	10/6/10 3:49	1189	2.544	2.612	10/6/10 4:11	1210	2.554	2.622
10/6/10 3:28	1168	2.534	2.602	10/6/10 3:50	1189	2.546	2.614	10/6/10 4:11	1211	2.561	2.629
10/6/10 3:29	1168	2.534	2.602	10/6/10 3:50	1190	2.546	2.614	10/6/10 4:11	1211	2.565	2.633
10/6/10 3:29	1169	2.534	2.602	10/6/10 3:50	1190	2.546	2.614	10/6/10 4:12	1211	2.558	2.626
10/6/10 3:29	1169	2.535	2.603	10/6/10 3:51	1190	2.544	2.612	10/6/10 4:12	1212	2.556	2.624
10/6/10 3:30	1169	2.544	2.612	10/6/10 3:51	1191	2.544	2.612	10/6/10 4:12	1212	2.557	2.625
10/6/10 3:30	1170	2.534	2.602	10/6/10 3:51	1191	2.547	2.615	10/6/10 4:13	1212	2.558	2.626
10/6/10 3:30	1170	2.534	2.602	10/6/10 3:52	1191	2.544	2.612	10/6/10 4:13	1213	2.562	2.63
10/6/10 3:31	1170	2.549	2.617	10/6/10 3:52	1192	2.547	2.615	10/6/10 4:13	1213	2.558	2.626
10/6/10 3:31	1171	2.536	2.604	10/6/10 3:52	1192	2.547	2.615	10/6/10 4:14	1213	2.557	2.625
10/6/10 3:31	1171	2.536	2.604	10/6/10 3:53	1192	2.552	2.62	10/6/10 4:14	1214	2.558	2.626
10/6/10 3:32	1171	2.545	2.613	10/6/10 3:53	1193	2.549	2.617	10/6/10 4:14	1214	2.558	2.626
10/6/10 3:32	1172	2.534	2.602	10/6/10 3:53	1193	2.546	2.614	10/6/10 4:15	1214	2.560	2.628
10/6/10 3:32	1172	2.534	2.602	10/6/10 3:54	1193	2.545	2.613	10/6/10 4:15	1215	2.562	2.63
10/6/10 3:33	1172	2.536	2.604	10/6/10 3:54	1194	2.551	2.619	10/6/10 4:15	1215	2.560	2.628
10/6/10 3:33	1173	2.537	2.605	10/6/10 3:54	1194	2.548	2.616	10/6/10 4:16	1215	2.564	2.632
10/0/10 3.33	1113	2.001	2.000	10/0/10 3.34	1134	2.040	2.010	10/0/10 4.10	1210	2.004	2.002

10/6/10 1.16	1016	0.564	0.600	10/6/10 4:27	1007	0.575	0.640	10/0/10 1.50	1050	2.504	2 662
10/6/10 4:16	1216	2.564	2.632	10/6/10 4:37	1237	2.575	2.643	10/6/10 4:59	1258 1259	2.594 2.596	2.662
10/6/10 4:16	1216	2.561	2.629	10/6/10 4:38	1237	2.574	2.642	10/6/10 4:59			2.664
10/6/10 4:17	1216	2.564	2.632	10/6/10 4:38	1238	2.574	2.642	10/6/10 4:59	1259	2.594	2.662
10/6/10 4:17	1217	2.567	2.635	10/6/10 4:38	1238	2.575	2.643	10/6/10 5:00	1259	2.598	2.666
10/6/10 4:17	1217	2.560	2.628	10/6/10 4:39	1238	2.577	2.645	10/6/10 5:00	1260	2.600	2.668
10/6/10 4:18	1217	2.562	2.63	10/6/10 4:39	1239	2.576	2.644	10/6/10 5:00	1260	2.599	2.667
10/6/10 4:18	1218	2.565	2.633	10/6/10 4:39	1239	2.576	2.644	10/6/10 5:01	1260	2.604	2.672
10/6/10 4:18	1218	2.562	2.63	10/6/10 4:40	1239	2.578	2.646	10/6/10 5:01	1261	2.601	2.669
10/6/10 4:19	1218	2.562	2.63	10/6/10 4:40	1240	2.575	2.643	10/6/10 5:01	1261	2.601	2.669
10/6/10 4:19	1219	2.562	2.63	10/6/10 4:40	1240	2.578	2.646	10/6/10 5:02	1261	2.600	2.668
10/6/10 4:19	1219	2.560	2.628	10/6/10 4:41	1240	2.577	2.645	10/6/10 5:02	1262	2.602	2.67
10/6/10 4:20	1219	2.563	2.631	10/6/10 4:41	1241	2.579	2.647	10/6/10 5:02	1262	2.601	2.669
10/6/10 4:20	1220	2.565	2.633	10/6/10 4:41	1241	2.579	2.647	10/6/10 5:03	1262	2.607	2.675
10/6/10 4:20	1220	2.563	2.631	10/6/10 4:42	1241	2.577	2.645	10/6/10 5:03	1263	2.604	2.672
10/6/10 4:21	1220	2.565	2.633	10/6/10 4:42	1242	2.575	2.643	10/6/10 5:03	1263	2.608	2.676
10/6/10 4:21	1221	2.567	2.635	10/6/10 4:42	1242	2.575	2.643	10/6/10 5:04	1263	2.604	2.672
10/6/10 4:21	1221	2.568	2.636	10/6/10 4:43	1242	2.579	2.647	10/6/10 5:04	1264	2.605	2.673
10/6/10 4:22	1221	2.567	2.635	10/6/10 4:43	1243	2.578	2.646	10/6/10 5:04	1264	2.610	2.678
10/6/10 4:22	1222	2.567	2.635	10/6/10 4:43	1243	2.581	2.649	10/6/10 5:05	1264	2.605	2.673
10/6/10 4:22	1222	2.563	2.631	10/6/10 4:44	1243	2.581	2.649	10/6/10 5:05	1265	2.608	2.676
10/6/10 4:23	1222	2.564	2.632	10/6/10 4:44	1244	2.581	2.649	10/6/10 5:05	1265	2.606	2.674
10/6/10 4:23	1223	2.569	2.637	10/6/10 4:44	1244	2.580	2.648	10/6/10 5:06	1265	2.608	2.676
10/6/10 4:23	1223	2.570	2.638	10/6/10 4:45	1244	2.582	2.65	10/6/10 5:06	1266	2.612	2.68
10/6/10 4:24	1223	2.568	2.636	10/6/10 4:45	1245	2.582	2.65	10/6/10 5:06	1266	2.604	2.672
10/6/10 4:24	1224	2.570	2.638	10/6/10 4:45	1245	2.582	2.65	10/6/10 5:07	1266	2.610	2.678
10/6/10 4:24	1224	2.568	2.636	10/6/10 4:46	1245	2.580	2.648	10/6/10 5:07	1267	2.611	2.679
10/6/10 4:25	1224	2.567	2.635	10/6/10 4:46	1246	2.579	2.647	10/6/10 5:07	1267	2.605	2.673
10/6/10 4:25	1225	2.564	2.632	10/6/10 4:46	1246	2.580	2.648	10/6/10 5:08	1267	2.613	2.681
10/6/10 4:25	1225	2.571	2.639	10/6/10 4:47	1246	2.585	2.653	10/6/10 5:08	1268	2.606	2.674
10/6/10 4:26	1225	2.566	2.634	10/6/10 4:47	1247	2.584	2.652	10/6/10 5:08	1268	2.606	2.674
10/6/10 4:26	1226	2.569	2.637	10/6/10 4:47	1247	2.585	2.653	10/6/10 5:09	1268	2.607	2.675
10/6/10 4:26	1226	2.569	2.637	10/6/10 4:48	1247	2.582	2.65	10/6/10 5:09	1269	2.607	2.675
10/6/10 4:27	1226	2.568	2.636	10/6/10 4:48	1248	2.585	2.653	10/6/10 5:09	1269	2.608	2.676
10/6/10 4:27	1227	2.571	2.639	10/6/10 4:48	1248	2.586	2.654	10/6/10 5:10	1269	2.608	2.676
10/6/10 4:27	1227	2.571	2.639	10/6/10 4:49	1248	2.587	2.655	10/6/10 5:10	1270	2.611	2.679
10/6/10 4:28	1227	2.570	2.638	10/6/10 4:49	1249	2.582	2.65	10/6/10 5:10	1270	2.609	2.677
10/6/10 4:28	1228	2.570	2.638	10/6/10 4:49	1249	2.587	2.655	10/6/10 5:10	1270	2.612	2.68
10/6/10 4:28	1228	2.571	2.639	10/6/10 4:49	1249	2.587	2.655	10/6/10 5:11	1271	2.616	2.684
10/6/10 4:29	1228	2.571	2.639	10/6/10 4:50	1250	2.584	2.652	10/6/10 5:11	1271	2.614	2.682
10/6/10 4:29	1229	2.569	2.637	10/6/10 4:50	1250	2.585	2.653	10/6/10 5:11	1271	2.611	2.679
10/6/10 4:29	1229	2.570	2.638	10/6/10 4:50	1250	2.583	2.651	10/6/10 5:12	1271	2.612	2.68
10/6/10 4:29	1229	2.568	2.636	10/6/10 4:51	1251	2.584	2.652	10/6/10 5:12	1272	2.611	2.679
10/6/10 4:30	1230		2.646	10/6/10 4:51		2.587	2.655	10/6/10 5:12	1272	2.614	2.682
10/6/10 4:30	1230	2.578 2.575	2.643	10/6/10 4:51	1251 1251	2.588	2.656	10/6/10 5:13	1272	2.614	2.679
10/6/10 4:31	1230	2.575	2.645	10/6/10 4:52	1251	2.591	2.659	10/6/10 5:13	1273	2.608	2.679
			2.637	10/6/10 4:52	1252	2.587	2.655	10/6/10 5:13	1273		
10/6/10 4:31	1231 1231	2.569 2.569		10/6/10 4:52	1252	2.592	2.66	10/6/10 5:14	1273	2.613	2.681
10/6/10 4:31 10/6/10 4:32	1231	2.575	2.637 2.643	10/6/10 4:53	1252	2.589	2.657	10/6/10 5:14	1274	2.611 2.611	2.679 2.679
						2.569		10/0/10 5.14			
10/6/10 4:32	1232	2.572	2.64	10/6/10 4:53	1253	2.594	2.662	10/6/10 5:15	1274	2.613	2.681
10/6/10 4:32	1232	2.572	2.64	10/6/10 4:54	1253	2.592	2.66	10/6/10 5:15	1275	2.615	2.683
10/6/10 4:33	1232	2.575	2.643	10/6/10 4:54	1254	2.591	2.659	10/6/10 5:15	1275	2.613	2.681
10/6/10 4:33	1233	2.585	2.653	10/6/10 4:54	1254	2.591	2.659	10/6/10 5:16	1275	2.610	2.678
10/6/10 4:33	1233	2.574	2.642	10/6/10 4:55	1254	2.591	2.659	10/6/10 5:16	1276	2.617	2.685
10/6/10 4:34	1233	2.573	2.641	10/6/10 4:55	1255	2.587	2.655	10/6/10 5:16	1276	2.615	2.683
10/6/10 4:34	1234	2.577	2.645	10/6/10 4:55	1255	2.592	2.66	10/6/10 5:17	1276	2.618	2.686
10/6/10 4:34	1234	2.574	2.642	10/6/10 4:56	1255	2.591	2.659	10/6/10 5:17	1277	2.617	2.685
10/6/10 4:35	1234	2.575	2.643	10/6/10 4:56	1256	2.592	2.66	10/6/10 5:17	1277	2.617	2.685
10/6/10 4:35	1235	2.574	2.642	10/6/10 4:56	1256	2.595	2.663	10/6/10 5:18	1277	2.616	2.684
10/6/10 4:35	1235	2.575	2.643	10/6/10 4:57	1256	2.594	2.662	10/6/10 5:18	1278	2.617	2.685
10/6/10 4:36	1235	2.577	2.645	10/6/10 4:57	1257	2.598	2.666	10/6/10 5:18	1278	2.615	2.683
10/6/10 4:36	1236	2.579	2.647	10/6/10 4:57	1257	2.595	2.663	10/6/10 5:19	1278	2.617	2.685
10/6/10 4:36	1236	2.578	2.646	10/6/10 4:58	1257	2.598	2.666	10/6/10 5:19	1279	2.613	2.681
10/6/10 4:37	1236	2.572	2.64	10/6/10 4:58	1258	2.597	2.665	10/6/10 5:19	1279	2.613	2.681
10/6/10 4:37	1237	2.575	2.643	10/6/10 4:58	1258	2.599	2.667	10/6/10 5:20	1279	2.612	2.68

40/0/40 5:00	4000	0.040	0.004	40/0/40 5.44	4004	0.000	0.000	40/0/40 0:00	4000	0.045	0.740
10/6/10 5:20	1280	2.613	2.681	10/6/10 5:41	1301	2.628	2.696	10/6/10 6:03	1322	2.645	2.713
10/6/10 5:20	1280	2.616	2.684	10/6/10 5:42	1301	2.629	2.697	10/6/10 6:03	1323	2.645	2.713
10/6/10 5:21	1280	2.615	2.683	10/6/10 5:42	1302	2.641	2.709	10/6/10 6:03	1323	2.646	2.714
10/6/10 5:21	1281	2.609	2.677	10/6/10 5:42	1302	2.632	2.7	10/6/10 6:04	1323	2.647	2.715
10/6/10 5:21	1281	2.612	2.68	10/6/10 5:43	1302	2.634	2.702	10/6/10 6:04	1324	2.645	2.713
						2.004					
10/6/10 5:22	1281	2.612	2.68	10/6/10 5:43	1303	2.634	2.702	10/6/10 6:04	1324	2.648	2.716
10/6/10 5:22	1282	2.612	2.68	10/6/10 5:43	1303	2.630	2.698	10/6/10 6:05	1324	2.645	2.713
10/6/10 5:22	1282	2.613	2.681	10/6/10 5:44	1303	2.634	2.702	10/6/10 6:05	1325	2.651	2.719
								10/6/10 6.03	1323		
10/6/10 5:23	1282	2.612	2.68	10/6/10 5:44	1304	2.633	2.701	10/6/10 6:05	1325	2.657	2.725
10/6/10 5:23	1283	2.613	2.681	10/6/10 5:44	1304	2.632	2.7	10/6/10 6:06	1325	2.655	2.723
								10/0/10 0.00			
10/6/10 5:23	1283	2.614	2.682	10/6/10 5:45	1304	2.632	2.7	10/6/10 6:06	1326	2.653	2.721
10/6/10 5:24	1283	2.612	2.68	10/6/10 5:45	1305	2.635	2.703	10/6/10 6:06	1326	2.653	2.721
10/6/10 5:24	1284	2.614	2.682	10/6/10 5:45	1305	2.630	2.698	10/6/10 6:07	1326	2.655	2.723
10/6/10 5:24	1284	2.616	2.684	10/6/10 5:46	1305	2.631	2.699	10/6/10 6:07	1327	2.655	2.723
10/6/10 5:25	1284	2.615	2.683	10/6/10 5:46	1306	2.632	2.7	10/6/10 6:07	1327	2.655	2.723
10/6/10 5:25	1285	2.620	2.688	10/6/10 5:46	1306	2.633	2.701	10/6/10 6:08	1327	2.652	2.72
10/6/10 5:25	1285	2.618	2.686	10/6/10 5:47	1306	2.632	2.7	10/6/10 6:08	1328	2.655	2.723
10/6/10 5:26	1285	2.617	2.685	10/6/10 5:47	1307	2.636	2.704	10/6/10 6:08	1328	2.654	2.722
10/6/10 5:26	1286	2.617	2.685	10/6/10 5:47	1307	2.634	2.702	10/6/10 6:09	1328	2.651	2.719
10/6/10 5:26	1286	2.617	2.685	10/6/10 5:48	1307	2.634	2.702	10/6/10 6:09	1329	2.655	2.723
10/6/10 5:27	1286	2.614	2.682	10/6/10 5:48	1308	2.629	2.697	10/6/10 6:09	1329	2.654	2.722
10/6/10 5:27	1287	2.617	2.685	10/6/10 5:48	1308	2.635	2.703	10/6/10 6:10	1329	2.648	2.716
10/0/10 5.27						2.000			1020		
10/6/10 5:27	1287	2.617	2.685	10/6/10 5:49	1308	2.628	2.696	10/6/10 6:10	1330	2.647	2.715
10/6/10 5:28	1287	2.618	2.686	10/6/10 5:49	1309	2.631	2.699	10/6/10 6:10	1330	2.649	2.717
10/6/10 5:28	1288	2.622	2.69	10/6/10 5:49	1309	2.630	2.698	10/6/10 6:11	1330	2.650	2.718
10/6/10 5:28	1288	2.618	2.686	10/6/10 5:50	1309	2.634	2.702	10/6/10 6:11	1331	2.650	2.718
10/6/10 5:29	1288	2.620	2.688	10/6/10 5:50	1310	2.632	2.7	10/6/10 6:11	1331	2.649	2.717
10/6/10 5:29	1289	2.619	2.687	10/6/10 5:50	1310	2.632	2.7	10/6/10 6:12	1331	2.650	2.718
10/6/10 5:29	1289	2.613	2.681	10/6/10 5:51	1310	2.638	2.706	10/6/10 6:12	1332	2.650	2.718
10/6/10 5:30	1289	2.617	2.685	10/6/10 5:51	1311	2.638	2.706	10/6/10 6:12	1332	2.651	2.719
10/6/10 5:30	1290	2.618	2.686	10/6/10 5:51	1311	2.638	2.706	10/6/10 6:13	1332	2.647	2.715
10/6/10 5:30	1290	2.617	2.685	10/6/10 5:52	1311	2.638	2.706	10/6/10 6:13	1333	2.659	2.727
									1333		
10/6/10 5:31	1290	2.623	2.691	10/6/10 5:52	1312	2.638	2.706	10/6/10 6:13	1333	2.647	2.715
10/6/10 5:31	1291	2.617	2.685	10/6/10 5:52	1312	2.644	2.712	10/6/10 6:14	1333	2.650	2.718
10/6/10 5:31	1291	2.622	2.69	10/6/10 5:53	1312	2.642	2.71	10/6/10 6:14	1334	2.651	2.719
10/6/10 5:32	1291	2.623	2.691	10/6/10 5:53	1313	2.640	2.708	10/6/10 6:14	1334	2.652	2.72
	1292								1334	2.653	
10/6/10 5:32		2.623	2.691	10/6/10 5:53	1313	2.640	2.708	10/6/10 6:15			2.721
10/6/10 5:32	1292	2.620	2.688	10/6/10 5:54	1313	2.641	2.709	10/6/10 6:15	1335	2.654	2.722
10/6/10 5:33	1292	2.617	2.685	10/6/10 5:54	1314	2.641	2.709	10/6/10 6:15	1335	2.648	2.716
10/6/10 5:33	1293	2.627	2.695	10/6/10 5:54	1314	2.639	2.707	10/6/10 6:16	1335	2.658	2.726
10/6/10 5:33	1293	2.618	2.686	10/6/10 5:55	1314	2.641	2.709	10/6/10 6:16	1336	2.651	2.719
10/6/10 5:34	1293	2.621	2.689	10/6/10 5:55	1315	2.643	2.711	10/6/10 6:16	1336	2.649	2.717
10/6/10 5:34	1294	2.621	2.689	10/6/10 5:55	1315	2.642	2.71	10/6/10 6:17	1336	2.652	2.72
10/6/10 5:34	1294	2.620	2.688	10/6/10 5:56	1315	2.638	2.706	10/6/10 6:17	1337	2.652	2.72
10/6/10 5:35	1294	2.621	2.689	10/6/10 5:56	1316	2.639	2.707	10/6/10 6:17	1337	2.652	2.72
10/6/10 5:35	1295	2.616	2.684	10/6/10 5:56	1316	2.638	2.706	10/6/10 6:18	1337	2.652	2.72
10/6/10 5:35	1295	2.617	2.685	10/6/10 5:57	1316	2.640	2.708	10/6/10 6:18	1338	2.654	2.722
				10/0/10 5.57							
10/6/10 5:36	1295	2.618	2.686	10/6/10 5:57	1317	2.638	2.706	10/6/10 6:18	1338	2.652	2.72
10/6/10 5:36	1296	2.622	2.69	10/6/10 5:57	1317	2.642	2.71	10/6/10 6:19	1338	2.650	2.718
		2.622							1339		
10/6/10 5:36	1296	2.022	2.69	10/6/10 5:58	1317	2.638	2.706	10/6/10 6:19	1339	2.660	2.728
10/6/10 5:37	1296	2.620	2.688	10/6/10 5:58	1318	2.644	2.712	10/6/10 6:19	1339	2.649	2.717
10/6/10 5:37	1297	2.619	2.687	10/6/10 5:58	1318	2.644	2.712	10/6/10 6:20	1339	2.651	2.719
10/6/10 5:37	1297	2.627	2.695	10/6/10 5:59	1318	2.642	2.71	10/6/10 6:20	1340	2.654	2.722
10/6/10 5:38	1297	2.627	2.695	10/6/10 5:59	1319	2.640	2.708	10/6/10 6:20	1340	2.647	2.715
									1340		
10/6/10 5:38	1298	2.624	2.692	10/6/10 5:59	1319	2.634	2.702	10/6/10 6:21		2.650	2.718
10/6/10 5:38	1298	2.621	2.689	10/6/10 6:00	1319	2.644	2.712	10/6/10 6:21	1341	2.651	2.719
10/6/10 5:39	1298	2.627	2.695	10/6/10 6:00	1320	2.648	2.716	10/6/10 6:21	1341	2.652	2.72
10/6/10 5:39	1299	2.625	2.693	10/6/10 6:00	1320	2.647	2.715	10/6/10 6:22	1341	2.647	2.715
10/6/10 5:39	1299	2.623	2.691	10/6/10 6:01	1320	2.644	2.712	10/6/10 6:22	1342	2.649	2.717
10/6/10 5:40	1299	2.627	2.695	10/6/10 6:01	1321	2.640	2.708	10/6/10 6:22	1342	2.650	2.718
10/6/10 5:40	1300	2.623	2.691	10/6/10 6:01	1321	2.647	2.715	10/6/10 6:23	1342	2.645	2.713
10/6/10 5:40	1300	2.629	2.697	10/6/10 6:02	1321	2.647	2.715	10/6/10 6:23	1343	2.646	2.714
10/6/10 5:41	1300	2.640	2.708	10/6/10 6:02	1322	2.644	2.712	10/6/10 6:23	1343	2.649	2.717
10/6/10 5:41	1301	2.629	2.697	10/6/10 6:02	1322	2.646	2.714	10/6/10 6:24	1343	2.650	2.718
-	-				-				-		-

10/6/10 6:24	1244	2.654	0.700	10/6/10 6:15	1265	0.670	0.746	10/6/10 7:07	1206	2.670	0.746
10/6/10 6:24	1344	2.654	2.722	10/6/10 6:45	1365	2.678	2.746	10/6/10 7:07	1386	2.678	2.746
10/6/10 6:24	1344	2.653	2.721	10/6/10 6:46	1365	2.663	2.731	10/6/10 7:07	1387	2.668	2.736
10/6/10 6:25	1344	2.651	2.719	10/6/10 6:46	1366	2.662	2.73	10/6/10 7:07	1387	2.671	2.739
10/6/10 6:25	1345	2.651	2.719	10/6/10 6:46	1366	2.663	2.731	10/6/10 7:08	1387	2.675	2.743
10/6/10 6:25	1345	2.652	2.72	10/6/10 6:47	1366	2.661	2.729	10/6/10 7:08	1388	2.671	2.739
10/6/10 6:26	1345	2.652	2.72	10/6/10 6:47	1367	2.661	2.729	10/6/10 7:08	1388	2.670	2.738
10/6/10 6:26	1346	2.649	2.717	10/6/10 6:47	1367	2.665	2.733	10/6/10 7:09	1388	2.678	2.746
									1389		
10/6/10 6:26	1346	2.652	2.72	10/6/10 6:48	1367	2.668	2.736	10/6/10 7:09		2.671	2.739
10/6/10 6:27	1346	2.654	2.722	10/6/10 6:48	1368	2.666	2.734	10/6/10 7:09	1389	2.670	2.738
10/6/10 6:27	1347	2.662	2.73	10/6/10 6:48	1368	2.668	2.736	10/6/10 7:10	1389	2.668	2.736
10/6/10 6:27	1347	2.649	2.717	10/6/10 6:49	1368	2.662	2.73	10/6/10 7:10	1390	2.672	2.74
10/6/10 6:28	1347	2.651	2.719	10/6/10 6:49	1369	2.666	2.734	10/6/10 7:10	1390	2.681	2.749
10/6/10 6:28	1348	2.651	2.719	10/6/10 6:49	1369	2.657	2.725	10/6/10 7:11	1390	2.668	2.736
10/6/10 6:28	1348	2.650	2.718	10/6/10 6:50	1369	2.659	2.727	10/6/10 7:11	1391	2.669	2.737
10/6/10 6:29	1348	2.654	2.722	10/6/10 6:50	1370	2.666	2.734	10/6/10 7:11	1391	2.672	2.74
				10/0/10 0.50							
10/6/10 6:29	1349	2.653	2.721	10/6/10 6:50	1370	2.651	2.719	10/6/10 7:12	1391	2.672	2.74
10/6/10 6:29	1349	2.650	2.718	10/6/10 6:51	1370	2.664	2.732	10/6/10 7:12	1392	2.675	2.743
10/6/10 6:30	1349	2.650	2.718	10/6/10 6:51	1371	2.657	2.725	10/6/10 7:12	1392	2.673	2.741
10/6/10 6:30	1350	2.652	2.72	10/6/10 6:51	1371	2.659	2.727	10/6/10 7:13	1392	2.669	2.737
10/6/10 6:30	1350	2.651	2.719	10/6/10 6:52	1371	2.664	2.732	10/6/10 7:13	1393	2.667	2.735
10/6/10 6:31	1350	2.655	2.723	10/6/10 6:52	1372	2.659	2.727	10/6/10 7:13	1393	2.665	2.733
10/6/10 6:31	1351	2.651	2.719	10/6/10 6:52	1372	2.658	2.726	10/6/10 7:14	1393	2.669	2.737
10/6/10 6:31	1351	2.652	2.72	10/6/10 6:53	1372	2.662	2.73	10/6/10 7:14	1394	2.672	2.74
			2.12								
10/6/10 6:32	1351	2.657	2.725	10/6/10 6:53	1373	2.676	2.744	10/6/10 7:14	1394	2.671	2.739
10/6/10 6:32	1352	2.661	2.729	10/6/10 6:53	1373	2.658	2.726	10/6/10 7:15	1394	2.671	2.739
10/6/10 6:32	1352	2.661	2.729	10/6/10 6:54	1373	2.660	2.728	10/6/10 7:15	1395	2.671	2.739
10/6/10 6:33	1352	2.658	2.726	10/6/10 6:54	1374	2.656	2.724	10/6/10 7:15	1395	2.668	2.736
10/6/10 6:33	1353	2.659	2.727	10/6/10 6:54	1374	2.658	2.726	10/6/10 7:16	1395	2.664	2.732
10/6/10 6:33	1353	2.660	2.728	10/6/10 6:55	1374	2.664	2.732	10/6/10 7:16	1396	2.679	2.747
10/6/10 6:34	1353	2.659	2.727	10/6/10 6:55	1375	2.664	2.732	10/6/10 7:16	1396	2.673	2.741
10/6/10 6:34	1354	2.660	2.728	10/6/10 6:55	1375	2.663	2.731	10/6/10 7:17	1396	2.674	2.742
10/6/10 6:34	1354	2.658	2.726	10/6/10 6:56	1375	2.661	2.729	10/6/10 7:17	1397	2.673	2.742
10/6/10 6:35	1354	2.660	2.728	10/6/10 6:56	1376	2.658	2.726	10/6/10 7:17	1397	2.667	2.735
10/6/10 6:35	1355	2.669	2.737	10/6/10 6:56	1376	2.660	2.728	10/6/10 7:18	1397	2.671	2.739
10/6/10 6:35	1355	2.662	2.73	10/6/10 6:57	1376	2.659	2.727	10/6/10 7:18	1398	2.669	2.737
10/6/10 6:36	1355	2.659	2.727	10/6/10 6:57	1377	2.660	2.728	10/6/10 7:18	1398	2.684	2.752
10/6/10 6:36	1356	2.657	2.725	10/6/10 6:57	1377	2.656	2.724	10/6/10 7:19	1398	2.686	2.754
10/6/10 6:36	1356	2.660	2.728	10/6/10 6:58	1377	2.659	2.727	10/6/10 7:19	1399	2.669	2.737
10/6/10 6:37	1356	2.661	2.729	10/6/10 6:58	1378	2.658	2.726	10/6/10 7:19	1399	2.669	2.737
10/6/10 6:37	1357	2.659	2.727	10/6/10 6:58	1378	2.659	2.727	10/6/10 7:20	1399	2.670	2.738
10/6/10 6:37	1357	2.660	2.728	10/6/10 6:59	1378	2.663	2.731	10/6/10 7:20	1400	2.670	2.738
10/6/10 6:38	1357	2.654	2.720	10/6/10 6:59	1379	2.662	2.73	10/6/10 7:20	1400	2.671	
				10/0/10 0.59							2.739
10/6/10 6:38	1358	2.664	2.732	10/6/10 6:59	1379	2.663	2.731	10/6/10 7:21	1400	2.670	2.738
10/6/10 6:38	1358	2.659	2.727	10/6/10 7:00	1379	2.661	2.729	10/6/10 7:21	1401	2.672	2.74
10/6/10 6:39	1358	2.663	2.731	10/6/10 7:00	1380	2.661	2.729	10/6/10 7:21	1401	2.670	2.738
10/6/10 6:39	1359	2.673	2.741	10/6/10 7:00	1380	2.662	2.73	10/6/10 7:22	1401	2.673	2.741
10/6/10 6:39	1359	2.662	2.73	10/6/10 7:01	1380	2.663	2.731	10/6/10 7:22	1402	2.678	2.746
10/6/10 6:40	1359	2.661	2.729	10/6/10 7:01	1381	2.678	2.746	10/6/10 7:22	1402	2.674	2.742
10/6/10 6:40	1360	2.662	2.73	10/6/10 7:01	1381	2.666	2.734	10/6/10 7:23	1402	2.674	2.742
10/6/10 6:40	1360	2.658	2.726	10/6/10 7:02	1381	2.665	2.733	10/6/10 7:23	1403	2.664	2.732
10/6/10 6:41											
	1360	2.662	2.73	10/6/10 7:02	1382	2.665	2.733	10/6/10 7:23	1403	2.663	2.731
10/6/10 6:41	1361	2.663	2.731	10/6/10 7:02	1382	2.670	2.738	10/6/10 7:24	1403	2.682	2.75
10/6/10 6:41	1361	2.661	2.729	10/6/10 7:03	1382	2.661	2.729	10/6/10 7:24	1404	2.676	2.744
10/6/10 6:42	1361	2.662	2.73	10/6/10 7:03	1383	2.666	2.734	10/6/10 7:24	1404	2.673	2.741
10/6/10 6:42	1362	2.661	2.729	10/6/10 7:03	1383	2.665	2.733	10/6/10 7:25	1404	2.675	2.743
10/6/10 6:42	1362	2.664	2.732	10/6/10 7:04	1383	2.672	2.74	10/6/10 7:25	1405	2.673	2.741
10/6/10 6:43	1362	2.664	2.732	10/6/10 7:04	1384	2.660	2.728	10/6/10 7:25	1405	2.679	2.747
10/6/10 6:43	1363	2.665	2.733	10/6/10 7:04	1384	2.657	2.725	10/6/10 7:26	1405	2.671	2.739
	1363	2.661	2.733		1384	2.657	2.725	10/6/10 7:26	1405	2.673	2.739
10/6/10 6:43				10/6/10 7:05							
10/6/10 6:44	1363	2.662	2.73	10/6/10 7:05	1385	2.663	2.731	10/6/10 7:26	1406	2.685	2.753
10/6/10 6:44	1364	2.674	2.742	10/6/10 7:05	1385	2.667	2.735	10/6/10 7:27	1406	2.672	2.74
10/6/10 6:44	1364	2.659	2.727	10/6/10 7:06	1385	2.668	2.736	10/6/10 7:27	1407	2.674	2.742
10/6/10 6:45	1364	2.667	2.735	10/6/10 7:06	1386	2.676	2.744	10/6/10 7:27	1407	2.675	2.743
10/6/10 6:45	1365	2.663	2.731	10/6/10 7:06	1386	2.671	2.739	10/6/10 7:28	1407	2.678	2.746

100/10/728												
1006107.229	40/0/40 7 00	4.400	0.077	0.745	40/0/40 7 40	4.400	0.004	0.750	40/0/40 0 44	4.450	4 400	4.500
100P(10 729												
106/10/229 1409 2.679 2.474												
1006107.239												
100F10730	10/6/10 7:29	1409	2.679		10/6/10 7:50	1430		2.753	10/6/10 8:12		1.490	1.558
108/10/7-30	10/6/10 7:29	1409	2.680	2.748	10/6/10 7:51	1430	2.688	2.756		1452	1.490	1.558
108/10/7-30	10/6/10 7:30	1409	2.677		10/6/10 7:51	1431		2.754	10/6/10 8:12	1452	1.485	1.553
108/10/2-30												
108/10/7-31												
106/10/731												
106/10/7-31 1411 2.676 2.744 106/10/7-33 1432 2.697 2.765 106/10/8-14 1454 1.459 1.537 106/10/7-32 1412 2.673 2.741 106/10/7-33 1432 2.690 2.757 106/10/8-15 1455 1.471 1.538 106/10/7-32 1412 2.678 2.746 106/10/7-34 1433 2.690 2.757 106/10/8-15 1455 1.472 1.538 106/10/7-33 1412 2.678 2.746 106/10/7-34 1433 2.691 2.757 106/10/8-15 1455 1.461 1.529 106/10/7-33 1413 2.679 2.747 106/10/7-34 1434 2.687 2.755 106/10/8-16 1455 1.461 1.529 106/10/7-33 1413 2.690 2.748 106/10/7-35 1435 2.690 2.788 106/10/8-16 1455 1.461 1.529 106/10/7-34 1434 2.687 2.755 106/10/8-16 1455 1.461 1.529 106/10/7-34 1434 2.687 2.756 106/10/8-16 1455 1.461 1.529 106/10/7-34 1434 2.687 2.746 106/10/7-35 1435 2.690 2.784 106/10/8-16 1455 1.461 1.529 106/10/7-34 1434 2.687 2.746 106/10/7-35 1435 2.690 2.784 106/10/8-16 1455 1.464 1.529 106/10/8-16 1455 1.461 1.529 106/10/8-16 1455 1.461 1.529 106/10/8-16 1455 1.461 1.529 106/10/8-16 1455 1.461 1.529 106/10/8-16 1455 1.461 1.529 106/10/8-16 1455 1.461 1.529 106/10/8-16 1455 1.461 1.529 106/10/8-16 1455 1.461 1.529 106/10/8-16 1455 1.461 1.529 106/10/8-16 1455 1.462												
100F10 7:32												
106/10/732												
108/107-32							2.690					
1006/107-33						1433	2.689	2.757				1.538
106/10 7:33		1412	2.678							1455	1.462	1.53
106/10 7:33	10/6/10 7:33	1412	2.678	2.746	10/6/10 7:54	1434	2.691	2.759	10/6/10 8:15	1455	1.461	1.529
106/10 7:33	10/6/10 7:33	1413	2.679	2.747	10/6/10 7:54	1434	2.687	2.755		1455	1.461	1.529
106/10 7:34												
106/10 7:34												
10\(\text{in}\) 10\(\text{in}\) 17.35												
106/10 7:35												
106/10 7:35 1415 2.680 2.748 106/10 7:56 1436 2.687 2.755 106/10 8:18 1457 1.443 1.511 106/10 7:35 1415 2.680 2.748 106/10 7:37 1437 2.694 2.766 106/10 8:18 1458 1.457 1.404 1.508 106/10 7:38 1416 2.681 2.748 106/10 7:37 1437 2.694 2.762 106/10 8:18 1458 1.437 1.505 106/10 7:38 1416 2.682 2.761 106/10 7:37 1437 2.694 2.762 106/10 8:18 1458 1.437 1.505 106/10 7:38 1416 2.697 2.765 106/10 7:38 1438 2.699 2.765 106/10 8:18 1458 1.437 1.505 106/10 7:37 1417 2.695 2.753 106/10 7:38 1438 2.699 2.761 106/10 8:18 1459 1.427 1.495 106/10 7:37 1417 2.695 2.753 106/10 7:59 1438 2.699 2.767 106/10 8:20 1459 1.427 1.495 106/10 7:38 1418 2.697 2.749 106/10 7:59 1439 2.704 2.772 106/10 8:20 1459 1.427 1.495 106/10 7:38 1418 2.697 2.748 106/10 7:59 1439 2.704 2.772 106/10 8:20 1459 1.427 1.495 106/10 7:38 1418 2.697 2.746 106/10 8:00 1449 1.428 1.439 106/10 7:39 1418 2.698 2.764 106/10 8:20 1459 1.427 1.495 106/10 7:39 1418 2.698 2.764 106/10 8:00 1449 1.429 1.499 106/10 7:39 1418 2.698 2.764 106/10 8:00 1440 1.491 1.491 1.06/10 7:39 1419 2.698 2.768 106/10 8:00 1440 1.491 1.491 1.491 1.06/10 7:39 1419 2.698 2.774 1.06/10 8:00 1440 1.691 1.491 1.359 106/10 8:22 1460 1.422 1.491 1.06/10 7:39 1419 2.698 2.7744 106/10 8:00 1440 1.691 1.359 1.06/10 8:22 1460 1.421 1.491 1.06/10 7:39 1419 2.698 2.7746 106/10 8:01 1441 1.222 1.29 106/10 8:22 1462 1.401 1.479 1.06/10 7:39 1419 2.678 2.7746 106/10 8:01 1441 1.222 1.29 106/10 8:22 1462 1.401 1.479 1.06/10 7:40 1420 2.675 2.745 106/10 8:01 1441 1.222 1.29 106/10 8:22 1462 1.401 1.479 1.06/10 7:40 1420 2.675 2.745 106/10 8:01 1441 1.222 1.29 1.06/10 8:22 1462 1.401 1.471 1.479 1.06/10 7:44 1421 2.681 2.7745 1.06/10 8:03 1443 1.381 1.382 1.06/10 8:22 1462 1.401 1.471 1.479 1.06/10 7:44 1422 2.680 2.7745 1.06/10 8:03 1443 1.384 1.382 1.06/10 8:22 1462 1.401 1.471 1.479 1.06/10 7:44 1422 2.680 2.7745 1.06/10 8:03 1443 1.344 1.382 1.06/10 8:22 1466 1.379 1.447 1.461 1.06/10 8:03 1444 1.256 1.257 1.446 1.06/10 8:03 1444 1.256 1.257 1.446 1.06/10 8:03 1444 1.256 1.257 1.446 1.06/10 8:03 1444 1												
106/10 7:36												
106/10 7:36												
106/10 7:36		1415	2.680									
106/10 7:36	10/6/10 7:36	1415	2.681	2.749	10/6/10 7:57	1437	2.694	2.762	10/6/10 8:18	1458	1.437	1.505
100/610 7:37	10/6/10 7:36	1416	2.682	2.75	10/6/10 7:57	1437	2.696	2.764	10/6/10 8:19	1458	1.436	
100/610 7:37	10/6/10 7:36	1416	2.693	2.761	10/6/10 7:58	1437	2.697	2.765	10/6/10 8:19	1459	1.432	1.5
106/107:37 1417 2.685 2.753 10/6/107:89 1438 2.690 2.758 10/6/10.8:20 1459 1.427 1.495 10/6/107:39 1418 2.681 2.749 10/6/107:39 1439 2.704 2.772 10/6/10.8:20 1460 1.422 1.494 10/6/107:38 1418 2.678 2.746 10/6/10.8:91 439 2.704 2.772 10/6/10.8:20 1460 1.422 1.494 10/6/107:38 1418 2.678 2.746 10/6/10.8:00 1439 2.695 2.763 10/6/10.8:21 1461 1.421 1.489 10/6/107:39 1418 2.678 2.744 10/6/10.8:00 1439 2.695 2.763 10/6/10.8:21 1461 1.417 1.489 10/6/107:39 1418 2.676 2.744 10/6/10.8:00 1440 1.891 1.759 10/6/10.8:21 1461 1.417 1.489 10/6/107:39 1419 2.684 2.752 10/6/10.8:00 1440 1.891 1.759 10/6/10.8:22 1461 1.411 1.479 10/6/107:39 1419 2.684 2.752 10/6/10.8:01 1440 1.891 1.759 10/6/10.8:22 1461 1.411 1.479 10/6/107:39 1419 2.676 2.744 10/6/10.8:01 1440 1.891 1.759 10/6/10.8:22 1462 1.411 1.479 10/6/107:39 1419 2.676 2.744 10/6/10.8:01 1440 1.891 1.759 10/6/10.8:22 1462 1.411 1.479 10/6/10.740 1449 2.676 2.744 10/6/10.8:01 1441 1.221 1.359 10/6/10.8:22 1462 1.411 1.479 10/6/10.740 1449 2.676 2.745 10/6/10.8:02 1441 1.221 1.359 10/6/10.8:22 1462 1.408 1.472 10/6/10.740 1449 2.676 2.745 10/6/10.8:02 1441 1.206 1.274 10/6/10.8:22 1462 1.408 1.472 10/6/10.740 1442 2.676 2.745 10/6/10.8:02 1441 1.206 1.274 10/6/10.8:23 1462 1.408 1.472 10/6/10.741 1421 2.680 2.748 10/6/10.8:02 1442 1.226 1.288 10/6/10.8:23 1462 1.408 1.472 10/6/10.741 1421 2.680 2.748 10/6/10.8:02 1442 1.226 1.288 10/6/10.8:23 1463 1.402 1.472 10/6/10.741 1421 2.680 2.748 10/6/10.8:03 1443 1.334 1.334 1.334 10/6/10.8:24 1464 1.396 1.468 10/6/10.744 1421 2.680 2.748 10/6/10.8:03 1443 1.334 1.334 1.334 1.06/10.8:24 1464 1.396 1.468 10/6/10.8:24 1464 1.396 1.468 10/6/10.744 1422 2.680 2.748 10/6/10.8:03 1443 1.334 1.334 1.334 1.06/10.8:25 1466 1.339 1.461 10/6/10.8:25 1465 1.396 1.464 1.391 1.469 10/6/10.8:25 1465 1.396 1.464 10/6/10.744 1422 2.680 2.748 10/6/10.8:03 1443 1.344 1.382 10/6/10.8:25 1466 1.392 1.467 1.398 1.461 10/6/10.8:25 1465 1.396 1.448 10/6/10.744 1422 2.680 2.748 10/6/10.8:03 1443 1.334 1.345 1.469 10/6/10.8:25 1465 1.396 1.444 10/6/10.744 1												
10/6/10 7:37 1417 2.681 2.749 10/6/10 7:59 1438 2.699 2.767 10/6/10 8:00 1460 1.426 1.499 10/6/10 7:38 1418 2.681 2.749 10/6/10 8:00 1439 2.695 2.763 10/6/10 8:21 1461 1.417 1.485 10/6/10 7:38 1418 2.681 2.749 10/6/10 8:00 1439 2.695 2.765 10/6/10 8:21 1461 1.417 1.485 10/6/10 7:39 1419 2.684 2.752 10/6/10 8:00 1439 2.695 2.765 10/6/10 8:21 1461 1.417 1.485 10/6/10 7:39 1419 2.684 2.752 10/6/10 8:00 1440 2.696 2.764 10/6/10 8:21 1461 1.417 1.479 10/6/10 7:39 1419 2.684 2.752 10/6/10 8:00 1440 1.691 1.759 10/6/10 8:22 1461 1.411 1.479 10/6/10 7:39 1419 2.684 2.762 10/6/10 8:00 1440 1.691 1.759 10/6/10 8:22 1462 1.441 1.479 10/6/10 7:40 1419 2.678 2.746 10/6/10 8:01 1441 1.222 1.29 10/6/10 8:22 1462 1.441 1.479 10/6/10 7:40 1419 2.674 2.742 10/6/10 8:01 1441 1.222 1.29 10/6/10 8:22 1462 1.408 1.476 10/6/10 7:40 1420 2.675 2.743 10/6/10 8:01 1441 1.204 1.272 10/6/10 8:23 1463 1.407 1.475 10/6/10 7:40 1420 2.675 2.745 10/6/10 8:02 1441 1.204 1.272 10/6/10 8:23 1463 1.407 1.472 10/6/10 7:40 1420 2.675 2.745 10/6/10 8:02 1442 1.220 1.288 10/6/10 8:23 1463 1.404 1.472 10/6/10 7:41 1421 2.680 2.748 10/6/10 8:02 1442 1.220 1.288 10/6/10 8:23 1463 1.402 1.476 10/6/10 7:41 1421 2.680 2.748 10/6/10 8:03 1443 1.331 1.331 10/6/10 8:24 1464 1.396 1.466 10/6/10 7:42 1421 2.680 2.748 10/6/10 8:03 1443 1.331 1.331 10/6/10 8:24 1464 1.396 1.468 10/6/10 7:42 1421 2.680 2.748 10/6/10 8:03 1443 1.331 1.331 10/6/10 8:24 1464 1.396 1.468 10/6/10 7:42 1422 2.680 2.748 10/6/10 8:03 1443 1.334 1.335 10/6/10 8:24 1464 1.396 1.468 10/6/10 7:43 1422 2.680 2.748 10/6/10 8:03 1443 1.334 1.335 10/6/10 8:25 1465 1.393 1.461 10/6/10 7:43 1422 2.680 2.748 10/6/10 8:04 1444 1.327 1.352 10/6/10 8:25 1465 1.393 1.461 10/6/10 7:43 1422 2.680 2.748 10/6/10 8:04 1444 1.327 1.352 10/6/10 8:25 1465 1.393 1.461 10/6/10 7:43 1422 2.680 2.748 10/6/10 8:04 1444 1.327 1.352 10/6/10 8:25 1465 1.393 1.461 10/6/10 8:05 1444 1.420 1.661 1.441 1.420 1.661 1.441 1.420 1.661 1.441 1.420 1.661 1.441 1.420 1.661 1.441 1.420 1.661 1.441 1.420 1.661 1.441 1.420 1.661 1.												
106/10 7:38												
10/6/10 7:38 1418 2.681 2.746 10/6/10 8:00 1439 2.695 2.763 10/6/10 8:21 1461 1.417 1.489 10/6/10 7:39 1418 2.681 2.749 10/6/10 8:00 1449 2.696 2.764 10/6/10 8:21 1461 1.416 1.484 10/6/10 7:39 1419 2.684 2.752 10/6/10 8:00 1440 1.691 1.759 10/6/10 8:22 1461 1.411 1.479 10/6/10 7:39 1419 2.684 2.752 10/6/10 8:00 1440 1.691 1.759 10/6/10 8:22 1462 1.411 1.479 10/6/10 7:40 1419 2.678 2.746 10/6/10 8:01 1440 1.291 1.359 10/6/10 8:22 1462 1.411 1.479 10/6/10 7:40 1419 2.678 2.742 10/6/10 8:01 1440 1.291 1.359 10/6/10 8:22 1462 1.411 1.479 10/6/10 7:40 1420 2.675 2.743 10/6/10 8:01 1441 1.224 1.29 10/6/10 8:23 1462 1.407 1.475 10/6/10 7:40 1420 2.677 2.745 10/6/10 8:02 1441 1.204 1.272 10/6/10 8:23 1462 1.407 1.475 10/6/10 7:41 1420 2.681 2.749 10/6/10 8:02 1442 1.220 1.288 10/6/10 8:23 1463 1.404 1.472 10/6/10 7:41 1421 2.680 2.748 10/6/10 8:02 1442 1.230 1.288 10/6/10 8:23 1463 1.402 1.47 10/6/10 7:41 1421 2.680 2.748 10/6/10 8:03 1442 1.230 1.384 10/6/10 8:24 1464 1.396 1.464 10/6/10 7:42 1421 2.680 2.748 10/6/10 8:03 1443 1.283 1.351 10/6/10 8:24 1464 1.396 1.464 10/6/10 7:42 1422 2.680 2.748 10/6/10 8:03 1443 1.382 10/6/10 8:25 1464 1.391 1.469 10/6/10 7:42 1422 2.680 2.748 10/6/10 8:03 1443 1.382 10/6/10 8:25 1465 1.393 1.491 10/6/10 7:42 1422 2.680 2.748 10/6/10 8:03 1443 1.384 1.382 10/6/10 8:25 1465 1.393 1.491 10/6/10 7:42 1422 2.680 2.748 10/6/10 8:04 1443 1.394 1.395 1.453 10/6/10 8:25 1465 1.393 1.491 10/6/10 7:43 1422 2.680 2.748 10/6/10 8:04 1444 1.427 1.495 10/6/10 8:25 1465 1.393 1.491 10/6/10 7:43 1422 2.680 2.748 10/6/10 8:04 1443 1.394 1.495 10/6/10 8:25 1465 1.393 1.491 10/6/10 8:05 1444 1.427 1.495 10/6/10 8:25 1465 1.393 1.491 10/6/10 7:43 1422 2.681 2.749 10/6/10 8:04 1444 1.427 1.495 10/6/10 8:25 1465 1.386 1.453 10/6/10 8:25 1465 1.386 1.453 10/6/10 8:25 1465 1.386 1.453 10/6/10 8:05 1444 1.427 1.495 10/6/10 8:25 1465 1.386 1.453 10/6/10 8:05 1444 1.427 1.495 10/6/10 8:25 1465 1.386 1.453 10/6/10 8:05 1444 1.427 1.459 10/6/10 8:25 1465 1.386 1.453 10/6/10 8:05 1444 1.427 1.459 10/6/10 8:25 1												
10/6/10 7:38												
106/10 7:39						1439						
106/10 7:39												
106/10 7:39	10/6/10 7:39	1418	2.676		10/6/10 8:00	1440				1461	1.416	1.484
106/10 7:39	10/6/10 7:39	1419	2.684	2.752	10/6/10 8:00	1440	1.691	1.759	10/6/10 8:22	1461	1.411	1.479
106/10 7:40	10/6/10 7:39	1419	2.678	2.746		1440	1.291	1.359	10/6/10 8:22	1462	1.411	1.479
10/6/10 7:40							1.222		10/6/10 8:22			
10/6/10 7:40												
10/6/10 7:41												
10/6/10 7:41												
10/6/10 7:41 1421 2.681 2.749 10/6/10 8:03 1442 1.261 1.329 10/6/10 8:24 1464 1.396 1.464 10/6/10 7:42 1421 2.680 2.748 10/6/10 8:03 1443 1.283 1.351 10/6/10 8:24 1464 1.400 1.468 10/6/10 7:42 1422 2.680 2.748 10/6/10 8:03 1443 1.283 1.351 10/6/10 8:25 1464 1.391 1.469 10/6/10 7:42 1422 2.681 2.749 10/6/10 8:04 1443 1.348 1.416 10/6/10 8:25 1465 1.393 1.461 10/6/10 7:43 1422 2.678 2.746 10/6/10 8:04 1444 1.355 1.453 10/6/10 8:25 1465 1.393 1.461 10/6/10 7:43 1423 2.683 2.751 10/6/10 8:04 1444 1.395 1.453 10/6/10 8:26 1465 1.386 1.454 10/6/10 7:43 1423 2.680 2.748 10/6/10 8:04 1444 1.427 1.495 10/6/10 8:26 1465 1.385 1.453 10/6/10 8:26 1465 1.386 1.454 10/6/10 7:43 1423 2.680 2.748 10/6/10 8:05 1444 1.481 1.549 10/6/10 8:26 1465 1.382 1.45 10/6/10 7:44 1423 2.685 2.753 10/6/10 8:05 1445 1.534 1.602 10/6/10 8:26 1466 1.379 1.447 10/6/10 7:44 1424 2.677 2.745 10/6/10 8:05 1445 1.547 1.615 10/6/10 8:27 1466 1.379 1.447 10/6/10 7:44 1424 2.677 2.745 10/6/10 8:06 1445 1.547 1.615 10/6/10 8:27 1466 1.379 1.447 10/6/10 7:45 1424 2.678 2.746 10/6/10 8:06 1446 1.546 1.614 10/6/10 8:27 1467 1.376 1.444 10/6/10 7:45 1425 2.684 2.752 10/6/10 8:06 1446 1.539 1.607 10/6/10 8:27 1467 1.376 1.444 10/6/10 7:45 1425 2.684 2.752 10/6/10 8:07 1446 1.539 1.607 10/6/10 8:28 1468 1.373 1.441 10/6/10 7:45 1425 2.681 2.749 10/6/10 8:07 1446 1.539 1.607 10/6/10 8:28 1468 1.373 1.441 10/6/10 7:46 1425 2.681 2.749 10/6/10 8:07 1447 1.536 1.604 10/6/10 8:28 1468 1.367 1.435 10/6/10 7:46 1426 2.679 2.747 10/6/10 8:07 1447 1.530 1.507 10/6/10 8:29 1469 1.367 1.435 10/6/10 7:47 1426 2.679 2.747 10/6/10 8:08 1448 1.529 1.594 10/6/10 8:29 1469 1.367 1.435 10/6/10 7:47 1426 2.679 2.747 10/6/10 8:08 1448 1.526 1.594 10/6/10 8:29 1469 1.367 1.435 10/6/10 7:48 1428 2.679 2.747 10/6/10 8:09 1448 1.526 1.594 10/6/10 8:30 1470 1.355 1.425 10/6/10 7:48 1428 2.676 2.744 10/6/10 8:09 1448 1.526 1.594 10/6/10 8:31 1470 1.355 1.423 10/6/10 7:48 1428 2.676 2.744 10/6/10 8:09 1449 1.511 1.579 10/6/10 8:31 1471 1.352 1.42 10/6/10 7:48 1428 2.677 2.745 10/6/10							1.220					
10/6/10 7:42								1.304				
10/6/10 7:42								1.329				
10/6/10 7:42 1422 2.681 2.749 10/6/10 8:04 1443 1.348 1.416 10/6/10 8:25 1465 1.393 1.461 10/6/10 7:43 1422 2.678 2.746 10/6/10 8:04 1444 1.385 1.453 10/6/10 8:25 1465 1.386 1.454 10/6/10 7:43 1423 2.680 2.748 10/6/10 8:05 1444 1.481 1.549 10/6/10 8:26 1466 1.382 1.45 10/6/10 7:44 1423 2.685 2.753 10/6/10 8:05 1445 1.534 1.602 10/6/10 8:26 1466 1.382 1.45 10/6/10 7:44 1424 2.677 2.745 10/6/10 8:05 1445 1.547 1.615 10/6/10 8:26 1466 1.379 1.447 10/6/10 7:44 1424 2.679 2.747 10/6/10 8:06 1445 1.547 1.615 10/6/10 8:27 1467 1.378 1.446 10/6/10 7:45 1425 2.684 2.752 10/6/10 8:06 1446 <												
10/6/10 7:43 1422 2.678 2.746 10/6/10 8:04 1444 1.385 1.453 10/6/10 8:25 1465 1.386 1.454 10/6/10 7:43 1423 2.680 2.748 10/6/10 8:05 1444 1.427 1.495 10/6/10 8:26 1465 1.385 1.453 10/6/10 7:44 1423 2.680 2.753 10/6/10 8:05 1444 1.549 10/6/10 8:26 1466 1.382 1.45 10/6/10 7:44 1423 2.685 2.753 10/6/10 8:05 1445 1.547 1.615 10/6/10 8:26 1466 1.379 1.447 10/6/10 7:44 1424 2.677 2.747 10/6/10 8:06 1445 1.547 1.615 10/6/10 8:26 1466 1.379 1.447 10/6/10 7:45 1424 2.678 2.747 10/6/10 8:06 1445 1.547 1.615 10/6/10 8:26 1467 1.378 1.446 10/6/10 7:45 1424 2.678 2.746 10/6/10 8:06 1446 1.539												
10/6/10 7:43 1423 2.683 2.751 10/6/10 8:04 1444 1.427 1.495 10/6/10 8:26 1465 1.385 1.453 10/6/10 7:43 1423 2.680 2.748 10/6/10 8:05 1444 1.549 10/6/10 8:26 1466 1.382 1.45 10/6/10 7:44 1423 2.685 2.753 10/6/10 8:05 1445 1.534 1.602 10/6/10 8:26 1466 1.379 1.447 10/6/10 7:44 1424 2.677 2.745 10/6/10 8:05 1445 1.547 1.615 10/6/10 8:27 1466 1.379 1.447 10/6/10 7:44 1424 2.679 2.747 10/6/10 8:06 1445 1.547 1.615 10/6/10 8:27 1466 1.379 1.447 10/6/10 7:45 1424 2.678 2.746 10/6/10 8:06 1446 1.547 1.615 10/6/10 8:27 1467 1.374 1.446 10/6/10 7:45 1425 2.684 2.752 10/6/10 8:06 1446 1.539 1.607 10/6/10 8:28 1467 1.374 1.442 10/6/10 7:45 </td <td></td>												
10/6/10 7:43 1423 2.680 2.748 10/6/10 8:05 1444 1.481 1.549 10/6/10 8:26 1466 1.382 1.45 10/6/10 7:44 1423 2.685 2.753 10/6/10 8:05 1445 1.534 1.602 10/6/10 8:26 1466 1.379 1.447 10/6/10 7:44 1424 2.677 2.745 10/6/10 8:05 1445 1.547 1.615 10/6/10 8:27 1466 1.379 1.447 10/6/10 7:45 1424 2.678 2.747 10/6/10 8:06 1445 1.547 1.615 10/6/10 8:27 1467 1.378 1.446 10/6/10 7:45 1424 2.678 2.746 10/6/10 8:06 1446 1.546 1.614 10/6/10 8:27 1467 1.376 1.444 10/6/10 7:45 1425 2.681 2.749 10/6/10 8:06 1446 1.539 1.607 10/6/10 8:28 1467 1.374 1.442 10/6/10 7:45 1425 2.681 2.749 10/6/10 8:07 1446 1.539 1.607 10/6/10 8:28 1468 1.373 1.441	10/6/10 7:43	1422	2.678	2.746	10/6/10 8:04	1444	1.385		10/6/10 8:25	1465	1.386	1.454
10/6/10 7:43 1423 2.680 2.748 10/6/10 8:05 1444 1.481 1.549 10/6/10 8:26 1466 1.382 1.45 10/6/10 7:44 1423 2.685 2.753 10/6/10 8:05 1445 1.534 1.602 10/6/10 8:26 1466 1.379 1.447 10/6/10 7:44 1424 2.677 2.745 10/6/10 8:05 1445 1.547 1.615 10/6/10 8:27 1466 1.379 1.447 10/6/10 7:45 1424 2.678 2.747 10/6/10 8:06 1445 1.547 1.615 10/6/10 8:27 1467 1.378 1.446 10/6/10 7:45 1424 2.678 2.746 10/6/10 8:06 1446 1.546 1.614 10/6/10 8:27 1467 1.376 1.444 10/6/10 7:45 1425 2.681 2.749 10/6/10 8:06 1446 1.539 1.607 10/6/10 8:28 1467 1.374 1.442 10/6/10 7:45 1425 2.681 2.749 10/6/10 8:07 1446 1.539 1.607 10/6/10 8:28 1468 1.373 1.441	10/6/10 7:43	1423	2.683	2.751	10/6/10 8:04	1444		1.495	10/6/10 8:26	1465	1.385	1.453
10/6/10 7:44 1423 2.685 2.753 10/6/10 8:05 1445 1.534 1.602 10/6/10 8:26 1466 1.379 1.447 10/6/10 7:44 1424 2.677 2.745 10/6/10 8:05 1445 1.547 1.615 10/6/10 8:27 1466 1.379 1.447 10/6/10 7:45 1424 2.678 2.746 10/6/10 8:06 1446 1.547 1.615 10/6/10 8:27 1467 1.378 1.446 10/6/10 7:45 1424 2.678 2.746 10/6/10 8:06 1446 1.546 1.614 10/6/10 8:27 1467 1.376 1.444 10/6/10 7:45 1425 2.684 2.752 10/6/10 8:06 1446 1.539 1.607 10/6/10 8:28 1468 1.373 1.441 10/6/10 7:46 1425 2.681 2.749 10/6/10 8:07 1447 1.536 1.604 10/6/10 8:28 1468 1.356 1.424 10/6/10 7:46 1426 2.693 2.761 10/6/10 8:07 1447												
10/6/10 7:44 1424 2.677 2.745 10/6/10 8:05 1445 1.547 1.615 10/6/10 8:27 1466 1.379 1.447 10/6/10 7:44 1424 2.678 2.746 10/6/10 8:06 1445 1.547 1.615 10/6/10 8:27 1467 1.378 1.446 10/6/10 7:45 1424 2.678 2.746 10/6/10 8:06 1446 1.546 1.614 10/6/10 8:27 1467 1.378 1.446 10/6/10 7:45 1425 2.684 2.752 10/6/10 8:06 1446 1.539 1.607 10/6/10 8:28 1467 1.374 1.442 10/6/10 7:45 1425 2.681 2.749 10/6/10 8:07 1446 1.539 1.607 10/6/10 8:28 1468 1.373 1.441 10/6/10 7:46 1425 2.681 2.749 10/6/10 8:07 1447 1.536 1.607 10/6/10 8:28 1468 1.356 1.424 10/6/10 7:46 1426 2.693 2.761 10/6/10 8:07 1447 1.533 1.601 10/6/10 8:29 1468 1.367 1.435												
10/6/10 7:44 1424 2.679 2.747 10/6/10 8:06 1445 1.547 1.615 10/6/10 8:27 1467 1.378 1.446 10/6/10 7:45 1424 2.678 2.746 10/6/10 8:06 1446 1.546 1.614 10/6/10 8:27 1467 1.376 1.444 10/6/10 7:45 1425 2.684 2.752 10/6/10 8:06 1446 1.539 1.607 10/6/10 8:28 1467 1.374 1.442 10/6/10 7:45 1425 2.681 2.749 10/6/10 8:07 1446 1.539 1.607 10/6/10 8:28 1468 1.373 1.441 10/6/10 7:46 1425 2.681 2.749 10/6/10 8:07 1447 1.536 1.604 10/6/10 8:28 1468 1.356 1.424 10/6/10 7:46 1426 2.693 2.761 10/6/10 8:07 1447 1.533 1.601 10/6/10 8:29 1468 1.367 1.435 10/6/10 7:47 1426 2.679 2.747 10/6/10 8:08 1447 1.530 1.598 10/6/10 8:29 1468 1.367 1.435												
10/6/10 7:45 1424 2.678 2.746 10/6/10 8:06 1446 1.546 1.614 10/6/10 8:27 1467 1.376 1.444 10/6/10 7:45 1425 2.684 2.752 10/6/10 8:06 1446 1.539 1.607 10/6/10 8:28 1467 1.374 1.442 10/6/10 7:45 1425 2.681 2.749 10/6/10 8:07 1446 1.539 1.607 10/6/10 8:28 1468 1.373 1.441 10/6/10 7:46 1425 2.681 2.749 10/6/10 8:07 1447 1.536 1.604 10/6/10 8:28 1468 1.356 1.424 10/6/10 7:46 1426 2.693 2.761 10/6/10 8:07 1447 1.533 1.601 10/6/10 8:29 1468 1.357 1.435 10/6/10 7:46 1426 2.675 2.743 10/6/10 8:08 1447 1.530 1.598 10/6/10 8:29 1468 1.367 1.435 10/6/10 7:47 1426 2.679 2.747 10/6/10 8:08 1448 1.526 1.594 10/6/10 8:29 1469 1.361 1.429												
10/6/10 7:45 1425 2.684 2.752 10/6/10 8:06 1446 1.539 1.607 10/6/10 8:28 1467 1.374 1.442 10/6/10 7:45 1425 2.681 2.749 10/6/10 8:07 1446 1.539 1.607 10/6/10 8:28 1468 1.373 1.441 10/6/10 7:46 1425 2.681 2.749 10/6/10 8:07 1447 1.536 1.604 10/6/10 8:28 1468 1.356 1.424 10/6/10 7:46 1426 2.693 2.761 10/6/10 8:07 1447 1.533 1.601 10/6/10 8:28 1468 1.356 1.424 10/6/10 7:46 1426 2.693 2.761 10/6/10 8:07 1447 1.533 1.601 10/6/10 8:29 1468 1.367 1.435 10/6/10 7:47 1426 2.679 2.747 10/6/10 8:08 1448 1.526 1.594 10/6/10 8:29 1469 1.361 1.429 10/6/10 7:47 1427 2.683 2.751 10/6/10 8:08 1448 1.522 1.59 10/6/10 8:30 1469 1.349 1.417											1.376	
10/6/10 7:45 1425 2.681 2.749 10/6/10 8:07 1446 1.539 1.607 10/6/10 8:28 1468 1.373 1.441 10/6/10 7:46 1425 2.681 2.749 10/6/10 8:07 1447 1.536 1.604 10/6/10 8:28 1468 1.373 1.441 10/6/10 7:46 1426 2.693 2.761 10/6/10 8:07 1447 1.533 1.601 10/6/10 8:29 1468 1.367 1.435 10/6/10 7:46 1426 2.675 2.743 10/6/10 8:08 1447 1.530 1.598 10/6/10 8:29 1469 1.367 1.435 10/6/10 7:47 1426 2.679 2.747 10/6/10 8:08 1448 1.526 1.594 10/6/10 8:29 1469 1.361 1.429 10/6/10 7:47 1427 2.683 2.751 10/6/10 8:08 1448 1.522 1.59 10/6/10 8:30 1469 1.349 1.417 10/6/10 7:47 1427 2.682 2.75 10/6/10 8:09 1448 1.519 1.587 10/6/10 8:30 1470 1.359 1.427												
10/6/10 7:46 1425 2.681 2.749 10/6/10 8:07 1447 1.536 1.604 10/6/10 8:28 1468 1.356 1.424 10/6/10 7:46 1426 2.693 2.761 10/6/10 8:07 1447 1.533 1.601 10/6/10 8:29 1468 1.367 1.435 10/6/10 7:46 1426 2.675 2.743 10/6/10 8:08 1447 1.530 1.598 10/6/10 8:29 1469 1.367 1.435 10/6/10 7:47 1426 2.679 2.747 10/6/10 8:08 1448 1.526 1.594 10/6/10 8:29 1469 1.361 1.429 10/6/10 7:47 1427 2.683 2.751 10/6/10 8:08 1448 1.522 1.59 10/6/10 8:30 1469 1.349 1.417 10/6/10 7:47 1427 2.682 2.75 10/6/10 8:09 1448 1.519 1.587 10/6/10 8:30 1470 1.359 1.427 10/6/10 7:48 1428 2.680 2.748 10/6/10 8:09 1449 1.518 1.586 10/6/10 8:30 1470 1.355 1.423							1.539					
10/6/10 7:46 1426 2.693 2.761 10/6/10 8:07 1447 1.533 1.601 10/6/10 8:29 1468 1.367 1.435 10/6/10 7:46 1426 2.675 2.743 10/6/10 8:08 1447 1.530 1.598 10/6/10 8:29 1469 1.367 1.435 10/6/10 7:47 1426 2.679 2.747 10/6/10 8:08 1448 1.526 1.594 10/6/10 8:29 1469 1.361 1.429 10/6/10 7:47 1427 2.683 2.751 10/6/10 8:08 1448 1.522 1.59 10/6/10 8:30 1469 1.349 1.417 10/6/10 7:47 1427 2.682 2.75 10/6/10 8:09 1448 1.519 1.587 10/6/10 8:30 1470 1.359 1.427 10/6/10 7:48 1427 2.679 2.747 10/6/10 8:09 1449 1.518 1.586 10/6/10 8:30 1470 1.357 1.425 10/6/10 7:48 1428 2.680 2.748 10/6/10 8:09 1449 1.514 1.582 10/6/10 8:31 1470 1.355 1.42												
10/6/10 7:46 1426 2.675 2.743 10/6/10 8:08 1447 1.530 1.598 10/6/10 8:29 1469 1.367 1.435 10/6/10 7:47 1426 2.679 2.747 10/6/10 8:08 1448 1.526 1.594 10/6/10 8:29 1469 1.361 1.429 10/6/10 7:47 1427 2.683 2.751 10/6/10 8:08 1448 1.522 1.59 10/6/10 8:30 1469 1.349 1.417 10/6/10 7:47 1427 2.682 2.75 10/6/10 8:09 1448 1.519 1.587 10/6/10 8:30 1470 1.359 1.427 10/6/10 7:48 1427 2.669 2.747 10/6/10 8:09 1449 1.518 1.586 10/6/10 8:30 1470 1.357 1.425 10/6/10 7:48 1428 2.680 2.748 10/6/10 8:09 1449 1.514 1.582 10/6/10 8:31 1470 1.355 1.423 10/6/10 7:48 1428 2.676 2.744 10/6/10 8:10 1449 1.511 1.579 10/6/10 8:31 1471 1.352 1.42	10/6/10 7:46	1425		2.749		1447			10/6/10 8:28			
10/6/10 7:46 1426 2.675 2.743 10/6/10 8:08 1447 1.530 1.598 10/6/10 8:29 1469 1.367 1.435 10/6/10 7:47 1426 2.679 2.747 10/6/10 8:08 1448 1.526 1.594 10/6/10 8:29 1469 1.361 1.429 10/6/10 7:47 1427 2.683 2.751 10/6/10 8:08 1448 1.522 1.59 10/6/10 8:30 1469 1.349 1.417 10/6/10 7:47 1427 2.682 2.75 10/6/10 8:09 1448 1.519 1.587 10/6/10 8:30 1470 1.359 1.427 10/6/10 7:48 1427 2.669 2.747 10/6/10 8:09 1449 1.518 1.586 10/6/10 8:30 1470 1.357 1.425 10/6/10 7:48 1428 2.680 2.748 10/6/10 8:09 1449 1.514 1.582 10/6/10 8:31 1470 1.355 1.423 10/6/10 7:48 1428 2.676 2.744 10/6/10 8:10 1449 1.511 1.579 10/6/10 8:31 1471 1.352 1.42	10/6/10 7:46	1426	2.693	2.761	10/6/10 8:07	1447	1.533		10/6/10 8:29		1.367	1.435
10/6/10 7:47 1426 2.679 2.747 10/6/10 8:08 1448 1.526 1.594 10/6/10 8:29 1469 1.361 1.429 10/6/10 7:47 1427 2.683 2.751 10/6/10 8:08 1448 1.522 1.59 10/6/10 8:30 1469 1.349 1.417 10/6/10 7:47 1427 2.682 2.75 10/6/10 8:09 1448 1.519 1.587 10/6/10 8:30 1470 1.359 1.427 10/6/10 7:48 1427 2.679 2.747 10/6/10 8:09 1449 1.518 1.586 10/6/10 8:30 1470 1.357 1.425 10/6/10 7:48 1428 2.680 2.748 10/6/10 8:09 1449 1.514 1.582 10/6/10 8:31 1470 1.355 1.423 10/6/10 7:48 1428 2.676 2.744 10/6/10 8:10 1449 1.511 1.572 10/6/10 8:31 1471 1.352 1.42 10/6/10 7:49 1428 2.677 2.745 10/6/10 8:10 1450 1.504 1.572 10/6/10 8:31 1471 1.352 1.42 <td>10/6/10 7:46</td> <td></td> <td></td> <td>2.743</td> <td>10/6/10 8:08</td> <td></td> <td>1.530</td> <td></td> <td>10/6/10 8:29</td> <td></td> <td></td> <td></td>	10/6/10 7:46			2.743	10/6/10 8:08		1.530		10/6/10 8:29			
10/6/10 7:47 1427 2.683 2.751 10/6/10 8:08 1448 1.522 1.59 10/6/10 8:30 1469 1.349 1.417 10/6/10 7:47 1427 2.682 2.75 10/6/10 8:09 1448 1.519 1.587 10/6/10 8:30 1470 1.359 1.427 10/6/10 7:48 1427 2.679 2.747 10/6/10 8:09 1449 1.518 1.586 10/6/10 8:30 1470 1.357 1.425 10/6/10 7:48 1428 2.680 2.748 10/6/10 8:09 1449 1.514 1.582 10/6/10 8:31 1470 1.355 1.423 10/6/10 7:48 1428 2.676 2.744 10/6/10 8:10 1449 1.511 1.572 10/6/10 8:31 1471 1.352 1.42 10/6/10 7:49 1428 2.677 2.745 10/6/10 8:10 1450 1.504 1.572 10/6/10 8:31 1471 1.352 1.42				2.747			1.526					
10/6/10 7:47 1427 2.682 2.75 10/6/10 8:09 1448 1.519 1.587 10/6/10 8:30 1470 1.359 1.427 10/6/10 7:48 1427 2.679 2.747 10/6/10 8:09 1449 1.518 1.586 10/6/10 8:30 1470 1.357 1.425 10/6/10 7:48 1428 2.680 2.748 10/6/10 8:09 1449 1.514 1.582 10/6/10 8:31 1470 1.355 1.423 10/6/10 7:48 1428 2.676 2.744 10/6/10 8:10 1449 1.511 1.572 10/6/10 8:31 1471 1.352 1.42 10/6/10 7:49 1428 2.677 2.745 10/6/10 8:10 1450 1.504 1.572 10/6/10 8:31 1471 1.352 1.42							1.522		10/6/10 8:30			
10/6/10 7:48 1427 2.679 2.747 10/6/10 8:09 1449 1.518 1.586 10/6/10 8:30 1470 1.357 1.425 10/6/10 7:48 1428 2.680 2.748 10/6/10 8:09 1449 1.514 1.582 10/6/10 8:31 1470 1.355 1.423 10/6/10 7:48 1428 2.676 2.744 10/6/10 8:10 1449 1.511 1.579 10/6/10 8:31 1471 1.352 1.42 10/6/10 7:49 1428 2.677 2.745 10/6/10 8:10 1450 1.504 1.572 10/6/10 8:31 1471 1.352 1.42							1 510					
10/6/10 7:48 1428 2.680 2.748 10/6/10 8:09 1449 1.514 1.582 10/6/10 8:31 1470 1.355 1.423 10/6/10 7:48 1428 2.676 2.744 10/6/10 8:10 1449 1.511 1.579 10/6/10 8:31 1471 1.352 1.42 10/6/10 7:49 1428 2.677 2.745 10/6/10 8:10 1450 1.504 1.572 10/6/10 8:31 1471 1.352 1.42									10/6/10 0.30			
10/6/10 7:48												
10/6/10 7:49												
10/6/10 7:49								1.572				
	10/6/10 7:49	1429	2.688	2.756	10/6/10 8:10	1450	1.504	1.572	10/6/10 8:32	1471	1.351	1.419

10/6/10 0:22	4.470	1 2 1 7	1 11E	10/6/10 0.53	1.400	4.050	4 22	10/6/10 0:15	1511	1 161	4 000
10/6/10 8:32	1472	1.347	1.415	10/6/10 8:53	1493	1.252	1.32	10/6/10 9:15	1514	1.164	1.232
10/6/10 8:32	1472	1.347	1.415	10/6/10 8:54	1493	1.248	1.316	10/6/10 9:15	1515	1.167	1.235
10/6/10 8:33	1472	1.343	1.411	10/6/10 8:54	1494	1.249	1.317	10/6/10 9:15	1515	1.163	1.231
10/6/10 8:33	1473	1.341	1.409	10/6/10 8:54	1494	1.237	1.305	10/6/10 9:16	1515	1.167	1.235
10/6/10 8:33	1473	1.342	1.41	10/6/10 8:55	1494	1.245	1.313	10/6/10 9:16	1516	1.163	1.231
				10/0/10 0.00							
10/6/10 8:34	1473	1.338	1.406	10/6/10 8:55	1495	1.233	1.301	10/6/10 9:16	1516	1.160	1.228
10/6/10 8:34	1474	1.338	1.406	10/6/10 8:55	1495	1.245	1.313	10/6/10 9:17	1516	1.161	1.229
10/6/10 8:34	1474	1.337	1.405	10/6/10 8:56	1495	1.248	1.316	10/6/10 9:17	1517	1.161	1.229
10/6/10 8:35	1474	1.336	1.404	10/6/10 8:56	1496	1.243	1.311	10/6/10 9:17	1517	1.158	1.226
10/6/10 8:35	1475	1.332	1.4	10/6/10 8:56	1496	1.241	1.309	10/6/10 9:18	1517	1.160	1.228
				10/0/10 0.50					1517		
10/6/10 8:35	1475	1.330	1.398	10/6/10 8:57	1496	1.228	1.296	10/6/10 9:18	1518	1.155	1.223
10/6/10 8:36	1475	1.332	1.4	10/6/10 8:57	1497	1.227	1.295	10/6/10 9:18	1518	1.156	1.224
10/6/10 8:36	1476	1.328	1.396	10/6/10 8:57	1497	1.234	1.302	10/6/10 9:19	1518	1.156	1.224
10/6/10 8:36	1476	1.328	1.396	10/6/10 8:58	1497	1.236	1.304	10/6/10 9:19	1519	1.151	1.219
10/6/10 8:37	1476	1.325	1.393	10/6/10 8:58	1498	1.222	1.29	10/6/10 9:19	1519	1.151	1.219
10/6/10 8:37	1477	1.325	1.393	10/6/10 8:58	1498	1.222	1.29	10/6/10 9:20	1519	1.153	1.221
10/6/10 8:37	1477	1.322	1.39	10/6/10 8:59	1498	1.220	1.288	10/6/10 9:20	1520	1.152	1.22
10/6/10 8:38	1477	1.318	1.386	10/6/10 8:59	1499	1.231	1.299	10/6/10 9:20	1520	1.147	1.215
10/6/10 8:38	1478	1.320	1.388	10/6/10 8:59	1499	1.227	1.295	10/6/10 9:21	1520	1.149	1.217
		1.316	1.384		1499	1.228	1.296	10/6/10 9:21	1521	1.147	
10/6/10 8:38	1478			10/6/10 9:00							1.215
10/6/10 8:39	1478	1.315	1.383	10/6/10 9:00	1500	1.230	1.298	10/6/10 9:21	1521	1.145	1.213
10/6/10 8:39	1479	1.313	1.381	10/6/10 9:00	1500	1.226	1.294	10/6/10 9:22	1521	1.145	1.213
10/0/10 0.39			1.301			1.220		10/0/10 9.22			
10/6/10 8:39	1479	1.310	1.378	10/6/10 9:01	1500	1.229	1.297	10/6/10 9:22	1522	1.141	1.209
10/6/10 8:40	1479	1.296	1.364	10/6/10 9:01	1501	1.214	1.282	10/6/10 9:22	1522	1.142	1.21
10/6/10 8:40	1480	1.308	1.376	10/6/10 9:01	1501	1.210	1.278	10/6/10 9:23	1522	1.137	1.205
10/6/10 8:40	1480	1.305	1.373	10/6/10 9:02	1501	1.219	1.287	10/6/10 9:23	1523	1.153	1.221
	1480	1.307	1.375	10/6/10 9:02	1502	1.209	1.277	10/6/10 9:23	1523	1.139	1.207
10/6/10 8:41											
10/6/10 8:41	1481	1.307	1.375	10/6/10 9:02	1502	1.208	1.276	10/6/10 9:24	1523	1.137	1.205
10/6/10 8:41	1481	1.301	1.369	10/6/10 9:03	1502	1.204	1.272	10/6/10 9:24	1524	1.137	1.205
							1.272				
10/6/10 8:42	1481	1.302	1.37	10/6/10 9:03	1503	1.205	1.273	10/6/10 9:24	1524	1.137	1.205
10/6/10 8:42	1482	1.289	1.357	10/6/10 9:03	1503	1.217	1.285	10/6/10 9:25	1524	1.134	1.202
				10/0/10 0.00			1.200	10/0/10 0:20			
10/6/10 8:42	1482	1.298	1.366	10/6/10 9:04	1503	1.204	1.272	10/6/10 9:25	1525	1.133	1.201
10/6/10 8:43	1482	1.297	1.365	10/6/10 9:04	1504	1.202	1.27	10/6/10 9:25	1525	1.131	1.199
10/6/10 8:43	1483	1.284	1.352	10/6/10 9:04	1504	1.212	1.28	10/6/10 9:26	1525	1.130	1.198
10/6/10 8:43	1483	1.293	1.361	10/6/10 9:05	1504	1.210	1.278	10/6/10 9:26	1526	1.131	1.199
10/6/10 8:44	1483	1.289	1.357	10/6/10 9:05	1505	1.198	1.266	10/6/10 9:26	1526	1.129	1.197
10/6/10 8:44	1484	1.289	1.357	10/6/10 9:05	1505	1.211	1.279	10/6/10 9:27	1526	1.126	1.194
10/6/10 8:44	1484	1.290	1.358	10/6/10 9:06	1505	1.204	1.272	10/6/10 9:27	1527	1.129	1.197
						1.194		10/6/10 9:27	1527		
10/6/10 8:45	1484	1.288	1.356	10/6/10 9:06	1506		1.262			1.128	1.196
10/6/10 8:45	1485	1.286	1.354	10/6/10 9:06	1506	1.205	1.273	10/6/10 9:28	1527	1.126	1.194
10/6/10 8:45	1485	1.283	1.351	10/6/10 9:07	1506	1.193	1.261	10/6/10 9:28	1528	1.126	1.194
10/6/10 8:46	1485	1.281	1.349	10/6/10 9:07	1507	1.190	1.258	10/6/10 9:28	1528	1.125	1.193
10/6/10 8:46	1486	1.280	1.348	10/6/10 9:07	1507	1.200	1.268	10/6/10 9:29	1528	1.123	1.191
10/6/10 8:46	1486	1.280	1.348	10/6/10 9:08	1507	1.200	1.268	10/6/10 9:29	1529	1.132	1.2
10/6/10 8:47	1486	1.277	1.345	10/6/10 9:08	1508	1.188	1.256	10/6/10 9:29	1529	1.123	1.191
10/6/10 8:47	1487	1.277	1.345	10/6/10 9:08	1508	1.186	1.254	10/6/10 9:30	1529	1.132	1.2
10/6/10 8:47	1487	1.274	1.342	10/6/10 9:09	1508	1.197	1.265	10/6/10 9:30	1530	1.118	1.186
10/6/10 8:48	1487	1.275	1.343	10/6/10 9:09	1509	1.184	1.252	10/6/10 9:30	1530	1.118	1.186
10/6/10 8:48	1488	1.271	1.339	10/6/10 9:09	1509	1.184	1.252	10/6/10 9:31	1530	1.115	1.183
						1.104	1.252				
10/6/10 8:48	1488	1.261	1.329	10/6/10 9:10	1509	1.185	1.253	10/6/10 9:31	1531	1.113	1.181
10/6/10 8:49	1488	1.268	1.336	10/6/10 9:10	1510	1.180	1.248	10/6/10 9:31	1531	1.116	1.184
10/6/10 8:49	1489	1.267	1.335	10/6/10 9:10	1510	1.179	1.247	10/6/10 9:32	1531	1.113	1.181
10/6/10 8:49	1489	1.267	1.335	10/6/10 9:11	1510	1.191	1.259	10/6/10 9:32	1532	1.114	1.182
10/6/10 8:50	1489	1.266	1.334	10/6/10 9:11	1511	1.190	1.258	10/6/10 9:32	1532	1.114	1.182
10/6/10 8:50	1490	1.263	1.331	10/6/10 9:11	1511	1.191	1.259	10/6/10 9:33	1532	1.111	1.179
10/6/10 8:50	1490	1.264	1.332	10/6/10 9:12	1511	1.177	1.245	10/6/10 9:33	1533	1.114	1.182
10/6/10 8:51	1490	1.260	1.328	10/6/10 9:12	1512	1.177	1.245	10/6/10 9:33	1533	1.111	1.179
10/6/10 8:51	1491	1.261	1.329	10/6/10 9:12	1512	1.185	1.253	10/6/10 9:34	1533	1.108	1.176
10/6/10 8:51	1491	1.260	1.328	10/6/10 9:13	1512	1.175	1.243	10/6/10 9:34	1534	1.108	1.176
10/6/10 8:52	1491	1.260	1.328	10/6/10 9:13	1513	1.183	1.251	10/6/10 9:34	1534	1.109	1.177
10/6/10 8:52	1492	1.257	1.325	10/6/10 9:13	1513	1.175	1.243	10/6/10 9:35	1534	1.104	1.172
							1 220				
10/6/10 8:52	1492	1.257	1.325	10/6/10 9:14	1513	1.171	1.239	10/6/10 9:35	1535	1.106	1.174
10/6/10 8:53	1492	1.254	1.322	10/6/10 9:14	1514	1.171	1.239	10/6/10 9:35	1535	1.107	1.175
10/6/10 8:53	1493	1.254	1.322	10/6/10 9:14	1514	1.166	1.234	10/6/10 9:36	1535	1.101	1.169
10/0/10 0.00	1700	1.207	1.022	10/0/10 3.14	1014	1.100	1.207	10/0/10 3.30	1000	1.101	1.100

10/6/10 9:36	1536	1.101	1.169	10/6/10 9:57	1557	1.049	1.117	10/6/10 10:19	1578	0.999	1.067
10/6/10 9:36	1536	1.103	1.171	10/6/10 9:58	1557	1.047	1.115	10/6/10 10:19	1579	0.998	1.066
10/6/10 9:37	1536	1.102	1.17	10/6/10 9:58	1558	1.046	1.114	10/6/10 10:19	1579	0.996	1.064
10/6/10 9:37	1537	1.104	1.172	10/6/10 9:58	1558	1.048	1.116	10/6/10 10:20	1579	0.994	1.062
10/6/10 9:37	1537	1.096	1.164	10/6/10 9:59	1558	1.045	1.113	10/6/10 10:20	1580	0.996	1.064
10/6/10 9:38	1537	1.099	1.167	10/6/10 9:59	1559	1.046	1.114	10/6/10 10:20	1580	0.996	1.064
10/6/10 9:38	1538	1.096	1.164	10/6/10 9:59	1559	1.046	1.114	10/6/10 10:21	1580	0.994	1.062
10/6/10 9:38	1538	1.096	1.164	10/6/10 10:00	1559	1.043	1.111	10/6/10 10:21	1581	0.993	1.061
10/6/10 9:39	1538	1.095	1.163	10/6/10 10:00	1560	1.046	1.114	10/6/10 10:21	1581	0.992	1.06
10/6/10 9:39	1539	1.096	1.164	10/6/10 10:00	1560	1.046	1.114	10/6/10 10:22	1581	0.990	1.058
10/6/10 9:39	1539	1.096	1.164	10/6/10 10:01	1560	1.039	1.107	10/6/10 10:22	1582	0.992	1.06
				10/0/10 10.01		1.039		10/0/10 10.22			
10/6/10 9:40	1539	1.091	1.159	10/6/10 10:01	1561	1.040	1.108	10/6/10 10:22	1582	0.990	1.058
10/6/10 9:40	1540	1.092	1.16	10/6/10 10:01	1561	1.036	1.104	10/6/10 10:23	1582	0.994	1.062
10/6/10 9:40	1540	1.091	1.159	10/6/10 10:02	1561	1.042	1.11	10/6/10 10:23	1583	0.995	1.063
10/6/10 9:41	1540	1.090	1.158	10/6/10 10:02	1562	1.037	1.105	10/6/10 10:23	1583	0.991	1.059
10/6/10 9:41	1541	1.090	1.158	10/6/10 10:02	1562	1.037	1.105	10/6/10 10:24	1583	0.989	1.057
	1541			10/6/10 10:02	1562	1.034			1584	0.989	1.057
10/6/10 9:41		1.091	1.159				1.102	10/6/10 10:24			
10/6/10 9:42	1541	1.089	1.157	10/6/10 10:03	1563	1.034	1.102	10/6/10 10:24	1584	0.986	1.054
10/6/10 9:42	1542	1.088	1.156	10/6/10 10:03	1563	1.035	1.103	10/6/10 10:25	1584	0.987	1.055
10/6/10 9:42	1542	1.088	1.156	10/6/10 10:04	1563	1.033	1.101	10/6/10 10:25	1585	0.985	1.053
10/6/10 9:43	1542	1.086	1.154	10/6/10 10:04	1564	1.033	1.101	10/6/10 10:25	1585	0.986	1.054
10/6/10 9:43	1543	1.084	1.152	10/6/10 10:04	1564	1.028	1.096	10/6/10 10:26	1585	0.987	1.055
10/0/10 9.43				10/0/10 10:04		1.020					
10/6/10 9:43	1543	1.085	1.153	10/6/10 10:05	1564	1.027	1.095	10/6/10 10:26	1586	0.984	1.052
10/6/10 9:44	1543	1.088	1.156	10/6/10 10:05	1565	1.027	1.095	10/6/10 10:26	1586	0.984	1.052
10/6/10 9:44	1544	1.081	1.149	10/6/10 10:05	1565	1.028	1.096	10/6/10 10:27	1586	0.984	1.052
10/6/10 9:44	1544	1.083	1.151	10/6/10 10:06	1565	1.029	1.097	10/6/10 10:27	1587	0.983	1.051
10/6/10 9:45	1544	1.083	1.151	10/6/10 10:06	1566	1.026	1.094	10/6/10 10:27	1587	0.983	1.051
10/6/10 9:45	1545	1.082	1.15	10/6/10 10:06			1.094	10/6/10 10:28	1587	0.979	
					1566	1.026					1.047
10/6/10 9:45	1545	1.080	1.148	10/6/10 10:07	1566	1.023	1.091	10/6/10 10:28	1588	0.980	1.048
10/6/10 9:46	1545	1.079	1.147	10/6/10 10:07	1567	1.023	1.091	10/6/10 10:28	1588	0.980	1.048
10/6/10 9:46	1546	1.078	1.146	10/6/10 10:07	1567	1.025	1.093	10/6/10 10:29	1588	0.976	1.044
10/6/10 9:46	1546	1.079	1.147	10/6/10 10:08	1567	1.021	1.089	10/6/10 10:29	1589	0.977	1.045
10/6/10 9:47	1546	1.076	1.144	10/6/10 10:08	1568	1.018	1.086	10/6/10 10:29	1589	0.978	1.046
					1568	1.020				0.979	
10/6/10 9:47	1547	1.076	1.144	10/6/10 10:08			1.088	10/6/10 10:30	1589		1.047
10/6/10 9:47	1547	1.075	1.143	10/6/10 10:09	1568	1.021	1.089	10/6/10 10:30	1590	0.976	1.044
10/6/10 9:48	1547	1.075	1.143	10/6/10 10:09	1569	1.020	1.088	10/6/10 10:30	1590	0.973	1.041
10/6/10 9:48	1548	1.076	1.144	10/6/10 10:09	1569	1.021	1.089	10/6/10 10:31	1590	0.976	1.044
10/6/10 9:48	1548	1.073	1.141	10/6/10 10:10	1569	1.017	1.085	10/6/10 10:31	1591	0.973	1.041
10/6/10 9:49	1548	1.070	1.138	10/6/10 10:10	1570	1.016	1.084	10/6/10 10:31	1591	0.975	1.043
10/6/10 9:49	1549	1.071	1.139	10/6/10 10:10	1570	1.018	1.086	10/6/10 10:32	1591	0.972	1.04
10/6/10 9:49	1549	1.071	1.139	10/6/10 10:11	1570	1.017	1.085	10/6/10 10:32	1592	0.972	1.04
10/6/10 9:50	1549	1.068	1.136	10/6/10 10:11	1571	1.014	1.082	10/6/10 10:32	1592	0.968	1.036
10/6/10 9:50	1550	1.067	1.135	10/6/10 10:11	1571	1.016	1.084	10/6/10 10:33	1592	0.974	1.042
10/6/10 9:50	1550	1.067	1.135	10/6/10 10:12	1571	1.011	1.079	10/6/10 10:33	1593	0.966	1.034
10/6/10 9:51	1550	1.066	1.134	10/6/10 10:12	1572	1.012	1.08	10/6/10 10:33	1593	0.970	1.038
10/6/10 9:51	1551	1.068	1.136	10/6/10 10:12	1572	1.010	1.078	10/6/10 10:34	1593	0.967	1.035
10/6/10 9:51	1551	1.064	1.132	10/6/10 10:13	1572	1.011	1.079	10/6/10 10:34	1594	0.963	1.031
10/6/10 9:52	1551	1.074	1.142	10/6/10 10:13	1573	1.009	1.077	10/6/10 10:34	1594	0.964	1.032
10/6/10 9:52	1552	1.061	1.129	10/6/10 10:13	1573	1.009	1.077	10/6/10 10:35	1594	0.962	1.03
10/6/10 9:52	1552	1.062	1.13	10/6/10 10:14	1573	1.010	1.078	10/6/10 10:35	1595	0.960	1.028
10/6/10 9:53	1552	1.064	1.132	10/6/10 10:14	1574	1.008	1.076	10/6/10 10:35	1595	0.960	1.028
10/6/10 9:53	1553	1.059	1.127	10/6/10 10:14	1574	1.010	1.078	10/6/10 10:36	1595	0.960	1.028
10/6/10 9:53	1553	1.060	1.128	10/6/10 10:15	1574	1.009	1.077	10/6/10 10:36	1596	0.959	1.027
10/6/10 9:54	1553	1.056	1.124	10/6/10 10:15	1575	1.006	1.074	10/6/10 10:36	1596	0.960	1.028
10/6/10 9:54	1554	1.057	1.125	10/6/10 10:15	1575	1.007	1.075	10/6/10 10:37	1596	0.959	1.027
10/6/10 9:54	1554	1.057	1.125	10/6/10 10:16	1575	1.005	1.073	10/6/10 10:37	1597	0.962	1.03
10/6/10 9:55	1554	1.058	1.126	10/6/10 10:16	1576	1.004	1.072	10/6/10 10:37	1597	0.956	1.024
	1555	1.054	1.120		1576	1.004	1.069		1597	0.958	1.024
10/6/10 9:55				10/6/10 10:16				10/6/10 10:38			
10/6/10 9:55	1555	1.055	1.123	10/6/10 10:17	1576	1.001	1.069	10/6/10 10:38	1598	0.955	1.023
10/6/10 9:56	1555	1.052	1.12	10/6/10 10:17	1577	1.003	1.071	10/6/10 10:38	1598	0.956	1.024
10/6/10 9:56	1556	1.055	1.123	10/6/10 10:17	1577	1.005	1.073	10/6/10 10:39	1598	0.955	1.023
10/6/10 9:56	1556	1.058	1.126	10/6/10 10:18	1577	1.001	1.069	10/6/10 10:39	1599	0.956	1.024
10/6/10 9:57	1556	1.053	1.121	10/6/10 10:18	1578	0.999	1.067	10/6/10 10:39	1599	0.953	1.021
	1557	1.033	1.116	10/6/10 10:18	1578	1.000	1.068	10/6/10 10:39	1599	0.951	1.019
10/6/10 9:57	1357	1.040	1.110	10/6/10 10:18	13/6	1.000	000.1	10/6/10 10:40	1399	0.901	1.019

10/6/10 10:40	1600	0.958	1.026	10/6/10 11:01	1621	0.906	0.974	10/6/10 11:23	1642	0.870	0.938
10/6/10 10:40	1600	0.951	1.019	10/6/10 11:02	1621	0.907	0.975	10/6/10 11:23	1643	0.867	0.935
10/6/10 10:41	1600	0.953	1.021	10/6/10 11:02	1622	0.907	0.975	10/6/10 11:23	1643	0.868	0.936
10/6/10 10:41	1601	0.948	1.016	10/6/10 11:02	1622	0.904	0.972	10/6/10 11:24	1643	0.867	0.935
10/6/10 10:41	1601	0.948	1.016	10/6/10 11:03	1622	0.903	0.971	10/6/10 11:24	1644	0.866	0.934
					1622	0.000					
10/6/10 10:42	1601	0.949	1.017	10/6/10 11:03	1623	0.903	0.971	10/6/10 11:24	1644	0.865	0.933
10/6/10 10:42	1602	0.953	1.021	10/6/10 11:03	1623	0.905	0.973	10/6/10 11:25	1644	0.863	0.931
10/6/10 10:42	1602	0.948	1.016	10/6/10 11:04	1623	0.902	0.97	10/6/10 11:25	1645	0.864	0.932
10/6/10 10:43	1602	0.947	1.015	10/6/10 11:04	1624	0.903	0.971	10/6/10 11:25	1645	0.865	0.933
	1603	0.047								0.865	
10/6/10 10:43		0.947	1.015	10/6/10 11:04	1624	0.900	0.968	10/6/10 11:26	1645		0.933
10/6/10 10:43	1603	0.944	1.012	10/6/10 11:05	1624	0.901	0.969	10/6/10 11:26	1646	0.863	0.931
10/6/10 10:44	1603	0.942	1.01	10/6/10 11:05	1625	0.902	0.97	10/6/10 11:26	1646	0.859	0.927
10/6/10 10:44	1604	0.946	1.014	10/6/10 11:05	1625	0.897	0.965	10/6/10 11:27	1646	0.859	0.927
10/6/10 10:44	1604	0.946	1.014	10/6/10 11:06	1625	0.899	0.967	10/6/10 11:27	1647	0.860	0.928
10/6/10 10:45	1604	0.941	1.009	10/6/10 11:06	1626	0.895	0.963	10/6/10 11:27	1647	0.862	0.93
10/6/10 10:45	1605	0.941	1.009	10/6/10 11:06	1626	0.898	0.966	10/6/10 11:28	1647	0.858	0.926
10/6/10 10:45	1605	0.942	1.01	10/6/10 11:07	1626	0.895	0.963	10/6/10 11:28	1648	0.857	0.925
10/6/10 10:46	1605	0.939	1.007	10/6/10 11:07	1627	0.897	0.965	10/6/10 11:28	1648	0.858	0.926
			1.006	10/6/10 11:07				10/6/10 11:29	1648	0.856	
10/6/10 10:46	1606	0.938			1627	0.893	0.961				0.924
10/6/10 10:46	1606	0.939	1.007	10/6/10 11:08	1627	0.895	0.963	10/6/10 11:29	1649	0.855	0.923
10/6/10 10:47	1606	0.940	1.008	10/6/10 11:08	1628	0.893	0.961	10/6/10 11:29	1649	0.854	0.922
10/6/10 10:47	1607	0.936	1.004	10/6/10 11:08	1628	0.892	0.96	10/6/10 11:30	1649	0.856	0.924
10/6/10 10:47	1607	0.934	1.002	10/6/10 11:09	1628	0.894	0.962	10/6/10 11:30	1650	0.853	0.921
10/6/10 10:48	1607	0.936	1.004	10/6/10 11:09	1629	0.893	0.961	10/6/10 11:30	1650	0.854	0.922
10/6/10 10:48	1608	0.936	1.004	10/6/10 11:09	1629	0.892	0.96	10/6/10 11:31	1650	0.852	0.92
10/6/10 10:48	1608	0.933	1.001	10/6/10 11:10	1629	0.891	0.959	10/6/10 11:31	1651	0.852	0.92
10/6/10 10:49	1608	0.932	1	10/6/10 11:10	1630	0.890	0.958	10/6/10 11:31	1651	0.851	0.919
10/6/10 10:49	1609	0.936	1.004	10/6/10 11:10	1630	0.891	0.959	10/6/10 11:32	1651	0.855	0.923
10/6/10 10:49	1609		0.999	10/6/10 11:11	1630	0.887	0.955	10/6/10 11:32	1652	0.846	
		0.931									0.914
10/6/10 10:50	1609	0.933	1.001	10/6/10 11:11	1631	0.887	0.955	10/6/10 11:32	1652	0.852	0.92
10/6/10 10:50	1610	0.930	0.998	10/6/10 11:11	1631	0.888	0.956	10/6/10 11:33	1652	0.855	0.923
10/6/10 10:50	1610	0.926	0.994	10/6/10 11:12	1631	0.890	0.958	10/6/10 11:33	1653	0.850	0.918
10/6/10 10:51	1610	0.928	0.996	10/6/10 11:12	1632	0.887	0.955	10/6/10 11:33	1653	0.853	0.921
10/6/10 10:51	1611	0.926	0.994	10/6/10 11:12	1632	0.885	0.953	10/6/10 11:34	1653	0.854	0.922
10/6/10 10:51	1611	0.926	0.994	10/6/10 11:13	1632	0.884	0.952	10/6/10 11:34	1654	0.850	0.918
10/6/10 10:52	1611	0.924	0.992	10/6/10 11:13	1633	0.884	0.952	10/6/10 11:34	1654	0.852	0.92
10/6/10 10:52	1612	0.924	0.992	10/6/10 11:13	1633	0.882	0.95	10/6/10 11:35	1654	0.847	0.915
10/6/10 10:52	1612	0.923	0.991	10/6/10 11:14	1633	0.882	0.95	10/6/10 11:35	1655	0.848	0.916
10/6/10 10:53	1612	0.924	0.992	10/6/10 11:14	1634	0.883	0.951	10/6/10 11:35	1655	0.846	0.914
10/6/10 10:53	1613	0.920	0.988	10/6/10 11:14	1634	0.881	0.949	10/6/10 11:36	1655	0.845	0.913
10/6/10 10:53	1613	0.921	0.989	10/6/10 11:15	1634	0.879	0.947	10/6/10 11:36	1656	0.846	0.914
10/6/10 10:54	1613	0.921	0.989	10/6/10 11:15	1635	0.878	0.946	10/6/10 11:36	1656	0.848	0.916
10/6/10 10:54	1614	0.923	0.991	10/6/10 11:15	1635	0.880	0.948	10/6/10 11:37	1656	0.848	0.916
10/6/10 10:54	1614	0.921	0.989	10/6/10 11:16	1635	0.878	0.946	10/6/10 11:37	1657	0.847	0.915
10/6/10 10:55	1614	0.919	0.987	10/6/10 11:16	1636	0.877	0.945	10/6/10 11:37	1657	0.842	0.91
10/6/10 10:55	1615	0.915	0.983	10/6/10 11:16	1636	0.881	0.949	10/6/10 11:38	1657	0.845	0.913
10/6/10 10:55	1615	0.917	0.985	10/6/10 11:17	1636	0.880	0.948	10/6/10 11:38	1658	0.840	0.908
10/6/10 10:56	1615	0.917	0.985	10/6/10 11:17	1637	0.877	0.945	10/6/10 11:38	1658	0.840	0.908
10/6/10 10:56	1616	0.916	0.984	10/6/10 11:17	1637	0.879	0.947	10/6/10 11:39	1658	0.840	0.908
10/6/10 10:56	1616	0.917	0.985	10/6/10 11:18	1637	0.880	0.948	10/6/10 11:39	1659	0.843	0.911
10/6/10 10:57	1616	0.918	0.986	10/6/10 11:18	1638	0.875	0.943	10/6/10 11:39	1659	0.839	0.907
10/6/10 10:57	1617	0.914	0.982	10/6/10 11:18	1638	0.873	0.941	10/6/10 11:40	1659	0.841	0.909
10/6/10 10:57	1617	0.912	0.98	10/6/10 11:19	1638	0.876	0.944	10/6/10 11:40	1660	0.842	0.91
10/6/10 10:58	1617	0.914	0.982	10/6/10 11:19	1639	0.874	0.942	10/6/10 11:40	1660	0.840	0.908
10/6/10 10:58	1618	0.910	0.978	10/6/10 11:19	1639	0.875	0.943	10/6/10 11:41	1660	0.840	0.908
10/6/10 10:58	1618	0.912	0.98	10/6/10 11:20	1639	0.873	0.941	10/6/10 11:41	1661	0.836	0.904
10/6/10 10:59	1618	0.909	0.977	10/6/10 11:20	1640	0.876	0.944	10/6/10 11:41	1661	0.837	0.905
10/6/10 10:59	1619	0.913	0.981	10/6/10 11:20	1640	0.873	0.941	10/6/10 11:42	1661	0.837	0.905
10/6/10 10:59	1619	0.908	0.976	10/6/10 11:21	1640	0.872	0.94	10/6/10 11:42	1662	0.836	0.904
10/6/10 11:00	1619	0.912	0.98	10/6/10 11:21	1641	0.869	0.937	10/6/10 11:42	1662	0.835	0.903
10/6/10 11:00	1620	0.907	0.975	10/6/10 11:21	1641	0.871	0.939	10/6/10 11:43	1662	0.834	0.902
10/6/10 11:00	1620	0.909	0.977	10/6/10 11:22	1641	0.870	0.938	10/6/10 11:43	1663	0.832	0.9
10/6/10 11:01	1620	0.906	0.974	10/6/10 11:22	1642	0.873	0.941	10/6/10 11:43	1663	0.837	0.905
10/6/10 11:01	1621	0.910	0.978	10/6/10 11:22	1642	0.870	0.938	10/6/10 11:44	1663	0.832	0.9

Appendix E Groundwater Flow Model

Appendix E Groundwater Flow Model

Prepared for:

Bighorn-Desert View Water Agency
622 S. Jemez Trail
Yucca Valley, California 92284

Prepared by:

Todd Engineers

2490 Mariner Square Loop, Suite 215

Alameda, CA 9501-1080

February 2011

Table of Contents

		<u>Page</u>
E1.	INTRODUCTION	1
	E1.1 Model Objectives	1
	E1.2 Model Approach and Scope	1
E2.	MODEL INPUT AND CALIBRATION	3
	E2.1 Calibration Process and Criteria	
	E2.1.1. Historical Calibration Periods	
	E2.1.2. Water Level Calibration Data	
	E2.1.3. Calibration Approach	
	E2.2 Model Domain and Discretization	
	E2.2.1. Model Area and Grid	5
	E2.2.2. Model Depth	
	E2.3 Boundary Conditions	5
	E2.3.1. Western Specified Flux Boundaries	6
	E2.3.2. Northern and Southern No-Flow Boundaries	8
	E2.3.3. Eastern General Head Boundary	9
	E2.3.4. Return Flow Recharge Boundary	
	E2.4 Groundwater Production	
	E2.5 Aquifer Hydraulic Properties	
	E2.5.1. Alluvium Hydraulic Properties	
	E2.5.2. Fault Barrier Hydraulic Properties	
	E2.5.3. Aquifer Storage Properties	12
E3.	MODEL RESULTS	13
	E3.1 Calibration Results	13
	E3.2 Simulated Heads	14
	E3.3 Flowpath Results	14
	E3.4 Water Balance and Volumetric Fluxes	15
	E3.5 Predicted Mounding and Flowpaths from Reche Spreading Grounds	15
E4.	REFERENCES	17

List of Tables

Table E1	Boundary Condition Specified Flux Rates
Table E2	Well Production
Table E3	Model Calibration Summary
Table E4	Annual Water Budget
Table E5	Cumulative Water Budget

List of Figures

Figure E1	Model Domain and Boundaries
Figure E2	Calibration Well Locations
Figure E3	Aquifer Bottom Elevations
Figure E4	Boundary Conditions
Figure E5	Relationship between Rainfall and Water Levels in Pipes Wash Well 1N/5E-2N1
Figure E6	Recharge Rates for Western Flux Boundaries
Figure E7	BDVWA Water Customer Parcels and Recharge Areas
Figure E8	Return Flow Recharge Rates
Figure E9	Production Well Pumping Rates
Figure E10	Hydraulic Conductivity Polygon Distribution
Figure E11	Simulated Groundwater Elevations, 1994
Figure E12	Simulated Groundwater Elevations, 2009
Figure E13	Simulated Groundwater Elevation Change, 1994 to 2009
Figure E14	Simulated Forward Flow Paths, 2009 Conditions
Figure E15	Simulated Reverse Flow Paths, 2009 Conditions
Figure E16	Water Budget Summary 1994-2009
Figure E17	Simulated Water Table Mounding from Recharge of 1,500 AF after 6 Months
Figure E18	Simulated Water Levels over Time from Recharge of 1,500 AF in Alternating Years
Figure E19	Simulated Flow Paths from Recharge of 1,500 AF in Alternating Years

List of Charts

Chart E1	1994-2009 Observed and Simulated Groundwater Elevations, Well BDVWA 1
Chart E2	1994-2009 Observed and Simulated Groundwater Elevations, Well BDVWA 2
Chart E3	1994-2009 Observed and Simulated Groundwater Elevations, Well BDVWA 3
Chart E4	1994-2009 Observed and Simulated Groundwater Elevations, Well BDVWA 4
Chart E5	1994-2009 Observed and Simulated Groundwater Elevations, Well BDVWA 6
Chart E6	1994-2009 Observed and Simulated Groundwater Elevations, Well BDVWA 7
Chart E7	1994-2009 Observed and Simulated Groundwater Elevations, Well BDVWA 8
Chart E8	1994-2009 Observed and Simulated Groundwater Elevations, Well BDVWA 9
Chart E9	1994-2009 Observed and Simulated Groundwater Elevations, Well HDWD 24
Chart E10	1994-2009 Observed and Simulated Groundwater Elevations, Well CSA 1
Chart E11	1994-2009 Observed and Simulated Groundwater Elevations, Well CSA 2
Chart E12	1994-2009 Observed and Simulated Groundwater Elevations, Well 2N1
Chart E13	1994-2009 Observed and Simulated Groundwater Elevations, Well USGS Monitoring
Chart E14	1994-2009 Observed and Simulated Groundwater Elevations, Well Gubler 1K1
Chart E15	1994-2009 Observed and Simulated Groundwater Elevations, Well Gubler 1G1

List of Attachments

Attachment CD of Pipes/Reche MODFLOW and GMS Model Files

E1. INTRODUCTION

This appendix to the Reche Spreading Grounds Recharge Feasibility Study Report (Feasibility Study report) and Groundwater Management Plan for the Ames Groundwater Basin, Pipes and Reche subbasins (GMMP) documents the construction and results of a water balance and numerical groundwater flow model used to assist in estimation of basin sustainable yield, characterization of groundwater flow conditions, and evaluation of recharge basin feasibility.

E1.1 Model Objectives

The objectives of the groundwater flow model are to 1) aid in characterization and evaluation of groundwater flow conditions (sources, sinks, flow rates and directions) in the Pipes and Reche groundwater subbasins and adjacent areas where BDVWA and others operate groundwater supply wells, 2) evaluate hydraulic impacts (water table mounding, groundwater flow paths) associated with future operation of the proposed Reche groundwater recharge spreading basin, and 3) evaluate sustainable yield of the Reche subbasin in support of the focused groundwater management plan and Amendment to the Water Agreement between BDVWA, Hi-Desert Water District (HDWD), and Mojave Water Agency (MWA).

E1.2 Model Approach and Scope

The numerical model simulates steady-state and transient groundwater flow in the Pipes and Reche subbasins. Groundwater recharge rates via subsurface inflow from Antelope Creek/Pipes Wash, Whalen's Wash, Ruby Mountain Wash, and distributed mountain-front recharge were estimated, along with rates of return flow from septic systems. Groundwater outflow via wells was defined based on metered pumping rates, and subsurface outflow from the Reche subbasin to the Giant Rock subbasin was simulated. After calibration, the model was used to predict water table mounding beneath the recharge basin, drawdown around nearby water supply wells, and flowpaths through the subbasins, across major geologic faults, from the recharge basin, and to the production wells.

The model was constructed using the United States Geologic Survey (USGS) numerical finite-difference codes MODFLOW and MODPATH. MODFLOW was selected for its usability, accuracy, efficiency and transportability. In particular the transportability of the public domain MODFLOW program and site model input files are advantageous for future site modeling. MODFLOW files have been provided to BDVWA and can be run without any proprietary software. Model construction and calibration was performed using the Groundwater Modeling System (GMS) v7.1 which pre-processes and post-processes MODFLOW and MODPATH files. Most of the input data were constructed and stored in GMS "GIS", "Map", "Scatter Point" and "2D Grid" modules. GMS software is not required to run the MODFLOW model. The MODFLOW

2000 files created by GMS also can be imported to other commercial MODFLOW software such as Visual MODFLOW or Groundwater Vistas with minor modification, or run using only executable MODFLOW and MODPATH codes.

Critical input parameters and controls on flow include water-budget components (inflows. outflows, and changes in storage), along with aquifer hydraulic properties (aquifer geometry and hydraulic properties of the alluvium and faults). The model inflows and outflows are based on an updated and refined water balance for the Pipes and Reche subbasins. The water balance was developed using available data and methodologies including those previously documented in the Basin Conceptual Model and Assessment of Water Supply and Demand for the Ames Valley, Johnson Valley, and Means Valley Groundwater Basins (Todd Engineers, 2007). This previous water balance was developed for the combined Ames Valley groundwater basin for the period 1990 through 2000. For this evaluation, the water balance period was extended through water year 2008-2009 (period ending September 30, 2009). Estimates for some key water balance components (including subsurface inflow and septic return flow) were refined. Each element of the water balance was evaluated independently, including inflows (e.g., recharge from rainfall resulting in subsurface inflow from Antelope Creek/Pipes Wash, Whalen's wash, and Ruby Mountain Wash, and septic return flows), and outflows (e.g., subsurface outflow, groundwater pumping). As part of the development of the GWMP, basin perennial yield was calculated and used in support of the Water Agreement Amendment.

The groundwater model domain and boundaries are shown on Figure E1. The active model area includes all of the Pipes and Reche subbasins, and a portion of the Giant Rock subbasin. The model domain also includes the proposed Reche spreading grounds recharge site and nearby BDVWA, HDWD, and San Bernardino County Service Area No. 70 W-1 (CSA No. 70 W-1) water supply wells.

Hydraulic properties including permeability of basin alluvium and geologic faults, aquifer thickness, and storage coefficients were simulated appropriately across the model area. Appropriate boundary conditions were selected based on the water balance and observed groundwater elevations.

The model was calibrated to observed historical water levels between 1994 and 2009. The calibration process includes trial and error adjustment of input parameters and auto-calibration using the Parameter Estimation (PEST) computer code. Once calibrated, flow paths and travel times between the recharge site and downgradient areas, including production wells, were simulated using anticipated recharge and pumping rates and schedules. Forward flowpaths were simulated to evaluate groundwater flow directions and rates from recharge site to the production wells and outflow boundaries, and reverse flowpaths were simulated to identify capture zones of the existing production wells.

E2. MODEL INPUT AND CALIBRATION

This section documents the approach and input parameters used to calibrate the groundwater flow model. Existing data were used to formulate the initial model input parameters. As described below, initial estimates of some input parameter values were modified during model calibration. Some input parameters, including extraction well pumping rates and water use/septic return flows, were defined on the basis of site measurements or estimates and were not varied for most of the model simulations. Other parameters, including aquifer hydraulic conductivity and boundary conditions, were adjusted within defined ranges to achieve model calibration.

E2.1 Calibration Process and Criteria

Model calibration was accomplished by defining and achieving quantitative and semi-quantitative calibration goals or targets. Calibration was assessed through evaluation of residuals, or the difference between observed and simulated groundwater elevations (heads), hydraulic gradient directions, and volumetric flow rates. For the steady-state site models constructed to simulate 1994 (wet) and 2007 (dry) conditions, head residuals were calculated for wells located throughout the Pipes and Reche subbasins. For the transient calibration period of 1994 to 2009, residuals were calculated in both space and time. Error residuals at each point were averaged in a variety of ways and statistical parameters including mean error and root mean squared error were calculated.

Criteria as were defined to evaluate the quality of model calibration. The two criteria used were the ASTM-recommended Root Mean Square (RMS) head residual error of less than ten percent of the model area groundwater elevation range and a mean error residual of less than five percent. The calibration criteria for the Pipes-Reche model are an RMS of 100 feet and Mean Error of 50 feet. This corresponds to a water table elevation range of about 3,600 feet above mean sea level (feet msl) where Pipes Wash enters Pipes Subbasin and 2,600 feet msl in the western portion of Giant Rock Subbasin.

E2.1.1. Historical Calibration Periods

Both transient and steady-state models were constructed for calibration. The transient model included 180 monthly stress periods between October 1994 and September 2009. Steady-state models were also constructed and calibrated to reflect "average" groundwater flow conditions. To simulate the variability in hydrologic conditions at the site, steady-state models were constructed to simulate two different historical periods, Water Year (WY) 1994 and WY 2007. WY 1994 represents peak "wet" or "high groundwater" conditions, based on several years of above-average rainfall and associated recharge rates preceding this period, high pumping rates,

and peak historical groundwater elevation conditions, based on water level hydrographs. WY 2007 represents "dry" or "low groundwater" conditions after several below-average rainfall years between late 2005 and 2007. Models were calibrated to both 1994 and 2007 conditions by adjusting hydraulic conductivities and boundary conditions. The transient calibration simulated changes in groundwater elevations over time, and presentation of the calibration results in this Appendix focuses on this transient simulation.

E2.1.2. Water Level Calibration Data

Available water level data were reviewed to define a set of wells used for model calibration. Figure E2 shows the location of wells used to assess model calibration. The observed water level calibration data set includes most of the existing active production wells and a few dedicated monitoring wells. As shown in the figure, the spatial distribution calibration wells is favorable considering calibration wells are located both in the upgradient and downgradient portions of the Pipes and Reche subbasins.

E2.1.3. Calibration Approach

The model was constructed and calibrated using both trial-and-error and PEST auto-calibration methods. Initial model construction and calibration runs were based on estimated input parameter values. Boundary conditions were developed based on observed groundwater elevations and estimated fluxes through Pipes, Whalen's, and Ruby Mountain washes. Minor modifications to the flux boundary locations and rates were made during calibration. Estimates of groundwater recharge from septic return flow were developed from water use data over time and a consumption factor for each land parcel. Estimated recharge from septic return was not adjusted during calibration. Initial estimates of hydraulic conductivity and aquifer storage coefficients were developed based initially on aquifer pumping test results and subsequently modified based on initial calibration and PEST results. Production well pumping rates were not adjusted during calibration runs.

Several parameter estimation simulations were performed using PEST simulating steady-state 1994 and 2009 conditions and a transient period of 1994 through 2009. The parameters selected for inversion were hydraulic conductivity and specific storage. PEST simulations inverted all polygons for hydraulic conductivity and specific storage simultaneously, with the exception of a polygon between the recharge site and Production well HDWD No. 24, which was assigned a fixed hydraulic conductivity value based on the constant-rate pumping test performed in October 2010. Minor hand adjustments of PEST-calculated conductivities were made for the final calibration. Results of the PEST simulations and final calibration are discussed in Section E3.0.

E2.2 Model Domain and Discretization

The MODFLOW model simulates groundwater flow in a defined area and solves the governing equations controlling groundwater flow using the finite-difference method. For this numerical method, a rectangular grid of model cells is constructed, and hydraulic head is calculated at each grid cell.

E2.2.1. Model Area and Grid

The Pipes/Reche subbasin active model domain includes the area bounded by:

- The valley floor at the base of the mountain front to the west;
- An east-west trending arc to the north coinciding with a broad bedrock high and thin saturated aquifer thickness in the northern portion of the Pipes and Reche subbasins;
- An arc east of the Homestead Valley Fault within the Giant Rock subbasin to the east
- A southwest-northeast trending arc beneath the Mesa area (southeast of Pipes Wash)
 where the alluvial aquifer becomes unsaturated.

A uniform row and column grid spacing of 100 feet was used. The model comprises 430 rows by 387 columns. A single MODFLOW layer represents the alluvial aquifer.

E2.2.2. Model Depth

The model grid was constructed using the MODFLOW Layer Property Flow (LPF) Package and a "true layer" approach, with defined aquifer bottom elevations. Figure E3 illustrates the geometry of the base of the alluvial aquifer. The bedrock contact surface dips to the east from elevations of around 3,400 feet msl at the edge of the valley at the base of the mountains to elevations of around 2,600 feet in the thickest portions of the alluvial basin. A shallow bedrock ridge occurs beneath the Mesa area with alluvium-bedrock contact elevations of around 3,500 feet msl in the southwestern portion of the model to around 3,000 feet msl in the southeastern portion. A broad shallow bedrock ridge also occurs along the northern model boundary in the northern portion of the Pipes and Reche subbasins. The modeled bedrock elevation in the western portion of the Giant Rock Subbasin is around 2,500 feet msl. A bedrock surface discontinuity of 200 feet was simulated across the Homestead Valley Fault separating the Reche and Giant Rock subbasins.

E2.3 Boundary Conditions

Figure E4 shows the model boundary condition locations and types. The Pipes/Reche groundwater model includes the following boundary conditions:

- Lateral time-varying specified fluxes via arcs across Pipes Wash, Whalen's Wash, Ruby Mountain Wash, and along the valley-mountain front boundary to the west;
- Lateral specified flux (no-flow) boundaries representing 1) the broad bedrock ridge and thin saturated aquifer thickness to the north and 2) shallow bedrock ridge beneath the Mesa area (southeast of Pipes Wash) where the alluvial aquifer becomes unsaturated to the south:
- A lateral general head boundary east of the Homestead Valley Fault within the Giant Rock groundwater basin to the east;
- Time varying specified flux boundaries via the top of the model representing aerial recharge from septic return flow;
- A specified flux (no flow) boundary at the base of the model.

For the specified flux boundaries (subsurface inflow and return flow), monthly rates were estimated and used in the transient flow model. The following sections describe quantification of the boundary flux rates and heads used in the mathematical model.

E2.3.1. Western Specified Flux Boundaries

The principal source of natural groundwater recharge to the Pipes and Reche subbasins is the subsurface inflow of groundwater through the alluvium within Pipes Wash, Whalen's Wash, and Ruby Mountain Wash. This groundwater inflow originates from runoff of rainfall in the San Bernardino Mountains and recharge to the alluvium in the wash channel valleys east of the Pipes Subbasin. Runoff from rainfall infiltrates through the vadose zone to the water table prior to entering Pipes Subbasin as subsurface inflow mainly through the three major drainages entering the valley. Subsurface inflow rates from bedrock along the rest of the mountain-front are unknown, but the amount is assumed to represent a small portion of subsurface inflow, as discussed below.

Direct recharge from rainfall on the basin floor is assumed to be negligible given the small amounts of rainfall on the valley floor, deep water table, and high evapotranspiration rates. Intermittent flash flooding through Pipes Wash, Whalen's Wash, Ruby Mountain Wash and other drainage pathways occasionally brings water into and through the valley floor, but for the purposes of this analysis, the net amount of stormwater recharging groundwater is assumed to be negligible.

Figure 3 in the Feasibility Study report shows the contributing watershed area and annual rainfall isohyets for the model flux boundaries. The contributing watershed area is divided into three major drainages. Antelope Creek (tributary to Pipes Wash) has the largest contributing catchment area to the basin, representing over 60 percent of the overall contributing watershed

area. Whalen's Wash and Ruby Mountain Wash to the north have smaller catchment sizes and lower average annual rainfall rates.

Based on a focused study of the watershed area and groundwater flow rates through Whalen's Wash and Antelope Creek/Pipes Wash, <u>average natural subsurface inflow to the Pipes</u>

<u>Subbasin is estimated at 2 percent of rainfall in the contributing watershed area</u>. This average rainfall-recharge ratio is the basis for the boundary condition flux rates developed for the model.

Based on a 20-year study period from water year (WY) 1989-1990 to WY 2008-2009, the average annual recharge from rainfall for the Pipes Subbasin is 668 acre-feet per year (AFY). The Antelope Creek Catchment is the largest contributor of recharge (472 AFY), followed by Whalen's Wash (127 AFY), and Ruby Mountain Wash (69 AFY).

In order to vary the amount of natural subsurface inflow to the model boundary over time, precipitation over time across the contributing watersheds was calculated based on data from the rainfall gage at Big Bear and the average annual precipitation isohyetal map (Figure 3 in the Feasibility Study report). The Big Bear rainfall gage has been active since July 1960. Average annual precipitation for Water Year (WY) 1960-61 through WY 2008-2009 for the Big Bear gage is 21.60 inches. To estimate monthly rainfall in which precipitation at the Big Bear gage was not reported, the average relative monthly precipitation between the Big Bear gage and Lake Arrowhead gage was applied to Lake Arrowhead gage data for that month. Note that average annual rainfall in the contributing watershed areas of the three major drainages to the Pipes Subbasin is much lower than rainfall reported at the Big Bear gage, ranging from 8.54 inches for Antelope Valley (Pipes Wash), 6.35 inches for Whalen's Wash, and 5.39 inches for Ruby Mountain Wash.

To estimate annual recharge from rainfall over varying climatic conditions, the ratio of annual rainfall at the Big Bear gage to the long-term average annual rainfall at the Big Bear gage was applied to the average annual rainfall for the contributing watershed (based on spatial analysis of the isohyetal map) multiplied by 2 percent.

Additionally, for any given period, the percentage of rainfall that represents runoff is expected to be positively related to the rainfall amount (i.e. less than 2 percent runoff is expected when rainfall is below normal, while greater than 2 percent runoff is expected when rainfall is above average). To account for this variability, a variable runoff factor ranging from 0.5 percent (applied to years when annual rainfall at the Big Bear gage is less than 10 inches) up to 3.0 percent (for years when annual rainfall is 30 inches or greater) was applied to rainfall in the contributing catchment areas. The weighted-average runoff factor of 2 percent was maintained over study period.

To account for the vadose and saturated zone travel time and time lag for recharge entering the Pipes Subbasin as subsurface inflow, monthly rainfall reported at the Big Bear rainfall gage was compared with groundwater elevations in Well 1N/5E-2N1, located along Pipes Wash near the intersection of Pipes Wash and Highway 247 (Figure E2). Figure E5 shows that groundwater levels in Well 1N/5E-2N1 respond gradually to significant rainfall events in the San Bernardino Mountains and continue to do so for up to 2 years before receding. This process reflects the capacity of the alluvial materials to detain runoff generated in the contributing watersheds of the major drainages upgradient of the modeled area. For the model, a retention time was developed to "lag" and re-distribute the subsurface inflow over time. To simulate this process in the MODFLOW model, the effective monthly subsurface inflow rate was calculated by lagging rainfall amounts by one year and applying a detention coefficient of 0.90. A lag of one year combined with a detention coefficient of 0.90 was found to best simulate the effective subsurface inflow rate over the model period. Figure E5 shows the effective subsurface inflow rates for Antelope Creek/Pipes Wash using the method described above compared to groundwater levels in Well 1N/5E-2N1. Table E1 shows the effective annual subsurface inflow rates for all three of the major drainages in the model (Flux Arcs 2, 5, and 9).

A small portion of the total estimated subsurface inflow for each period was redistributed along the mountain-front arc segments between the three washes (see Figure E6 for final specified flux arc boundary locations). Again, the overall total subsurface inflow flow was maintained at 2 percent of rainfall. During calibration, the amount re-allocated to mountain-front recharge was varied, and ultimately 10 percent was used in the final calibrated model.

The annual flux rates used for each specific flux boundary arc are tabulated in Table E1. The average total model influx through Pipes Wash, Whalen's Wash, Ruby Mountain Wash, and mountain front arcs for the simulated period from WY 1994-95 to WY 2004-05 was 796 AFY, of which 703 AFY represents the influx through the main washes, 61 AFY represents the influx through mountain flux arcs, and 31 AFY represents return flows from parcels west of the flux arc boundaries (see Section E2.3.4. for additional discussion on return flows). It is noted that the estimated natural inflow (764 AFY) for the transient model period (WY1994-95 to WY 2004-05) is slightly higher than the average annual recharge estimated for the 20-year study period (WY 1989-1990 to WY 2008-2009) in the basin conceptual model report (Todd Engineers, 2007). This is due primarily to the modeled detention/lag of rainfall runoff generated during the winter storms of 1992/1993.

E2.3.2. Northern and Southern No-Flow Boundaries

Portions of the alluvial aquifer beneath the Mesa separating the Pipes/Reche subbasins from the Copper Mountain Subbasin to the south and in the northern portion of the Pipes/Reche subbasins are thinly saturated to unsaturated (the water table occurs below the

alluvium/bedrock contact). The location of these unsaturated areas were determined based on comparisons of the water table and bedrock elevation surfaces and defined in the MODFLOW model as no-flow boundaries (Figure E4).

E2.3.3. Eastern General Head Boundary

Figure E4 shows the location of a constant-head boundary arc used along the eastern model boundary in Giant Rock Subbasin. A constant head of 2,600 feet above mean sea level (feet msl) was defined along the arc based on groundwater elevations measured in the subbasin. The location of the boundary head arc and elevation value was based on a regional groundwater elevation map (Figure 4 in the Feasibility Study report).

E2.3.4. Return Flow Recharge Boundary

In addition to natural runoff from rainfall, inflow to the groundwater basin occurs via return flow from septic tanks. Return flows in the Pipes and Reche subbasins were simulated as a time-varying recharge boundary at the top of the model using the MODFLOW recharge package. Water use over time for each BDVWA water customer and estimated net septic return flow rates were analyzed to accurately simulate the rate and distribution of aerial recharge.

Monthly water use rates for each assessor parcel number for the period 1995 – 2009 was obtained from BDVWA. Figure E7 shows the locations of the BDVWA water customer parcels and recharge areas. Monthly water use rates were converted to recharge rates using a consumptive use factor of 20 percent, or a return flow rate of 80 percent of water use. The relatively high consumptive use factor was selected, since water use in the area is predominantly indoor, and because water use as metered at each customer site is considered under-reported by 10 to 20 percent by BDVWA. Historic water use of HDWD customers in the Mesa area was not available for this study but is relatively small compared to natural recharge estimates and water use of BDVWA customers in the study area.

To account for travel time from the near-surface septic systems to groundwater, the vadose zone flow model CHEMFLOTM-2000 (USEPA, 2003) was used. Input parameters for the vadose zone model include soil hydraulic properties, initial soil water conditions, and assignment of appropriate boundary conditions at the top and bottom of the soil profile. A vertical hydraulic conductivity of 3 centimeters per hour (cm/hr) (or about 2.4 feet per day) was selected for use in the model. This was initially based on an average horizontal hydraulic conductivity of about 30 cm/hr (or about 24 feet per day) for existing wells in the Pipes and Reche subbasins and an assumed 10-to-1 ratio for horizontal-to-vertical hydraulic conductivity. The estimate is on the lower end of the range of vertical hydraulic conductivities from soil cores collected from the recently installed monitoring well (MW1) in Pipes Wash. Other required soil hydraulic properties for the model (vanGenuchten coefficients) are provided in CHEMFLO for various soils. These

hydraulic properties were estimated based on interpolation between sandy loam and loam soils with vertical hydraulic conductivity of 4.0 and 1.0 cm/hr, respectively. The hydraulic boundary condition at the point of applied water was simulated by applying a soil matric potential of zero at the top of the soil profile (i.e., saturated conditions). This approach assumes that the amount of indoor water use by parcel is positively correlated with the number of septic tanks required to treat the water (i.e., as such, vadose zone travel times are considered similar for smaller and larger water use parcels). A uniform volumetric water content of 11 percent (matric potential of -300 mm) was assigned to the soil profile to simulate initial conditions, and a free drainage boundary condition was applied to the bottom of the soil profile.

Results of the vadose zone model were applied to the average depth to water beneath all return flow parcels in the model area (233 feet below ground surface) to estimate the average travel time of septic return flows through the vadose zone. Results of the model suggest that return flows require an average of about one year to travel through the vadose zone. Accordingly, return flow rates for each parcel were lagged by one year prior to introducing recharge to the MODFLOW model. Field and laboratory confirmation of vadose zone hydraulic properties are needed to further refine estimated vadose zone travel times. However, for the purposes of the groundwater model, the one-year travel time is considered reasonable.

Time-varying recharge rates were used during the transient model simulations. For the steady-state simulations representing 1994 and 2007 conditions, representative return flow rates corresponding to the average rate over the three-year period prior to and during the calibration period were used. Figure E8 shows the average return flow recharge rates by parcel over time.

E2.4 Groundwater Production

Groundwater pumping from all existing BDVWA, HDWD, and CSA No. 70 W-1 production wells were simulated using the MODFLOW Well Package. Production well locations are shown on Figure E7. Time-varying pumping rates were used during the transient model simulations. For the steady-state simulations representing 1994 and 2007 conditions, representative flow rates corresponding to the average rate over the three years period prior to and during the calibration period were used. Pumping rates are tabulated and plotted in Table E2 and Figure E9.

E2.5 Aquifer Hydraulic Properties

The model grid and aquifer hydraulic properties were simulated using the LPF Package. Heterogeneous hydraulic conductivities were assigned to polygons representing wash and non-wash areas and fault zone hydraulic barriers. Based on evaluation of the aquifer pumping test results and geologic mapping of alluvium, the aquifer permeability distribution appears to be controlled by the extent of relatively high permeability alluvium in the wash areas, and by the faults crossing the study area, which represent partial barriers to groundwater flow. Therefore,

hydraulic conductivity polygons were constructed to represent the more permeable areas along Pipes Wash, Whalen's Wash, and Ruby Mountain Wash, the areas between the washes, and the fault zones. Figure E10 shows the polygon distribution.

Initial values of hydraulic conductivity were developed based on the mapped distribution of geologic materials and aquifer pumping testing data and were adjusted during model calibration. Analysis of existing pumping test data was performed in the 2007 study of the Ames Basin. In addition, a constant-rate pumping test of Well HDWD 24 was performed in October 2010, and the results of this test were applied in the vicinity of Well HDWD 24.

During model calibration, trial-and–error and PEST simulations were performed and permeabilities for the alluvium and faults were adjusted relative to the initial estimated values. The following Sections discuss the initial and final simulated properties of the alluvium and fault barriers.

E2.5.1. Alluvium Hydraulic Properties

Forty-four permeability polygons were ultimately used to simulate the alluvium and faults. The polygons were constructed on the basis of the mapped distribution of the wash and non-wash areas, with the wash areas assumed to have the highest permeabilities. During calibration, additional polygons were constructed to provide detail and flexibility to increase calibration quality. For the initial model setup and runs, relatively higher permeabilities of 20 to 100 feet per day were assigned to wash areas and lower permeabilities of 10 feet per day were assigned to areas between the washes.

Based on the results of the pumping test performed on HDWD 24, the hydraulic conductivity polygon representing the eastern portion of Pipes Wash between the proposed recharge site and HDWD 24 was assigned a fixed hydraulic conductivity of 150 feet per day (ft/day). Hydraulic conductivities for all other polygons were optimized using PEST. Figure E10 shows the final hydraulic conductivities used in the calibrated model. In general, the final hydraulic conductivity values used in the model are consistent with the site conceptual model with higher permeability in the washes and lower permeability in non-wash (more clay-rich) areas. The PEST results are also consistent with the range of hydraulic conductivities estimated from reported production well specific capacities. The highest permeabilities were simulated in the wash channels. Lower hydraulic conductivities were calculated for non-wash areas. The simulated hydraulic conductivity values are consistent with the site conceptual model and available aquifer property data.

E2.5.2. Fault Barrier Hydraulic Properties

Narrow hydraulic conductivity polygons were constructed to simulate the fault barriers including the Johnson Valley Fault and Pipes Barrier, separating the Pipes and Reche subbasins, and the Homestead Valley Fault, separating the Reche and Giant Rock subbasins (Figure E10). Hydraulic conductivity zones were used to represent the fault barriers (rather than the MODFLOW Horizontal Flow Barrier Package), because the polygons better represented the multiple en-echelon fault splays associated with each fault zone rather than a single fault alignment. Horizontal hydraulic conductivities for the fault polygons calculated by PEST ranged from 0.0012 to 100 feet/day. Higher permeabilities were estimated for the Johnson Valley Fault segment crossing Pipes Wash than for the other fault segments. These results are consistent with the site conceptual model, which indicates significant groundwater flow occurs through the Pipes Wash area, while more resistance to flow is created by the Pipes Barrier, just west of the proposed recharge site.

E2.5.3. Aquifer Storage Properties

For the transient flow simulations, specific storage was defined to account for release of water from aquifer storage. Specific storage is equivalent to the aquifer storage coefficient divided by the aquifer thickness. For the preliminary simulations, a uniform specific storage of 0.001 ft⁻¹ was used. During the transient PEST simulation, an optimal specific storage of 0.0021 foot⁻¹ was estimated. Although the aquifer saturated thickness varies, on average it is around 150 feet, which yields a storage coefficient of approximately 30 percent.

E3. MODEL RESULTS

This section presents the model results, including calibration quality, simulated groundwater elevations, volumetric mass budgets for the model inflow and outflow components, and flowpath results. The results presented in this Section focuses on the 1994 through 2009 transient calibration.

The final model was developed after calibration runs based on the initial results and modified based on observed model response to input parameter changes. After construction and specification of model depth, boundaries, pumping well flow rates, and septic return flows, the PEST program was used to adjust net hydraulic conductivities and specific storage. For the 1994-2009 auto-calibration run, hydraulic conductivities and specific storage values were optimized with good results. Final manual adjustments were then made to some of the parameter values, including certain hydraulic conductivity zones.

Over the course of model development, numerous modifications of the values and distribution of input parameters were made in attempts to improve model calibration. Due to uncertainties in the actual distribution of hydraulic conductivity, and the inherent limitations of groundwater model approximations, perfect calibration in space and time is difficult or impossible to achieve. However, the Pipes/Reche MODFLOW model was reasonably well calibrated with respect to observed and simulated groundwater elevations in both space and time.

E3.1 Calibration Results

To assess model accuracy, simulated heads were compared with observed heads. Model calibration also focused on simulating flow through the groundwater subbasins in accordance with the basin conceptual model. The final calibrated models simulate flow conditions which are consistent with the basin conceptual model.

Charts E1 through E15 present observed versus simulated groundwater elevations between 1994 and 2009. As illustrated on the charts, the simulated and actual groundwater elevations and fluctuations over time are well-correlated. In particular, the overall water-level declines observed in many of the wells between 1994 and 2009 accurately simulated.

Observed and simulated heads at each calibration point were compared and calibration was assessed quantitatively through head residuals. Overall calibration of the model meets the calibration criteria defined in Section 2.0. As shown on Table E3, correlation between observed and simulated heads is good. The mean head residual and RMS error are significantly less than the ASTM guideline of five and ten percent of the model area groundwater elevation range.

Because the simulated groundwater elevations across the study area are well calibrated with observed elevations in both space and time, the model calibration is judged to be acceptable.

Accordingly, the model can be applied confidently to assess groundwater flow paths and flow rates and used to predict effects of recharge at the proposed spreading grounds.

E3.2 Simulated Heads

Model-simulated groundwater elevation contour maps and charts of observed and simulated elevations over time were constructed (Figures E11 and E12). For the 1994 through 2009 transient calibration, simulated groundwater elevations within the entire model domain range from around 3,600 feet above mean sea level (feet msl) at the eastern flux boundary in Pipes Wash to 2,600 feet msl in Giant Rock Subbasin.

The final calibrated model simulates flow conditions that are consistent with the basin conceptual model. Groundwater inflow occurs via the western boundary conditions along the mountain front. Within the model area, the groundwater elevation contour patterns reflect the boundary conditions, recharge sources and pumping sinks, and permeability zones, which cause changes in gradient magnitudes and directions. The low-permeability zones associated with the fault barriers result in groundwater elevation drops across the faults, particularly across the Pipes Barrier, where the water table difference across the fault is about 100 feet.

Groundwater elevation contour patterns for 1994 (Figure E11) are generally similar to patterns for 2009 (Figure E12), but 2009 groundwater elevations are lower reflecting the observed declines in basin wells. Figure E13 shows the simulated differences in groundwater elevations between 1994 and 2009. In the area of the proposed Reche spreading grounds, water levels declined between 20 and 30 feet from 1994 to 2009.

E3.3 Flowpath Results

Using the calibrated model, forward and reverse flowpaths were simulated using the USGS particle track code MODPATH. MODPATH uses flow budget files generated by MODFLOW and calculates groundwater flow paths and travel times for particles in the groundwater flow system. MODPATH was used to determine ultimate discharge points for particles entering the groundwater system as recharge as well as the capture zones of production wells. Forward flowpaths were simulated by generating single particles in selected individual model cells along the western model boundaries, which move advectively through the flow field. Reverse flowpaths were simulated by generating a series of particles in an arc around each pumping well which move advectively backward through the flow field to the sources of inflow contributing to the extraction point.

Figure E14 shows the forward flowpaths for particles generated along the western model boundaries. Forward particles track through the flow field and ultimately discharge to the production wells or into the Giant Rock Subbasin. Most of the flowpaths originating along the

mountain front between Pipes and Ruby Mountain washes are captured by BDVWA production wells 2, 3, 4, and 8. The sources of water pumped from BDVWA wells 6, 7, and 9 include both inflow from Ruby Mountain Wash and adjacent mountain-front areas and septic return flows. The sources of water to production wells HDWD 24 and CSA No. 70 W-1 1, 2, and 3 are inflow via Pipes Wash and septic return flows. Figure E15 shows reverse track flowpaths or "capture zones" of the production wells.

E3.4 Water Balance and Volumetric Fluxes

Volumetric inflow and pumping data used as model input and subsurface outflow and change in storage rates generated by MODFLOW were plotted and evaluated to determine the magnitudes of water balance components within the model domain. Tables E4 and E5 summarize the annual and cumulative water balance results for the 1994-2009 transient simulation; water balance components over time are charted on Figure E16. The overall water balances for the model simulation had very low net error, and the magnitudes of inflows (through recharge and boundary conditions) and outflows (through boundaries and wells) are consistent and in accordance with the rates assigned in the basin conceptual model.

E3.5 Predicted Mounding and Flowpaths from Reche Spreading Grounds

To determine the fate of water recharged via the proposed spreading grounds, additional MODFLOW and forward MODPATH simulations were made using a future recharge scenario of three recharge events of 1,500 AF recharged over 6 months in alternating years. A six-acre recharge area was simulated in Pipes Wash, and transient flow was simulated in response to the multiple recharge events. Groundwater elevations and flowpaths were simulated over time and used to assess performance of the recharge facility and groundwater basin response.

For a surface recharge project, water levels rise beneath the recharge area creating a groundwater mound. The height and lateral extent of the mound varies over time as a function of aquifer hydraulic properties, recharge rate, and recharge area. The development of a groundwater mound beneath the spreading grounds was evaluated using the MODFLOW model. The model estimates the groundwater elevations and corresponding height of the groundwater recharge mound as a function of time and distance from the recharge area.

The calculated shape of the mound at the end of the first six-month recharge period is illustrated on Figure E17. The mound height directly beneath the spreading grounds over time is illustrated on Figure E18. As shown on the figures, the maximum mound height beneath the spreading grounds is approximately 19 feet after the first six-month recharge period, 20 feet after the second six-month recharge period, and 22 feet after the third six-month recharge period. Groundwater levels are expected to increase 1 foot or more up to 8,000 feet to the northwest of the spreading grounds. As shown on Figure 15, water levels contours stack up against Pipes

Barrier due to the low permeability of the fault zone. The predicted maximum groundwater level rise is approximately 5 feet at HDWD 24 (4,300 feet from the center of the spreading grounds).

To assess the fate of recharged water, MODPATH particles were started at the water table beneath the spreading grounds and forward-tracked to their downgradient discharge locations. Figure E19 shows the simulated groundwater flowpaths from the Reche Spreading Grounds after three 6-month recharge events. As shown on the figure, recharge water diverges radially away from the recharge area before trending northeast in the general direction of HDWD 24. The travel time between the recharge site and HDWD 24 is approximately 2 to 3 years.

E4. REFERENCES

Kennedy/Jenks/Todd LLC (2007) Basin Conceptual Model and Assessment of Water Supply and Demand for the Ames Valley, Johnson Valley, and Means Valley Groundwater Basins. April.

Lewis, R.E. (1972) Ground-water Resources of the Yucca Valley-Joshua Tree Area, San Bernardino County, California. USGS Open File Report.

United States Environmental Protection Agency (USEPA) (2003) CHEMFLO[™]-2000: Interactive Software for Simulating Water and Chemical Movement in Unsaturated Soils. National Risk Management Research Laboratory (by D.L. Nofziger and Jinqaun Wu, Department of Plant and Soil Sciences, Oklahoma State University).

Tables

Table E1
Boundary Condition Specified Flux Rates

	1	2	3	4	5	6	7	8	9	
Flux Arc	North of Ruby Mountain Wash (+ return flow)	Ruby Mountain Wash	South of Ruby Wash (+ return flow)	North of Whalen's Wash (no return flow)	Whalen's Wash	South of Whalen's Wash (no return flow)	South of Whalen's Wash (+ return flow)	North of Pipes Wash (no return flow)	Pipes Wash	Total Influx Western Model Boundary
Water Year										
1994-95	17	106	15	12	194	8	21	11	690	1,073
1995-96	17	136	15	12	252	8	21	11	893	1,366
1996-97	19	84	16	12	159	8	21	11	559	890
1997-98	21	45	17	12	84	8	21	11	296	515
1998-99	20	115	14	12	212	8	20	11	756	1,168
1999-00	25	69	16	12	125	8	21	11	450	736
2000-01	27	42	19	12	77	8	22	11	275	493
2001-02	29	34	20	12	63	8	22	11	224	424
2002-03	25	15	20	12	29	8	23	11	101	244
2003-04	23	62	20	12	115	8	22	11	406	680
2004-05	23	54	18	12	100	8	23	11	355	604
2005-06	22	157	16	12	288	8	22	11	1,028	1,564
2006-07	24	105	17	12	191	8	23	11	676	1,066
2007-08	24	41	18	12	74	8	24	11	266	477
2008-09	21	59	18	12	108	8	24	11	379	640
Average	23	75	17	12	138	8	22	11	490	796

Values in acre-feet

Table E2 **Well Production**

	BDVWA						HDWD	C	SA 70 W-	1	BDVWA	HDWD	CSA 70 W-1	Total Well	
	Well 2	Well 3	Well 4	Well 6	Well 7	Well 8	Well 9	Well 24	Well 1	Well 2	Well 3	Total	Total	Total	Production
Water Year															
1994-95	88	112	124	109	79	404	20	495	67	71	0	935	495	138	1,568
1995-96	88	231	219	99	80	305	89	815	107	98	166	1,112	815	370	2,297
1996-97	79	77	80	156	190	77	78	511	149	99	40	737	511	288	1,537
1997-98	87	90	82	156	156	110	135	851	94	86	55	815	851	235	1,901
1998-99	37	38	39	51	-	57	168	773	77	67	117	391	773	261	1,424
1999-00	27	0	109	41	22	72	135	532	45	38	116	406	532	198	1,135
2000-01	45	0	50	33	28	66	175	706	60	40	91	398	706	191	1,296
2001-02	60	39	79	51	40	42	202	755	35	30	56	515	755	120	1,390
2002-03	34	37	20	47	35	110	184	549	28	24	79	468	549	131	1,148
2003-04	41	30	81	39	52	49	171	723	30	29	77	464	723	136	1,322
2004-05	10	17	58	28	34	116	180	473	43	42	63	442	473	149	1,064
2005-06	35	35	48	12	73	113	175	255	48	47	61	490	255	155	899
2006-07	65	49	42	33	91	73	145	514	48	48	48	499	514	144	1,156
2007-08	54	39	27	145	98	100	13	599	48	150	48	476	599	246	1,321
2008-09	50	64	-	118	73	96	62	640	51	63	69	462	640	183	1,285
Average	53	57	71	74	70	119	129	613	62	62	72	574	613	196	1,383

Values in acre-feet

BDVWA = Bighorn-Desert View Water Agency HDWD = Hi-Desert Water District

CSA 70 W-1 = San Bernardino County Service Area 70 W-1

Table E3
Model Calibration Summary

Well	Measured Nov-1994 Groundwater Elevation (feet msl)	Measured Sep/Oct-2009 Groundwater Elevation (feet msl)	Mean Error Measured minus Simulated	Root Mean Error Measured minus Simulated
BDVWA 1	3247.50	Dry	-0.60	2.35
BDVWA 2	3245.48	3225.01	-2.10	3.55
BDVWA 3	3245.34	3224.84	-2.55	3.77
BDVWA 4	3245.17	3230.27	-2.59	3.32
BDVWA 6	2912.85	2895.05	2.20	4.40
BDVWA 7	2913.88	2895.71	2.43	4.45
BDVWA 8	3242.88	3222.28	-2.26	4.22
BDVWA 9	2923.47	2909.00	0.68	3.02
HDWD 24	3009.00	2985.73	-7.41	8.61
CSA 70 W-1 1	2867.00	2834.00	-9.37	10.80
CSA 70 W-1 2	2867.50	2849.50	-7.86	9.38
1N/5E-2N1	3462.73 ^a	3465.52	7.83	16.79
USGS Monitoring	3246.80	3228.10	-1.49	3.16
Gubler Farm 1G1	2897.60	2906.10	-0.23	1.87
Gubler Farm 1K1	2897.60	2903.92	-5.54	5.93
Average			-1.92	5.71

^aMay-1994 measurement

Table E4
Annual Water Budget

	Subsurface Return Flow		Pumping	Subsurface Outflow ¹	Annual Storage Change
Water Year					
1994-95	1,051	204	-1,568	-579	-834
1995-96	1,344	204	-2,297	-579	-1,270
1996-97	864	238	-1,537	-579	-955
1997-98	486	240	-1,901	-579	-1,695
1998-99	1,144	243	-1,424	-579	-557
1999-00	705	268	-1,135	-579	-682
2000-01	456	297	-1,296	-579	-1,063
2001-02	382	293	-1,390	-579	-1,234
2002-03	207	304	-1,148	-579	-1,157
2003-04	645	270	-1,322	-579	-927
2004-05	570	265	-1,064	-579	-749
2005-06	1,534	252	-899	-579	367
2006-07	1,033	273	-1,156	-579	-370
2007-08	442	295	-1,321	-579	-1,104
2008-09	608	273	-1,285	-579	-925
Average	765	261	-1,383	-579	-877

Values in acre-feet

Table E5
Cumulative Water Budget

	Cumulative Subsurface Inflow	Cumulative Return Flow	Cumulative Pumping	Cumulative Subsurface Outflow	Cumulative Annual Storage Change
Water Year					
1994-95	1,051	204	-1,568	-579	-834
1995-96	2,394	407	-3,865	-1,159	-2,104
1996-97	3,258	646	-5,402	-1,738	-3,059
1997-98	3,744	886	-7,303	-2,317	-4,754
1998-99	4,888	1,129	-8,727	-2,896	-5,311
1999-00	5,593	1,397	-9,863	-3,476	-5,993
2000-01	6,049	1,694	-11,159	-4,055	-7,056
2001-02	6,431	1,987	-12,548	-4,634	-8,290
2002-03	6,638	2,291	-13,696	-5,213	-9,447
2003-04	7,282	2,562	-15,018	-5,793	-10,374
2004-05	7,853	2,827	-16,082	-6,372	-11,122
2005-06	9,387	3,079	-16,981	-6,951	-10,755
2006-07	10,419	3,352	-18,137	-7,530	-11,125
2007-08	10,861	3,647	-19,458	-8,110	-12,230
2008-09	11,469	3,920	-20,743	-8,689	-13,154

Values in acre-feet

¹Value represents average based on steady-state simulation

Figures

February 2011

TODD ENGINEERS
Alameda, California

Fig
Simulated
over
Recharg
in Alter

Figure E18 Simulated Water Levels over Time from Recharge of 1,500 AF in Alternating Years

Charts

Chart E1 1994 - 2009 Observed and Simulated Groundwater Elevations, Well BDVWA 1

Chart E2 1994 - 2009 Observed and Simulated Groundwater Elevations, Well BDVWA 2

Chart E3 1994 - 2009 Observed and Simulated Groundwater Elevations, Well BDVWA 3

Chart E4 1994 - 2009 Observed and Simulated Groundwater Elevations, Well BDVWA 4

Chart E5 1994 - 2009 Observed and Simulated Groundwater Elevations, Well BDVWA 6

Chart E6 1994 - 2009 Observed and Simulated Groundwater Elevations, Well BDVWA 7

Chart E7 1994 - 2009 Observed and Simulated Groundwater Elevations, Well BDVWA 8

Chart E8 1994 - 2009 Observed and Simulated Groundwater Elevations, Well BDVWA 9

Chart E9 1994 - 2009 Observed and Simulated Groundwater Elevations, Well HDWD 24

Chart E10 1994 - 2009 Observed and Simulated Groundwater Elevations, Well CSA 1

Chart E11 1994 - 2009 Observed and Simulated Groundwater Elevations, Well CSA 2

Chart E12 1994 - 2009 Observed and Simulated Groundwater Elevations, Well 2N1

Chart E13 1994 - 2009 Observed and Simulated Groundwater Elevations, Well USGS Monitoring

Chart E14 1994 - 2009 Observed and Simulated Groundwater Elevations, Well Gubler 1K1

Chart E15 1994 - 2009 Observed and Simulated Groundwater Elevations, Well Gubler 1G1

Appendix F Water Quality Laboratory Report

Work Order: 10I1785

Received: 09/24/10 16:00 Reported: 10/15/10

Todd Engineers Project: Routine

2490 Mariner Square Loop, Ste 215 Sub Project: Bighorn - Desert View Water

Alameda CA, 94501 Project Manager: Daniel J. Craig

BDVWA - MW1 1011785-01 (Water) Sample Date: 09/23/10 14:10 **Sampler:** Not Listed

Analyte	Method	Result	Units	Rep. Limit	MCL	Prepared	Analyzed	Batch	Qualifier
Field Analyses									
Temperature (Field)	Field	20.0	°C			09/24/10	09/24/10	1040127	
General Physical Analyses									
Apparent Color	SM 2120B	10.0	Color Unit	s 3.0	15	09/25/10	09/25/10	1039421	
Odor Threshold	EPA 140.1M	1	TON	1	3	09/25/10	09/25/10	1039421	HT-06
Turbidity	EPA 180.1	6.4	NTU	0.1	5	09/25/10	09/25/10	1039421	
General Chemical Analyses									
Alkalinity, Total (as CaCO3)	SM 2320 B	190	mg/L	5.0		09/28/10	09/28/10	1040120	
Bicarbonate (HCO3)	SM 2320 B	230	mg/L	5.0		09/28/10	09/28/10	1040121	
Calcium (Ca)	SM3500CaD	49	mg/L	1.0		09/28/10	09/28/10	1040119	
Carbonate (CO3)	SM 2320B	ND	mg/L	5.0		09/28/10	09/28/10	1040122	
Chloride (Cl)	EPA 300.0	17	mg/L	1.0	500	09/24/10	09/25/10	1040117	
Langelier Index at Source Tmp	SM 203	0.11				09/24/10	09/28/10	1040124	
Langelier Index at 60 C	SM 203	0.81				09/24/10	09/28/10	1040124	
Aggressive Index	SM 203	12.06				09/24/10	09/28/10	1040124	
Cyanide (CN)	SM4500CNF	ND	ug/L	100	150	09/27/10	09/27/10	1040037	
Specific Conductance (E.C.)	SM 2510B	530	umhos/cm	2.0	1600	09/28/10	09/28/10	1040115	
Fluoride (F)	EPA 300.0	0.83	mg/L	0.10	2	09/24/10	09/25/10	1040117	
Hardness, Total (as CaCO3)	SM 2340 C	140	mg/L	5.0		09/28/10	09/28/10	1040118	
Hydroxide (OH)	SM 2320B	ND	mg/L	5.0		09/28/10	09/28/10	1040128	
MBAS (LAS Mole. Wt 326.5)	SM 5540C	ND	mg/L	0.10	0.5	09/24/10	09/24/10	1039404	
Nitrate (NO3)	EPA 353.2	2.5	mg/L	2.0	45	09/28/10	09/28/10	1040137	HT-05
Nitrate + Nitrite (as N)	EPA 353.2	580	ug/L	400	10000	09/28/10	09/28/10	1040137	HT-05
Nitrite as N (NO2-N)	EPA 353.2	ND	ug/L	400	1000	09/28/10	09/28/10	1040137	HT-05
Perchlorate (ClO4)	EPA 314.0	ND	ug/L	4.0	6	09/28/10	09/28/10	1040187	
pH (Lab)	SM 4500HB	7.7	pH Units			09/24/10	09/24/10	1039406	
Sulfate (SO4)	EPA 300.0	21	mg/L	0.50	500	09/24/10	09/25/10	1040117	
Total Filterable Residue/TDS	SM 2540C	270	mg/L	5.0	1000	09/28/10	09/30/10	1040065	
<u>Metals</u>									
Aluminum (Al)	EPA 200.7	400	ug/L	50	200	09/28/10	09/29/10	1040156	
Antimony (Sb)	SM3113-B	ND	ug/L	6.0	6	09/29/10	09/29/10	1040211	
Arsenic (As)	SM3113-B	ND	ug/L	2.0	10	10/01/10	10/04/10	1040367	
Barium (Ba)	EPA 200.7	ND	ug/L	100	1000	09/28/10	09/29/10	1040156	
Beryllium (Be)	SM3113-B	ND	ug/L	1.0	4	09/27/10	09/27/10	1040036	
Boron (B)	EPA 200.7	180	ug/L	100		09/28/10	09/29/10	1040156	
Cadmium (Cd)	SM3113-B	ND	ug/L	1.0	5	09/27/10	09/27/10	1040030	
Chromium (Total Cr)	SM3113-B	ND	ug/L	10	50	09/27/10	09/27/10	1040038	
Copper (Cu)	EPA 200.7	ND	ug/L	50	1000	09/28/10	09/29/10	1040156	
Iron (Fe)	EPA 200.7	300	ug/L	100	300	09/28/10	09/29/10	1040156	
Lead (Pb)	SM3113-B	ND	ug/L	5.0		10/05/10	10/05/10	1041069	

Work Order: 10I1785

Received: 09/24/10 16:00 Reported: 10/15/10

Todd Engineers Project: Routine

Sub Project: Bighorn - Desert View Water 2490 Mariner Square Loop, Ste 215

Project Manager: Daniel J. Craig Alameda CA, 94501

BDVWA - MW1		1011785-	01 (Water)	Sample I	Date: 09/23/1	0 14:10 S	ampler: N	ot Listed
Analyte	Method	Result	Units	Rep. Limit	MCL	Prepared	Analyzed	Batch	Qualifier
<u>Metals</u>									
Magnesium (Mg)	EPA 200.7	9.3	mg/L	1.0		09/29/10	09/29/10	1040206	
Manganese (Mn)	EPA 200.7	220	ug/L	20	50	09/28/10	09/29/10	1040156	
Mercury (Hg)	EPA 245.1	ND	ug/L	1.0	2	09/29/10	09/29/10	1040184	
Nickel (Ni)	SM3113-B	ND	ug/L	10	100	09/27/10	09/27/10	1040066	
Potassium (K)	EPA 200.7	4.6	mg/L	1.0		09/29/10	09/29/10	1040206	
Selenium (Se)	SM3113-B	ND	ug/L	5.0	50	09/29/10	09/29/10	1040188	
Silver (Ag)	SM3113-B	ND	ug/L	10	100	09/27/10	09/28/10	1040068	
Sodium (Na)	EPA 200.7	63	mg/L	1.0		09/29/10	09/29/10	1040206	
Thallium (Tl)	EPA 200.9	ND	ug/L	1.0	2	09/28/10	09/28/10	1040064	
Vanadium (V)	EPA 200.9	4.2	ug/L	3.0		09/28/10	09/29/10	1040104	
Zinc (Zn)	EPA 200.7	ND	ug/L	50	5000	09/28/10	09/29/10	1040156	
Anion / Cation Balance									
Total Anions	Calculated	4.77	meq/L	0.62		10/01/10	09/28/10	[CALC]	
Total Cations	Calculated	6.07	meq/L	0.20		10/01/10	10/01/10	[CALC]	
Radiochemistry Analyses			•					. ,	
Gross Alpha	EPA 900.0	11	pCi/L	3.0	15	09/27/10	09/29/10	1039357	
Gross Alpha Counting Error	EPA 900.0	2.3	pCi/L			09/27/10	09/29/10	1039357	
Gross Alpha Min Det Activity	EPA 900.0	1.4	pCi/L			09/27/10	09/29/10	1039357	
Gross Beta	EPA 900.0	ND	pCi/L	4.0	50	09/27/10	09/29/10	1039357	
Gross Beta Counting Error	EPA 900.0	1.5	pCi/L			09/27/10	09/29/10	1039357	
Gross Beta Min Det Activity	EPA 900.0	1.3	pCi/L			09/27/10	09/29/10	1039357	
Uranium	EPA 900.0	14	pCi/L	1.0	20	10/05/10	10/07/10	1041049	
Uranium Counting Error	EPA 900.0	1.6	pCi/L			10/05/10	10/07/10	1041049	
Uranium Min Det Activity	EPA 900.0	0.87	pCi/L			10/05/10	10/07/10	1041049	
Volatile Organic Analyses			-						
Vinyl Chloride (VC)	EPA 524.2	ND	ug/L	0.50	0.5	09/28/10	09/28/10	1040063	
Trichlorofluoromethane (FREON 11)	EPA 524.2	ND	ug/L	5.0	150	09/28/10	09/28/10	1040063	
1,1-Dichloroethylene (1,1-DCE)	EPA 524.2	ND	ug/L	0.50	6	09/28/10	09/28/10	1040063	
1,1,2-Trichloro-1,2,2-trifluoroethane	EPA 524.2	ND	ug/L	10	1200	09/28/10	09/28/10	1040063	
Dichloromethane (Methylene Chloride)	EPA 524.2	ND	ug/L	0.50	5	09/28/10	09/28/10	1040063	
trans-1,2-Dichloroethylene (t-1,2-DCE)	EPA 524.2	ND	ug/L	0.50	10	09/28/10	09/28/10	1040063	
Methyl tert-Butyl Ether	EPA 524.2	ND	ug/L	3.0	13	09/28/10	09/28/10	1040063	
1,1-Dichloroethane (1,1-DCA)	EPA 524.2	ND	ug/L	0.50	5	09/28/10	09/28/10	1040063	
cis-1,2-Dichloroethylene (c-1,2-DCE)	EPA 524.2	ND	ug/L	0.50	6	09/28/10	09/28/10	1040063	
Chloroform (Trichloromethane)	EPA 524.2	ND	ug/L	1.0		09/28/10	09/28/10	1040063	
Carbon Tetrachloride	EPA 524.2	ND	ug/L	0.50	0.5	09/28/10	09/28/10	1040063	
1,1,1-Trichloroethane (1,1,1-TCA)	EPA 524.2	ND	ug/L	0.50	200	09/28/10	09/28/10	1040063	
Benzene	EPA 524.2	ND	ug/L	0.50	1	09/28/10	09/28/10	1040063	
1,2-Dichloroethane (1,2-DCA)	EPA 524.2	ND	ug/L	0.50	0.5	09/28/10	09/28/10	1040063	

Work Order: 10I1785

Received: 09/24/10 16:00 Reported: 10/15/10

Todd Engineers Project: Routine

2490 Mariner Square Loop, Ste 215 Sub Project: Bighorn - Desert View Water

Alameda CA, 94501 Project Manager: Daniel J. Craig

BDVWA - MW1		1011785-0	01 (Water)	Sample I	Date: 09/23/1	0 14:10 S	Sampler: N	ot Listed
Analyte	Method	Result	Units	Rep. Limit	MCL	Prepared	Analyzed	Batch	Qualifier
Volatile Organic Analyses									
Trichloroethylene (TCE)	EPA 524.2	0.57	ug/L	0.50	5	09/28/10	09/28/10	1040063	
1,2-Dichloropropane	EPA 524.2	ND	ug/L	0.50	5	09/28/10	09/28/10	1040063	
Bromodichloromethane	EPA 524.2	ND	ug/L	1.0		09/28/10	09/28/10	1040063	
Toluene	EPA 524.2	ND	ug/L	0.50	150	09/28/10	09/28/10	1040063	
Tetrachloroethylene (PCE)	EPA 524.2	3.5	ug/L	0.50	5	09/28/10	09/28/10	1040063	
1,1,2-Trichloroethane (1,1,2-TCA)	EPA 524.2	ND	ug/L	0.50	5	09/28/10	09/28/10	1040063	
Dibromochloromethane	EPA 524.2	ND	ug/L	1.0		09/28/10	09/28/10	1040063	
Monochlorobenzene (Chlorobenzene)	EPA 524.2	ND	ug/L	0.50	70	09/28/10	09/28/10	1040063	
Ethyl Benzene	EPA 524.2	ND	ug/L	0.50	300	09/28/10	09/28/10	1040063	
m,p-Xylene	EPA 524.2	ND	ug/L	1.0		09/28/10	09/28/10	1040063	
cis-1,3-Dichloropropene	EPA 524.2	ND	ug/L	0.50		09/28/10	09/28/10	1040063	
trans-1,3-Dichloropropene	EPA 524.2	ND	ug/L	0.50		09/28/10	09/28/10	1040063	
o-Xylene	EPA 524.2	ND	ug/L	0.50		09/28/10	09/28/10	1040063	
Styrene	EPA 524.2	ND	ug/L	0.50	100	09/28/10	09/28/10	1040063	
Bromoform	EPA 524.2	ND	ug/L	1.0		09/28/10	09/28/10	1040063	
1,1,2,2-Tetrachloroethane	EPA 524.2	ND	ug/L	0.50		09/28/10	09/28/10	1040063	
1,4-Dichlorobenzene (p-DCB)	EPA 524.2	ND	ug/L	0.50	5	09/28/10	09/28/10	1040063	
1,2-Dichlorobenzene (o-DCB)	EPA 524.2	ND	ug/L	0.50	600	09/28/10	09/28/10	1040063	
1,2,4-Trichlorobenzene	EPA 524.2	ND	ug/L	0.50	5	09/28/10	09/28/10	1040063	
Total 1,3-Dichloropropene	EPA 524.2	ND	ug/L	0.50	0.5	09/28/10	09/28/10	1040063	
Total Trihalomethanes (TTHM)	EPA 524.2	ND	ug/L	1.0	80	09/28/10	09/28/10	1040063	
Total Xylenes (m,p & o)	EPA 524.2	ND	ug/L	0.50	1750	09/28/10	09/28/10	1040063	
Surrogate: Bromofluorobenzene	EPA 524.2	97 %				09/28/10	09/28/10	1040063	
Surrogate: 1,2-Dichlorobenzene-d4	EPA 524.2	98 %				09/28/10	09/28/10	1040063	
Volatile Organic Analyses / EPA 504									
Ethylene Dibromide (EDB)	EPA 504.1	ND	ug/L	0.019	0.05	09/28/10	09/28/10	1040056	
Dibromochloropropane (DBCP)	EPA 504.1	ND	ug/L	0.0097	0.2	09/28/10	09/28/10	1040056	
Semi-Volatile Organic Analyses									
Endrin	EPA 508.1	ND	ug/L	0.10	2	09/29/10	09/29/10	1040205	
Lindane (gamma-BHC)	EPA 508.1	ND	ug/L	0.20	0.2	09/29/10	09/29/10	1040205	
Methoxychlor	EPA 508.1	ND	ug/L	10	30	09/29/10	09/29/10	1040205	
Toxaphene	EPA 508.1	ND	ug/L	1.0	3	09/29/10	09/29/10	1040205	
Chlordane	EPA 508.1	ND	ug/L	0.10	0.1	09/29/10	09/29/10	1040205	
Heptachlor	EPA 508.1	ND	ug/L	0.010	0.01	09/29/10	09/29/10	1040205	
Heptachlor Epoxide	EPA 508.1	ND	ug/L	0.010	0.01	09/29/10	09/29/10	1040205	
Hexachlorobenzene	EPA 508.1	ND	ug/L	0.50	1	09/29/10	09/29/10	1040205	
Hexachlorocyclopentadiene	EPA 508.1	ND	ug/L	1.0	50	09/29/10	09/29/10	1040205	
Polychlorinated Biphenyls (PCBs)	EPA 508.1	ND	ug/L	0.50	0.5	09/29/10	09/29/10	1040205	
Surrogate: Dibutylchlorendate	EPA 508.1	86 %				09/29/10	09/29/10	1040205	
Dalapon	EPA 515.4	ND	ug/L	10	200	09/29/10	09/29/10	1040257	

Todd EngineersProject:RoutineWork Order:10I17852490 Mariner Square Loop, Ste 215Sub Project:Bighorn - Desert View WaterReceived:09/24/10 16:00

Alameda CA, 94501 Project Manager: Daniel J. Craig Reported: 10/15/10

BDVWA - MW1 1011785-01 (Water) Sample Date: 09/23/10 14:10 **Sampler:** Not Listed

DD V WA - MWI		1011705-0) (\ atti	,	Sample 1	Jacc. 05/25/1	0 11.10 54	impici. 1	ot Eisted
Analyte	Method	Result	Units	Rep. Limit	MCL	Prepared	Analyzed	Batch	Qualifier
Semi-Volatile Organic Analyses									
2,4,5-TP (SILVEX)	EPA 515.4	ND	ug/L	1.0	50	09/29/10	09/29/10	1040257	
Bentazon (BASAGRAN)	EPA 515.4	ND	ug/L	2.0	18	09/29/10	09/29/10	1040257	
Picloram	EPA 515.4	ND	ug/L	1.0	500	09/29/10	09/29/10	1040257	
2,4-D	EPA 515.4	ND	ug/L	10	70	09/29/10	09/29/10	1040257	
Pentachlorophenol (PCP)	EPA 515.4	ND	ug/L	0.20	1	09/29/10	09/29/10	1040257	
Dinoseb (DNBP)	EPA 515.4	ND	ug/L	2.0	7	09/29/10	09/29/10	1040257	
Surrogate: 2,4-Dichlorophenylacetic acid	EPA 515.4	88 %				09/29/10	09/29/10	1040257	
Alachlor (ALANEX)	EPA 525.2	ND	ug/L	1.0	2	09/28/10	10/01/10	1040103	
Atrazine (AATREX)	EPA 525.2	ND	ug/L	0.50	1	09/28/10	10/01/10	1040103	
Benzo(a)pyrene	EPA 525.2	ND	ug/L	0.10	0.2	09/28/10	10/01/10	1040103	
Diethylhexylphthalate (DEHP)	EPA 525.2	ND	ug/L	3.0	4	09/28/10	10/01/10	1040103	
Di(2-ethylhexyl) adipate	EPA 525.2	ND	ug/L	5.0	400	09/28/10	10/01/10	1040103	
Molinate (ORDRAM)	EPA 525.2	ND	ug/L	2.0	20	09/28/10	10/01/10	1040103	
Simazine (PRINCEP)	EPA 525.2	ND	ug/L	1.0	4	09/28/10	10/01/10	1040103	
Thiobencarb (BOLERO)	EPA 525.2	ND	ug/L	1.0	70	09/28/10	10/01/10	1040103	
Surrogate: 1,3-dimethyl-2-nitrobenzene	EPA 525.2	93 %				09/28/10	10/01/10	1040103	
Surrogate: Perylene-d12	EPA 525.2	118 %				09/28/10	10/01/10	1040103	
Surrogate: Triphenylphosphate	EPA 525.2	193 %				09/28/10	10/01/10	1040103	QM-08
Oxamyl (VYDATE)	EPA 531.1	ND	ug/L	20	50	10/01/10	10/01/10	1040411	
Carbofuran (FURADAN)	EPA 531.1	ND	ug/L	5.0	18	10/01/10	10/01/10	1040411	
Glyphosate	EPA 547	ND	ug/L	25	700	10/01/10	10/01/10	1040407	

Work Order: 10I1785

Received: 09/24/10 16:00 Reported: 10/15/10

Todd Engineers Project: Routine

Sub Project: Bighorn - Desert View Water 2490 Mariner Square Loop, Ste 215

Project Manager: Daniel J. Craig Alameda CA, 94501

BDVWA - MW2		1011785-	02 (Water)		Sample I	Date: 09/24/10	12:05	Sampler: N	ot Listed
Analyte	Method	Result	Units	Rep. Limit	MCL	Prepared	Analyzed	l Batch	Qualifier
General Chemical Analyses									
Alkalinity, Total (as CaCO3)	SM 2320 B	170	mg/L	5.0		09/28/10	09/28/10	1040120	
Bicarbonate (HCO3)	SM 2320 B	210	mg/L	5.0		09/28/10	09/28/10	1040121	
Calcium (Ca)	SM3500CaD	43	mg/L	1.0		09/28/10	09/28/10	1040119	
Carbonate (CO3)	SM 2320B	ND	mg/L	5.0		09/28/10	09/28/10	1040122	
Chloride (Cl)	EPA 300.0	34	mg/L	1.0	500	09/24/10	09/25/10	1040117	
Cyanide (CN)	SM4500CNF	ND	ug/L	100	150	09/27/10	09/27/10	1040037	
Specific Conductance (E.C.)	SM 2510B	440	umhos/cm	2.0	1600	09/28/10	09/28/10	1040115	
Fluoride (F)	EPA 300.0	1.1	mg/L	0.10	2	09/24/10	09/25/10	1040117	
Hardness, Total (as CaCO3)	SM 2340 C	130	mg/L	5.0		09/28/10	09/28/10	1040118	
Hydroxide (OH)	SM 2320B	ND	mg/L	5.0		09/28/10	09/28/10	1040128	
MBAS (LAS Mole. Wt 326.5)	SM 5540C	ND	mg/L	0.10	0.5	09/24/10	09/24/10	1039404	
Nitrate (NO3)	EPA 300.0	2.2	mg/L	2.0	45	09/24/10	09/25/10	1040117	
Nitrate + Nitrite (as N)	EPA 300.0	500	ug/L	400	10000	09/24/10	09/25/10	1040117	
Nitrite as N (NO2-N)	EPA 300.0	ND	ug/L	400	1000	09/24/10	09/25/10	1040117	
Perchlorate (ClO4)	EPA 314.0	ND	ug/L	4.0	6	09/28/10	09/28/10	1040187	
pH (Lab)	SM 4500HB	7.9	pH Units			09/24/10	09/24/10	1039406	
Sulfate (SO4)	EPA 300.0	35	mg/L	0.50	500	09/24/10	09/25/10	1040117	
Total Filterable Residue/TDS	SM 2540C	320	mg/L	5.0	1000	09/28/10	09/30/10	1040065	
<u>Metals</u>									
Aluminum (Al)	EPA 200.7	610	ug/L	50	200	09/28/10	09/29/10	1040156	
Antimony (Sb)	SM3113-B	ND	ug/L	6.0	6	09/29/10	09/29/10	1040211	
Arsenic (As)	SM3113-B	ND	ug/L	2.0	10	10/01/10	10/04/10	1040367	
Barium (Ba)	EPA 200.7	ND	ug/L	100	1000	09/28/10	09/29/10	1040156	
Beryllium (Be)	SM3113-B	ND	ug/L	1.0	4	09/27/10	09/27/10	1040036	
Boron (B)	EPA 200.7	160	ug/L	100		09/28/10	09/29/10	1040156	
Cadmium (Cd)	SM3113-B	ND	ug/L	1.0	5	09/27/10	09/27/10	1040030	
Chromium (Total Cr)	SM3113-B	ND	ug/L	10	50	09/27/10	09/27/10	1040038	
Copper (Cu)	EPA 200.7	ND	ug/L	50	1000	09/28/10	09/29/10	1040156	
Iron (Fe)	EPA 200.7	490	ug/L	100	300	09/28/10	09/29/10	1040156	
Lead (Pb)	SM3113-B	ND	ug/L	5.0		10/05/10	10/05/10	1041069	
Magnesium (Mg)	EPA 200.7	8.8	mg/L	1.0		09/29/10	09/29/10	1040206	
Manganese (Mn)	EPA 200.7	110	ug/L	20	50	09/28/10	09/29/10	1040156	
Mercury (Hg)	EPA 245.1	ND	ug/L	1.0	2	09/29/10	09/29/10	1040184	
Nickel (Ni)	SM3113-B	ND	ug/L	10	100	09/27/10	09/27/10	1040066	
Potassium (K)	EPA 200.7	4.8	mg/L	1.0		09/29/10	09/29/10	1040206	
Selenium (Se)	SM3113-B	ND	ug/L	5.0	50	09/29/10	09/29/10	1040188	
Silver (Ag)	SM3113-B	ND	ug/L	10	100	09/27/10	09/28/10	1040068	
Sodium (Na)	EPA 200.7	45	mg/L	1.0		09/29/10	09/29/10	1040206	
Thallium (Tl)	EPA 200.9	ND	ug/L	1.0	2	09/28/10	09/28/10	1040064	
Vanadium (V)	EPA 200.9	3.1	ug/L	3.0		09/28/10	09/29/10	1040104	

Todd EngineersProject:RoutineWork Order:10I17852490 Mariner Square Loop, Ste 215Sub Project:Bighorn - Desert View WaterReceived:09/24/10 16:00Alameda CA, 94501Project Manager:Daniel J. CraigReported:10/15/10

BDVWA -	MW2		10I1785-	02 (Water))	Sample I	Date: 09/24/10	0 12:05 Sa	ampler: N	ot Listed
Analyte		Method	Result	Units	Rep. Limit	MCL	Prepared	Analyzed	Batch	Qualifier
<u>Metals</u>										
Zinc (Zn)		EPA 200.7	ND	ug/L	50	5000	09/28/10	09/29/10	1040156	
Anion / Cat	tion Balance									
Total Anio	ons	Calculated	5.22	meq/L	0.62		10/01/10	09/28/10	[CALC]	
Total Cati	ons	Calculated	4.95	meq/L	0.20		10/01/10	10/01/10	[CALC]	
Radiochem	istry Analyses									
Gross Alpl	ha	EPA 900.0	7.3	pCi/L	3.0	15	10/01/10	10/05/10	1040352	
Gross Alpl	ha Counting Error	EPA 900.0	1.7	pCi/L			10/01/10	10/05/10	1040352	
Gross Alpl	ha Min Det Activity	EPA 900.0	1.0	pCi/L			10/01/10	10/05/10	1040352	
QM-08 The surrogate recovery was outside acceptance limits for this sample due to matrix interference.										
HT-06	Sample was received and ana	lyzed outside of rec	ommended h	old time.						

Bd Slaufy

Analysis hold time extended to 28 days by sample acidification.

Analyte NOT DETECTED at or above the reporting limit

Bob Glaubig

HT-05

ND

Laboratory Director

Certificate of Analysis

Report Date: Monday, October 4, 2010
Received Date: Monday, September 27, 2010

Phones: (909) 825-7693

Fax: (909) 825-7696

Received Time: 12:30 pm Turnaround Time: Normal

Client: Clinical Laboratory of San Bernardino, Inc.

21881 Barton Road Grand Terrace, CA 92313

Attn: Bob Glaubig P.O. #:

Project: 10l1785

Lab Sample ID:0127030-01Sample ID:BDVWA-MW1/10I1785Matrix: WaterSampled by:ClientSampled:09/23/10 14:10

Analyte	Result	MDL	MRL	Units	Dil	Method	Prepared	Analyzed	Batch	Qualifier
Endothall	ND	3.5	45	ug/l	1x1	EPA 548.1	9/27/10	9/30/10 19:12	W0I0994	
Diquat	ND	0.90	4.0	ug/l	1x1	EPA 549.2	9/27/10	9/28/10 14:49	W0I1017	

0l27030 Page 1 of 3

Certificate of Analysis

Quality Control Section

	Diquat a	ind Paraqua	t by EPA 549	.2 - Qualit	ty Control				
atch W0I1017 - EPA 549.2									
Blank (W0I1017-BLK1)					Prepared: 09	/27/10	Analyzed: 09/28	3/10 14:49	
Analyte	Sample Result	QC Result	Qualifier	Units	Spike Level	%REC	%REC Limits	RPD	RPD Limit
Diquat		ND		ug/l					
LCS (W0I1017-BS1)					Prepared: 09	/27/10	Analyzed: 09/28	3/10 14:49	
Analyte	Sample Result	QC Result	Qualifier	Units	Spike Level	%REC	%REC Limits	RPD	RPC Limi
Diquat		15.1		ug/l	20.0	76	54-135		
Matrix Spike (W0I1017-MS1)	s	ource: 0I24025	5-01		Prepared: 09	/27/10	Analyzed: 09/28	8/10 14:49	
Analyte	Sample Result	QC Result	Qualifier	Units	Spike Level	%REC	%REC Limits	RPD	RPC Limi
Diquat	ND	16.7		ug/l	20.0	84	52-130		
Matrix Spike Dup (W0I1017-MSD1)	s	ource: 0I24025	5-01		Prepared: 09	/27/10	Analyzed: 09/28	8/10 14:49	
Analyte	Sample Result	QC Result	Qualifier	Units	Spike Level	%REC	%REC Limits	RPD	RPE Limi
Diquat		16.1 dothall By E	PA 548.1 - Q	ug/l uality Cor	20.0	81	52-130	4	30
atch W0I0994 - EPA 548.1			EPA 548.1 - Q		ntrol				30
atch W0I0994 - EPA 548.1 Blank (W0I0994-BLK1)				uality Cor	ntrol	/27/10	Analyzed: 09/30 %REC	0/10 14:00	
atch W0I0994 - EPA 548.1	En	dothall By E	E PA 548.1 - Q Qualifier		ntrol Prepared: 09		Analyzed: 09/30 %REC		
atch W0I0994 - EPA 548.1 Blank (W0I0994-BLK1)	En Sample Result	dothall By E		uality Cor	Prepared: 09 Spike	/27/10	Analyzed: 09/30 %REC	0/10 14:00	RPI
Blank (W0I0994 - EPA 548.1 Analyte	En Sample Result	QC Result		uality Cor	Prepared: 09 Spike Level	/27/10 %REC	Analyzed: 09/30 %REC Limits Analyzed: 09/30	0/10 14:00 RPD	RPI Limi
Blank (W0I0994 - EPA 548.1 Blank (W0I0994-BLK1) Analyte Endothall	En Sample Result	QC Result		uality Cor	Prepared: 09 Spike Level	/27/10 %REC	Analyzed: 09/30 %REC Limits Analyzed: 09/30 %REC	0/10 14:00 RPD	RPC Limi
Analyte Endothall LCS (W010994-BS1)	Sample Result Sample Result	QC Result ND	Qualifier	Units	Prepared: 09 Spike Level Prepared: 09 Spike	/27/10 %REC /27/10	Analyzed: 09/30 %REC Limits Analyzed: 09/30 %REC	0/10 14:00 RPD 0/10 14:19	RPI Limi
Analyte Analyte LCS (W010994-BS1) Analyte	Sample Result Sample Result	QC Result ND QC Result	Qualifier Qualifier	Units ug/I	Prepared: 09 Spike Level Prepared: 09 Spike Level 100	/27/10 %REC /27/10 %REC 62	Analyzed: 09/30 %REC Limits Analyzed: 09/30 %REC Limits	0/10 14:00 RPD 0/10 14:19 RPD	RPC Limi
Analyte Endothall Analyte Endothall LCS (W010994-BS1) Analyte Endothall	Sample Result Sample Result	QC Result ND QC Result 62.0	Qualifier Qualifier	Units ug/I	Prepared: 09 Spike Level Prepared: 09 Spike Level 100	/27/10 %REC /27/10 %REC 62	Analyzed: 09/30 %REC Limits Analyzed: 09/30 %REC Limits 3.5-143 Analyzed: 09/30 %REC	0/10 14:00 RPD 0/10 14:19 RPD	RPI Limi RPI Limi
Analyte Endothall Analyte Endothall Analyte Endothall Matrix Spike (W010994-MS1)	Sample Result Sample Result Sample Result	QC Result ND QC Result 62.0 Durce: 0124032	Qualifier Qualifier	Units ug/l Units	Prepared: 09 Spike Level Prepared: 09 Spike Level 100 Prepared: 09 Spike	/27/10 %REC /27/10 %REC 62 /27/10	Analyzed: 09/30 %REC Limits Analyzed: 09/30 %REC Limits 3.5-143 Analyzed: 09/30 %REC	0/10 14:00 RPD 0/10 14:19 RPD 0/10 14:38	RPE Limi RPE Limi
Analyte Endothall Analyte Endothall Analyte Endothall Matrix Spike (W0I0994-MS1) Analyte	Sample Result Sample Result Sample Result ND	QC Result ND QC Result 62.0 Durce: 0124032 QC Result	Qualifier Qualifier 2-01 Qualifier	Units ug/I Units ug/I Units	Prepared: 09 Spike Level Prepared: 09 Spike Level 100 Prepared: 09 Spike Level 100	/27/10 %REC /27/10 %REC 62 /27/10 %REC 5	Analyzed: 09/30 %REC Limits Analyzed: 09/30 %REC Limits 3.5-143 Analyzed: 09/30 %REC Limits	0/10 14:00 RPD 0/10 14:19 RPD 0/10 14:38 RPD	RPE Limi RPE Limi
Analyte Endothall Endothall Matrix Spike (W0I0994-MS1) Analyte Endothall Endothall Endothall Matrix Spike (W0I0994-MS1) Analyte Endothall	Sample Result Sample Result Sample Result ND	QC Result ND QC Result 62.0 Durce: 0124032 QC Result 5.13	Qualifier Qualifier 2-01 Qualifier	Units ug/I Units ug/I Units	Prepared: 09 Spike Level Prepared: 09 Spike Level 100 Prepared: 09 Spike Level 100	/27/10 %REC /27/10 %REC 62 /27/10 %REC 5	Analyzed: 09/30 %REC Limits Analyzed: 09/30 %REC Limits 3.5-143 Analyzed: 09/30 %REC Limits 3.5-137 Analyzed: 09/30 %REC	0/10 14:00 RPD 0/10 14:19 RPD 0/10 14:38 RPD	RPE Limi RPE Limi

0l27030 Page 2 of 3

Certificate of Analysis

Notes:

The Chain of Custody document is part of the analytical report.

Any remaining sample(s) for testing will be disposed of one month from the final report date unless other arrangements are made in advance.

All results are expressed on wet weight basis unless otherwise specified.

An Absence of Total Coliform meets the drinking water standards as established by the State of California Department of Health Services. The Reporting Limit (RL) is referenced as laboratory's Practical Quantitation Limit (PQL).

For Potable water analysis, the Reporting Limit (RL) is referenced as Detection Limit for reporting purposes (DLRs) defined by EPA.

If sample collected by Weck Laboratories, sampled in accordance to lab SOP MIS002

Authorized Signature

Contact: Brandon Gee (Project Manager)

ELAP #1132 LACSD # 10143 NELAC # 04229CA

The results in this report apply to the samples analyzed in accordance with the chain of custody document. Weck Laboratories certifies that the test results meet all requirements of NELAC unless noted in the Case Narrative. This analytical report must be reproduced in its entirety.

Flags for Data Qualifiers:

MS-01	The spike recovery for this QC sample is outside of established control limits possibly due to sample matrix interference.
ND	NOT DETECTED at or above the Reporting Limit. If J-value reported, then NOT DETECTED at or above the Method

NOT DETECTED at or above the Reporting Limit. If J-value reported, then NOT DETECTED at or above the Method

Detection Limit (MDL).

Sub Subcontracted analysis, original report enclosed.

Dil The total dilution factor is expressed as a multiplication between the preparation dilution factor (a) and the analysis dilution

factor (b) as "a x b". (a) and (b) are indicated as whole numbers with rounding up for ≥ 0.5 and off for < 0.5

DL Method Detection Limit RL Method Reporting Limit MDA Minimum Detectable Activity

0127030 Page 3 of 3

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

Report Prepared for:

Bob Glaubig Clinical Lab of San Bernardino 21881 Barton Road Grand Terrace CA 92313

> REPORT OF LABORATORY ANALYSIS FOR 2,3,7,8-TCDD

Report Summary:

This report contains results of one drinking water sample analyzed to determine 2,3,7,8-TCDD content. This sample was analyzed according to Method 1613 by High Resolution Gas Chromatography/High Resolution Mass Spectrometry.

Report Information:

Pace Project #: 10139161

Sample Receipt Date: 09/28/2010

Client Project #: 10I1785 Client Sub PO #: N/A State Cert #: 01155CA

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 2 Drinking Water Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Colin Schuft, your Pace Project Manager.

This report has been reviewed by:

October 12, 2010

Nate Habte, Project Manager

(612) 607-6407

(612) 607-6444 (fax)

natnael.habte@pacelabs.com

Report of Laboratory Analysis

This report should not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

The results relate only to the samples included in this report.

Report Prepared Date:

October 12, 2010

Tel: 612-607-1700 Fax: 612- 607-6444

Minnesota Laboratory Certifications

Authority	Certificate #	Authority	Certificate #
Alabama	40770	Montana	92
Alaska	MN00064	Nebraska	
Arizona	AZ0014	Nevada	MN000642010
Arkansas	88-0680	New Jersey (N	MN002
California	01155CA	New Mexico	MN00064
Colorado	MN00064	New York (NEL	11647
Connecticut	PH-0256	North Carolina	27700
EPA Region 5	WD-15J	North Dakota	R-036
EPA Region 8	8TMS-Q	Ohio	4150
Florida (NELAP	E87605	Ohio VAP	CL101
Georgia (DNR)	959	Oklahoma	D9922
Guam	09-019r	Oregon (ELAP)	MN200001-005
Hawaii	SLD	Oregon (OREL	MN200001-005
Idaho	MN00064	Pennsylvania	68-00563
Illinois	200012	Saipan	MP0003
Indiana	C-MN-01	South Carolina	74003001
Indiana	C-MN-01	Tennesee	2818
Iowa	368	Tennessee	02818
Kansas	E-10167	Texas	T104704192-08
Kentucky	90062	Utah (NELAP)	PAM
Louisiana	LA0900016	Virginia	00251
Maine	2007029	Washington	C755
Maryland	322	West Virginia	9952C
Michigan	9909	Wisconsin	999407970
Minnesota	027-053-137	Wyoming	8TMS-Q
Mississippi	MN00064		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Reporting Flags

- A = Reporting Limit based on signal to noise
- B = Less than 10x higher than method blank level
- C = Result obtained from confirmation analysis
- D = Result obtained from analysis of diluted sample
- E = Exceeds calibration range
- I = Interference present
- J = Estimated value
- Nn = Value obtained from additional analysis
- P = PCDE Interference
- R = Recovery outside target range
- S = Peak saturated
- U = Analyte not detected
- V = Result verified by confirmation analysis
- X = %D Exceeds limits
- Y = Calculated using average of daily RFs
- * = See Discussion

REPORT OF LABORATORY ANALYSIS

SUBCONTRACT ORDER

Clinical Laboratory of San Bernardino

10I1785

		1011/05	10139161
SENDING LABORATORY:		RECEIVING LABORATORY:	INDITE
Clinical Laboratory of San Bernardino 21881 Barton Road Grand Terrace, CA 92313 Phone: 909.825.7693 Fax: 909.825.7696 Project Manager: Bob Glaubig		Pace Analytical 1700 Elm St Minneapolis, MN 55414 Phone :(612) 607-1700 Fax: (612) 607-6444	
0.1 0	g@clinical-lab.com	es provided [] Yes [// No Other Days	styles@clinical-lab.com
Analysis	Due		Comments
Sample ID: BDVWA - MW1 / 10I1785-01	Water S	Sampled:09/23/10 14:10 PS Code:	<i>c</i> ol
	10/06/10 17 00		
1613 Dioxins	10/06/10 17:00		
1613 Dioxins Containers Supplied: 1 L Amber Glass Na2S2O 1 L Amber Gl			

Bu Oly Released By

09/27/10 07:40 Date / Time

Received By

9-27-2010 1/11

Released By

Date / Time

Mayeur Paris Mare
Received By

9-38-10Date / Time

T= 4

Sample Condition Upon Receipt

Client Name	:_ <u>cl</u>	inic	al l	ab S.B.		Project #	101391	61
Courier: 🗖 Fed Ex 🗌 UPS 🗍 USPS 🗍 Clie	ont 🗆	Comr	nercial	Pace Othe	ər	(0)0016	neli	
Tracking #: 1939 5(6) 6453						2.7/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/	Due Date	
Custody Seal on Cooler/Box Present:		nọ	Seals	s intact:	s 🔼	no Proj	Name	
Packing Material: Bubble Wrap Bubble	a Bage		None	Other		_ Temp Blank: Y	es	No X
Thermometer Used 80344042 or (19425)	Type	of Ice	: Wei	Blue None		Samples on ice, o		
Cooler Temperature Temp should be above freezing to 6°C	Biolo	gicai	Tissue	is Frozen: Yes Comments:	No		lais of person	
Chain of Custody Present:	Z iYes	□No	□n/A	1.				
Chain of Custody Filled Out:	Æ Yes	□No	□N/A	2.			······································	
Chain of Custody Relinquished:	Z Yes	□No	□N⁄A	3.				
Sampler Name & Signature on COC:	□Yes	Min o	□N/A	4.			**********	
Samples Arrived within Hold Time:	A Yes	□No	□N⁄A	5.				
Short Hold Time Analysis (<72hr):	□Yes	I ≱No	□n/A	6.				
Rush Turn Around Time Requested:	□Yes	DETNO	□N⁄A	7.				
Sufficient Volume:	Ø € Ŷes	□No	□n/A	8.				
Correct Containers Used:	A Yes	□No	□N⁄A	9.				
-Pace Containers Used:	□Yes	ØNo	□N⁄A					
Containers Intact:	Ø Ves	□No	□N⁄A	10.				
Filtered volume received for Dissolved tests	□Yes	□No	ZINA	11.				
Sample Labels match COC:	//Yes	□No	[]N/A	12.				
-includes date/time/ID/Analysis Matrix:	<u></u>	St		·				
All containers needing acid/base preservation have been rhecked. Noncompilance are noted in 13.	□Yes	□No	Ø]N/A	13.	EONH	☐ H2SO4	NaOH	HCI
All containers needing preservation are found to be in compliance with EPA recommendation.	□Yes	□No	MINIA	Samp #				
exceptions: VOA,Coliform, TOC, Oil and Grease, WI-DRO (water	_{r∶} □Yes	M No	!	Initial when completed		Lot # of added preservative		
Samples checked for dechlorination:	□Yes	□No	E TN/A	14.				
leadspace in VOA Vials (>6mm):	☐Yes		,					
rip Blank Present	□Yes	#INo	□N⁄A	16.				
rip Blank Custody Seals Present	□Yes	-	O N/A					
Pace Trip Blank Lot # (if purchased):						· · · · · · · · · · · · · · · · · · ·		
Client Notification/ Resolution:	<u></u>	*******				Field Data Require	d? Y	/ N
Person Contacted:			Date/1	ime:				
Comments/ Resolution:								
			····					
-								
	·····	1						
	/							
				/	/			
Project Manager Review:		-5	7,	/ fr.k		Date:	09/28	7/10
	1 0	-		~			•	

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the Read Calyllical Stimbles, Inc. F-L213Rev.00, 05Aug2009

1700 Elm Street SE, Suite 200, Minneapolis, MN 55414

Report No....10139161_1613DW

Drinking Water Analysis Results 2,3,7,8-TCDD -- USEPA Method 1613B

Tel: 612-607-1700 Fax: 612-607-6444

Sample ID......10I1785-01

Client...... Clinical Lab of San Bernardino

Lab Sample ID.....10139161001

Date Collected.....09/23/2010 Date Received......09/28/2010

Date Extracted.....09/30/2010

	Sample 10I1785-01	Method Blank	Lab Spike	Lab Spike Dup
[2,3,7,8-TCDD]	ND	ND		
RL	5.0 pg/L	5.0 pg/L		
2,3,7,8-TCDD Recovery			105%	108%
Spike Recovery Limit			73-146%	73-146%
RPD			2.	9%
IS Recovery	78%	85%	87%	85%
IS Recovery Limits	31-137%	31-137%	25-141%	25-141%
CS Recovery	77%	84%	87%	86%
CS Recovery Limits	42-164%	42-164%	37-158%	37-158%
Filename Analysis Date Analysis Time Analyst Volume Dilution ICAL Date	R101002A_10 10/02/2010 12:06 CVS 0.905L NA 08/28/2010	R101002A_05 10/02/2010 07:31 CVS 1.019L NA 08/28/2010	R101002A_03 10/02/2010 06:23 CVS 1.008L NA 08/28/2010	R101002A_04 10/02/2010 06:57 CVS 0.995L NA 08/28/2010
CCAL Filename	R101002A_02	R101002A_02	R101002A_02	R101002A_02

! = Outside the Control Limits

ND = Not Detected

RL = Reporting Limit

Limits = Control Limits from Method 1613 (10/94 Revision), Tables 6A and 7A

RPD = Relative Percent Difference of Lab Spike Recoveries

IS = Internal Standard $[2,3,7,8\text{-TCDD-}^{13}C_{12}]$ CS = Cleanup Standard $[2,3,7,8\text{-TCDD-}^{37}C_{14}]$

Project No.....10139161

Analyst: __Chuch Suepn

Analytical Chemists October 14, 2010

Clinical Lab of San Bernardino

P.O. Box 329

San Bernardino, CA 92402

Lab ID : SP 1010046 Customer : 2-1747

Laboratory Report

Introduction: This report package contains total of 4 pages divided into 3 sections:

Case Narrative (2 pages) : An overview of the work performed at FGL.

Sample Results (1 page): Results for each sample submitted.

Quality Control (1 page) : Supporting Quality Control (QC) results.

Case Narrative

This Case Narrative pertains to the following samples:

Sample Description	Date Sampled	Date Received	FGL Lab ID#	Matrix	
BDVWA-MW1 / 10I1785-01	09/23/2010	09/30/2010	SP 1010046-001	DW	

Sampling and Receipt Information: The sample was received, prepared and analyzed within the method specified holding times. All samples arrived on ice. All samples were checked for pH if acid or base preservation is required (except for VOAs). For details of sample receipt information, please see the attached Chain of Custody and Condition Upon Receipt Form.

Quality Control: All samples were prepared and analyzed according to the following tables:

Radio QC

903.0	10/07/2010:212657 All analysis quality controls are within established criteria.
	10/05/2010:210355 All preparation quality controls are within established criteria.
905.0	10/07/2010:212656 All analysis quality controls are within established criteria.
	10/06/2010:210424 All preparation quality controls are within established criteria, except: The following note applies to Total Strontium: 410 Relative Percent Difference (RPD) not within Maximum Allowable Value (MAV). Data was accepted based on the LCS or CCV recovery.
906.0	10/12/2010:212886 All analysis quality controls are within established criteria.
	10/11/2010:210579 All preparation quality controls are within established criteria.
Ra - 05	10/10/2010:212880 All analysis quality controls are within established criteria.

Field Office Visalia, California TEL: 559/734-9473 Mobile: 559/737-2399 FAX: 559/734-8435 October 14, 2010 Lab ID : SP 1010046

Clinical Lab of San Bernardino Customer : 2-1747

Radio QC

Ra - 05	10/09/2010:210383 All preparation quality controls are within established criteria.
---------	---

Certification:: I certify that this data package is in compliance with NELAC standards, both technically and for completeness, except for any conditions listed above. Release of the data contained in this data package is authorized by the Laboratory Director or his designee, as verified by the following electronic signature.

KD:DMB

Approved By Kelly A. Dunnahoo, B.S.

Analytical Chemists October 14, 2010 Lab ID : SP 1010046-001

Customer ID: 2-1747

Clinical Lab of San Bernardino

P.O. Box 329 Sampled On : September 23, 2010-14:10 San Bernardino, CA 92402

: Not Available Sampled By

Received On: September 30, 2010-16:15

Matrix : Drinking Water

: BDVWA-MW1 / 10I1785-01 Description

Project : 10I1785

Sample Result - Radio

Constituent	Result ± Error	MDA	Units	MCL/AL	Sample	Preparation	Sampl	e Analysis
Constituent	Result ± Ellor	MDA	Omts	WICL/AL	Method	Date/ID	Method	Date/ID
Radio Chemistry P:1'5								
Strontium 90	1.33 ± 0.747	1.06	pCi/L	8	905.0	10/06/10:210424	905.0	10/07/10:212656
Total Alpha Radium (226)	0.000 ± 0.340	0.549	pCi/L	3	903.0	10/05/10:210355	903.0	10/07/10:212657
Tritium	0.000 ± 222	386	pCi/L	20000	906.0	10/11/10:210579	906.0	10/12/10:212886
Ra 228	0.000 ± 0.653	0.279	pCi/L	2	Ra - 05	10/09/10:210383	Ra - 05	10/10/10:212880

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (P) Plastic Preservatives: HNO3 pH < 2

MDA = Minimum Detectable Activity (Calculated at the 95% confidence level) = Data utilized by DHS to determine matrix interference.

MCL / AL = Maximum Contamination Level / Action Level. Alpha's Action Level of 5 pCi/L is based on the Assigned Value (AV).

AV = (Gross Alpha Result + (0.84 x Error)). CCR Section 64442: Drinking Water Compliance Note: Do the following If Gross Alpha's (AV) exceeds 5 pCi/L run Uranium. If Gross Alpha's (AV) minus Uranium exceeds 5 pCi/L run Radium 226.

Drinking Water Compliance:

Gross Alpha (AV) minus Uranium is less than or equal to 15 pCi/L

Uranium is less than or equal to 20 pCi/L

Radium 226 + Radium 228 is less than or equal to 5 pCi/L

Note: Samples are held for 3-6 months prior to disposal.

Field Office Visalia, California TEL: 559/734-9473 Mobile: 559/737-2399 FAX: 559/734-8435

Analytical Chemists

October 14, 2010 Lab ID : SP 1010046 Clinical Lab of San Bernardino : 2-1747 Customer

Quality Control - Radio

Constituent	Method	Date/ID	Type	Units	Conc.	QC Data	DQO	Note
Radio								
Alpha	903.0	10/07/2010:212657	CCV	cpm	10320	39.0 %	37 - 46	
r ··			CCB	cpm		0.100	0.15	
Total Alpha Radium (226)	903.0	10/05/2010:210355	RgBlk	pĈi/L		0.17	2	
•			LCS	pCi/L	18.17	57.7 %	52-89	
			BS	pCi/L	18.17	49.6 %	43-92	
			BSD	pCi/L	18.17	48.4 %	43-92	
			BSRPD	pCi/L	18.17	2.3%	≤35.5	
Beta	905.0	10/07/2010:212656	CCV	cpm	10790	87.4 %	82 - 100	
			CCB	cpm		0.2200	0.56	
Total Strontium	905.0	10/06/2010:210424	RgBlk	pCi/L		0.17	2	
			LRS	pCi/L	19.76	122 %	53-133	
			BS	pCi/L	19.75	119 %	75-125	
			BSD	pCi/L	19.75	96.8 %	75-125	
			BSRPD	pCi/L	19.75	20.2%	≤20	410
Tritium	906.0	10/11/2010:210579	Blank	pCi/L		-220	<1000	
			LCS	pCi/L	1995	83.3 %	75-125	
			BS	pCi/L	1995	94.3 %	75-125	
			BSD	pCi/L	1995	99.2 %	75-125	
			BSRPD	pCi/L	1995	5.7%	≤25	
	906.0	10/12/2010:212886	CCV	pCi/L	41880	95.5 %	90-110	
			CCB	pCi/L		-57	500	
Beta	Ra - 05	10/10/2010:212880	CCV	cpm	10780	88.2 %	81 - 99	
			CCB	cpm		0.3800	0.59	
Ra 228	Ra - 05	10/09/2010:210383	RgBlk	pCi/L		-0.11	3	
			LRS	pCi/L	75.70	52.4 %	27-59	
			BS	pCi/L	75.70	94.3 %	75-125	
			BSD	pCi/L	75.70	97.5 %	75-125	
			BSRPD	pCi/L	75.70	3.3%	≤25	

Definition

CCV : Continuing Calibration Verification - Analyzed to verify the instrument calibration is within criteria.

CCB : Continuing Calibration Blank - Analyzed to verify the instrument baseline is within criteria.

Blank : Method Blank - Prepared to verify that the preparation process is not contributing contamination to the samples.

RgBlk : Method Reagent Blank - Prepared to correct for any reagent contributions to sample result.

: Laboratory Control Standard/Sample - Prepared to verify that the preparation process is not affecting analyte recovery. LCS : Blank Spikes - A blank is spiked with a known amount of analyte. It is prepared to verify that the preparation process is not BS

affecting analyte recovery.

: Blank Spike Duplicate of BS/BSD pair - A blank duplicate is spiked with a known amount of analyte. It is prepared to verify that BSD

the preparation process is not affecting analyte recovery.

: BS/BSD Relative Percent Difference (RPD) - The BS relative percent difference is an indication of precision for the preparation **BSRPD**

and analysis.

ND : Non-detect - Result was below the DQO listed for the analyte.

DQO : Data Quality Objective - This is the criteria against which the quality control data is compared.

Explanation

: Relative Percent Difference (RPD) not within Maximum Allowable Value (MAV). Data was accepted based on the LCS or CCV 410

Field Office Visalia, California TEL: 559/734-9473 Mobile: 559/737-2399 FAX: 559/734-8435

SUBCONTRACT ORDER

Clinical Laboratory of San Bernardino

SENDING LABORATORY:

10I1785

RECEIVING LABORATORY:

1	0	10046
ı	V	10019

Clinical Laboratory of San Bernardino 21881 Barton Road Grand Terrace, CA 92313 Phone: 909.825.7693 Fax: 909.825.7696 Project Manager: Bob Glaubig		FGL Environment FGL Environmen	ation St CA 93060) 392-2000	
The Association and the European Europe	g@clinical-lab.com [vided []	ical-lab.com [] styles@clinical-lab.com Yes [VNo	
Analysis	Due		Comments	
Sample ID: BDVWA - MW1 / 10I1785-01	Water Sample	ed:09/23/10 14:10) PS Code:	
Tritium EPA 906.0	10/06/10 17:00			
Strontium 90 EPA 905.0	10/06/10 17:00			
Radium 228 EPA Ra-05	10/06/10 17:00			
Radium 226 EPA 903.1	10/06/10 17:00			
Containers Supplied:				
1/2 Gallon Plastic (A) 1/2 Gallon Pla	astic (B) 1/2 Gallon	Plastic (C)	250	
	1/2 Garion	i i iastic (C)	250mL Amber Glass (I)	

Released By	Date / Time	Received By	Date / Time
Released By	Date / Time	Received By	Date / Time
Released By	Date / Time	Received By	Date / Time
Released By	Date / Time	Date / Time	Date / Time
Released By	Date / Time	Date /	

Doc ID: F2REC005.011 Page: 1 of 1

Santa Paula - Condition Upon Receipt (Attach to COC)

	Santa Paula - Condition O	bon recessby (
	pt: of ice chests/packages received:	
	OTC if received over the counter unpackaged	$\mathcal{D}_{\mathcal{I}}$
2.	Were samples received in a chilled condition Acceptable is 2° to 6° C. Also acceptable is receive temperature (RRT) if sampled within one hour of reconditional documented below. If many packages are received a further review. Please notify Microbiology personner.	n? Temps:
3.	Do the number of bottles received agree wi	th the COC?
4.	Were samples received intact? (i.e. no brok	en bottles, leaks etc.) N/A Yes No
5.	Were sample custody seals intact?	
Sign	and date the COC, obtain LIMS sample nur	mbers, select methods/tests and print has a
San	nple Verification, Labeling and Distribution. Were all requested analyses understood an	d acceptable?
2.	Did bottle labels correspond with the clien	t's ID's?
3.	Were all bottles requiring sample preserve	tion properly preserved? Tes 110
4.	VOAs checked for Headspace?	Yes No (NA)
, 5.	Were all analyses within holding times at	ced and accepted?
Δt	tach labels to the containers and include a co	py of the COC for lab delivery.
Sa	imple Receipt, Login and Verification compl	eted by (initials):
D A	m Ctootod:	et specifications (i.e. temps) must be resolved. Phone Number: Date:
	Resolution:	
2	Person Contacted:	Phone Number: Date:
	Problem:	(2-1747)
	Resolution:	Cimical lab of lan Bernardino
		SP 1010046
	 :#	
	f 10°	

LA Testing

520 Mission Street South Pasadena, CA 91030

Phone: (323) 254-9960 Fax: (323) 254-9982 Web: http://www.latesting.com Email:pasadenalab@latesting.com

Attn: Bob Glaubig
Clinical Labs

21881 Barton Road

Grand Terrace, CA 92313

EMSL Order:

321013201 32CLIN51

Customer ID:

Customer PO:

EMSL Project ID:

Received:

9/27/2010

Fax: (909) 825-7696

Phone: (909) 825-7693

Analyzed:

10/01/2010

Project: 10I1785

Test Report: Determination of Asbestos Structures >10µm in Drinking Water Performed by the 100.2 Method (EPA 600/R-94/134)

ASBESTOS Effective Sample Original Asbestos **Fibers** Analytical Concentration Confidence Filter Sample ID Filtration Sample Vol. Area Types Sensitivity Detected Limits Client / EMSL Date/Time Filtered Area Analyzed (ml) (mm²) (mm²) MFL (million fibers per liter) BDVWA-MW1/10I1785-01 None Detected 9/28/2010 100 1288 0.0695 ND 0.19 < 0.19 0.00 - 0.6801:05 PM 321013201-0001

Samples received out of 48 hour hold time. UV Ozonated.

Initial report from: 10/01/2010 18:00:02

Analyst(s)
Sherrie Ahmad (1)

The

Any questions please contact Jerry Drapala.

Sample collection and containers provided by the client, acceptable bottle blank level is defined as <0.01MFL>10um. ND=None Detected. This report relates only to those items tested. This report may not be reproduced, except in full, without written permission by LA Testing. Samples received in good condition unless otherwise noted.

Samples analyzed by LA Testing 520 Mission Street, South Pasadena CA CA ELAP 2283

321013201

SUBCONTRACT ORDER

Clinical Laboratory of San Bernardino 1011785

	SENDING LABORATORY:
	Clinical Laboratory of San Bernardino 21881 Barton Road Grand Terrace, CA 92313 Phone: 909.825.7693 Fax: 909.825.7696 Project Manager: Bob Glaubig
l-lab.com	Please email results to Project Manager: Bob Glaubig [] benart@clinical-lab.com [[glaubig@clinical-lab.com]
	Please California EDT transfer those samples with PS
	Turn Around Time [] 10 Days [🗸 5 Days
	Subcontract Comments: Extra charge
	Analysis Due
	Sample ID: BDVWA - MW1 / 10I1785-01 Water
	Asbestos EPA 100.2 10/06/10
	Containers Supplied:
	1 Quart Plastic (D)
	Sample ID: BDVWA - MW1 / 1011785-01 Water Asbestos EPA 100.2 10/06/10 Containers Supplied:

Chain of Custody Clinical Laboratory of San Bernardino, Inc.

7110)	7	(22)			
Client	10dd Engineers	ncers	Clie	Client Job No.		Anal	Isis I	Redu	Requested									
Address						Endo Diqu Dioxi	Endo	Glyp	Carb	DEH	Chlo	EDB Chlo	Vola	Asbe	Gros	Inor	Gen	
System No.			Destina	Destination Laboratory	Τ.	at n	tha	hos						stos	s A	gan	eral	Tur
Phone No.		FAX No.	[X] Clinic	[X] Clinical Laboratory	atory		11	ate		-				8	lph	ic (M	n A
Project Name	Bighorn - D	Bighorn - Desert View Water	[] <i>Other:</i>												a/E	Che	ine	4 <i>ro</i>
Sampled By			1	ı									ics		Beta	mc	ral	un
Comments	Con	Contact: Daniel J. Craig	 	! ! ! ! !			<u> </u>								/Ur	ial /	/ Co	d T
										[/ Tri:					aniun	Gen]	orrosiv	ime
Date Time	Sa	Sample Identification	Matrix	No.	Pres.					azin					1	Phys	vity	
01410/52/	LL		Water	23		×	×	×	×	e×	×	^ ×	×	×	×	, ×	×	
1240 120S	BOUMA-MWZ		Worter	W							╄	┼-	┼	╆	×	×	×	T
											-		-	_		1	1	T
	Also Analyze:	ze:				╁	+	1	+	╁╌	+	╁	╁	1	1	1	1	T
	Radium	Radium 226 - 1/2 Gallon						- E						- q	- 1/	- p	- 1	T
	Radium	Radium 228 - 1/2 Gallon						PA:						uar	2 g	int	/2 g	Т
	Strontiu	Strontium 90 - 1/2 Gallon	2					547				-		t pla	allo	plas	allo	
	Tritium	Tritium - 250 ml Amber Glass						am						astic	n pl	tic /	n pl	T
		1				ber _j iber	ber (ber ;	ber ;	ber	ber	04 v ber	24 v	:	astic	phy	astic	T
								glas							:	/s g	 :	
								s		-						lass		
- 1																	<u> </u>	T
Preservatives: (1) (2)	(7) $Na_2S_2O_3$ (3) (2) H_2SO_4/HCI (4)	Cold	All turn an	All turn around times are expressed as working days / Not bil analyses on the property of the second	s are exp	ressed a	S work	ing da	NOW / SA	le lle	303//6	4				1,	1	T
Relinquished By	d By (Sign)	Print Name / Company		Da	Date / Time	ie l		Re	Received By	By ((Sign)			Print Name / Company	Jamo		10000	Τ.
YOMOY		DWO-Manno /14		9/21/	0	600			A		1	1	12		,,,,			T
		to tack En	9.				1		>				1	37	<u> </u>			Τ
)										_					
Rec'd at Lab By:		I	Rec'd Date / Time:	/ Time:						Comments:	nts:		-					Τ
Shipped Via		[] Fed X [] Golden State	[] UPS	-] Client	[] Other	ıer		d	a				P	Page	fo		Т

NOTE: Filter Inorganic Chemicals

Appendix G Regulatory Permits and Permit Applications

DEPARTMENT OF PUBLIC WORKS

FLOOD CONTROL • SOLID WASTE MGMT • SURVEYOR • TRANSPORTATION

COUNTY OF SAN BERNARDINO

6-000/2.04

SAN BERNADINO

825 East Third Street • San Bernardino, CA 92415-0835 • (909) 387-8104 Fax (909) 387-8130

July 27, 2010

GRANVILLE M. "BOW" BOWMAN, P.E., P.L.S Director of Public Works

File:

Addressee: Bighorn Desert View Water Agency

622 S. Jemez Trail

Yucca Valley, CA 92284

Attention: Marina D. West, PG

General Manager

Activity: Proposed construction of an infiltration basin to percolate water into the Reche

Groundwater Basin

Facility: None

Location: East of State Highway 247 and south of Reche Road

City/Community: Unincorporated area of San Bernardino County

The District is in receipt of your letter dated July 14, 2010, advising the District of the Water Agency's proposed construction of an infiltration basin at the above noted location within an unincorporated area of San Bernardino County.

Please be advised the District has no facilities or right-of-way in this area that could be impacted by your proposed construction of an infiltration basin. Therefore, a permit from the District will not be required, and the District has no further comments to offer regarding this matter.

If you have any questions regarding the above, please contact the undersigned at (909) 387-7995.

Sincerely,

GRANT C. MANN, P.E. Permit Engineer

San Bernardino County

Department of Public Works

GCM:MM:jh

cc: Kevin Blakeslee

JUL 29 2010
By M. C.

Board of Supervisors

AD MITZELFELT First District
UL BIANE Second District

... Fourth District

DEPARTMENT OF PUBLIC WORKS

SOLID WASTE MANAGEMENT • SURVEYOR • TRANSPORTATION

COUNTY OF SAN BERNARDING

825 East Third Street • San Bernardino, CA 92415-0835 • (909) 387-8104 Fax (909) 387-8130

GRANVILLE M. "BOW" BOWMAN, P.E., P.L.S. Director of Public Works

July 30, 2010

T10001812

BIGHORN-DESERT VIEW WATER AGENCY 622 S. JEMEZ TRAIL YUCCA VALLEY, CA. 92284-1440

Re: Application for an Excavation Permit, to construct a water pipeline along Winters Road from Warren vista Ave to Valley Vista Ave in the Yucca Valley area.

Gentlemen:

In reply to your request of an Excavation Permit, consider this the County Department of Public Works letter of non-objection for your proposed encroachment within public right-of-way at the above noted location, for the purpose of installing a water pipeline.

The proposed work lies within the right of way of Winters Road which is not included within the Maintained System. The County Department of Public Works does not issue permit requirements in this case. We strongly recommend, however, all construction be in a workmanlike manner consistent with currently accepted practices. This letter is issued in order to advise you of County rights within the right-of-way should the County Department of Public Works desire to perform work there in the future.

This letter of non-objection is valid only to the extent of County Department of Public Works interest. It shall be your responsibility to obtain permits required by other interested agencies.

You may be required to remove or relocate the facility at your own cost should the improvement need to be widened or reconstructed or for any other reason as determined by the County Department of Public Works. The removal and/or relocation of said improvements shall be accomplished at no expense to San Bernardino County Department of Public Works.

This letter is non-transferable and will expire if work has not started within one year from the date of this letter. Once the work has started, it shall be completed within sixty (60) days.

If you have any questions regarding the above, please contact the undersigned at (909) 387-8046.

Sincerely,

Grant C. Mann, R.C.E., Permit Engineer

BRAD MITZELFELT First District NEIL DERRY. Third District PAUL BIANE Second District GARY C. OVITT Fourth District

JOSIE GONZALES Fifth District

Office Trans	San Bernardino County ORIGINAL 2258257
RECEIVED FROM Bighern-Doser	+ View Water agency = 60 00 DOLLARS
Court	Case Namevs
NATURE OF FEES	
Permit 6	Case No. SAATRATRA 8335 Challene Us Laon (SIGNATURE)
☐ CASH ☐ CHECK ☐ MONEY ORDER 600 01-188A-123 Rev. 8/00 /0326 7/16//	FISCALUEAS FR: RICK Lucas

.

St. Comments

Bighorn-Desert View Water Agency

Board of Directors

Terry Burkhart, President J. Larry Coulombe, Vice President Michael McBride, Director David Larson, Director Martha Oswalt, Director

Agency Office 622 S. Jemez Trail Yucca Valley, CA 92284-1440

> 760/364-2315 Phone 760/364-3412 Fax

Marina D West, P.G., General Manager Joanne L Keiter, Board Secretary

A Public Agency

www.bdvwa.org

July 14, 2010

Mr. Erwin Fogerson, Chief San Bernardino County Public Works Department Transportation Operations Division Transportation Permit Section 825 East Third Street San Bernardino, CA 92415

Subject: "No Objection Permit"

Reche Groundwater Basin Recharge Project

Dear Mr. Fogerson:

The Bighorn-Desert View Water Agency (BDVWA) wishes to implement a Reche Groundwater Basin Recharge Project located in San Bernardino County, California. One of the requirements of this project is the construction of an infiltration basin to percolate water into the Reche Groundwater Basin. The project proposed to be located on Bureau of Land Management (BLM) lands in the Pipes Wash located at Township 2 North, Range 5 East, Section 24, San Bernardino Base & Meridian. (T2N, R5E, S.B.B.& M.). As part of the construction of this infiltration basin, the BDVWA will need to construct a pipeline along the northern right of way of Winters Road from Warren Vista Avenue to Pipes Wash. Note: Winters road is also known as Tracy Blvd. Figure 1 shows the location of the proposed pipeline construction.

In discussion between Mr. Rick Lucas and Raymond E. Ouellette with Kennedy/Jenks Consultants, Mr. Lucas indicated that the road identified as Winters Road is a "non-paved dedicated road" between Warren Vista Avenue up to the junction with Valley Vista Avenue. The portion identified as Tracy Blvd from Valley Vista Avenue west to Pipes Wash is not dedicated. Since this portion of the pipeline construction is not in a County Dedicated Road, it is our understanding that a "no objection permit" is required from the County. The BDVWA requests that a "no objection permit" be issued for this Right-of-Way work in this portion of the road.

Because we feel the project qualifies for a "no objection permit" and a formal encroachment permit is not necessary, we have not included detailed engineering plans with this submittal. However, a check in the amount of \$60.00 for processing is

enclosed. If you have any questions about this request, please contact me at 760-364-2315.

Very truly yours,

Marina D. West, PG

Marena Ott

General Manager

Enclosure

cc: Kennedy/Jenks Consultants, Ventura, CA.

Bighorn-Desert View Water Agency

Board of Directors

Terry Burkhart, President J. Larry Coulombe, Vice President Michael McBride, Director David Larson, Director Martha Oswalt, Director

Agency Office 622 S. Jemez Trail Yucca Valley, CA 92284-1440

> 760/364-2315 Phone 760/364-3412 Fax

Marina D West, P.G., General Manager Joanne L Keiter, Board Secretary

A Public Agency

www.bdvwa.org

July 14, 2010

Mr. Erwin Fogerson, Chief San Bernardino County Public Works Department Transportation Operations Division Transportation Permit Section 825 East Third Street San Bernardino, CA 92415

Subject: "No Objection Permit"

Reche Groundwater Basin Recharge Project

Dear Mr. Fogerson:

The Bighorn-Desert View Water Agency (BDVWA) wishes to implement a Reche Groundwater Basin Recharge Project located in San Bernardino County, California. One of the requirements of this project is the construction of an infiltration basin to percolate water into the Reche Groundwater Basin. The project proposed to be located on Bureau of Land Management (BLM) lands in the Pipes Wash located at Township 2 North, Range 5 East, Section 24, San Bernardino Base & Meridian. (T2N, R5E, S.B.B.& M.). As part of the construction of this infiltration basin, the BDVWA will need to construct a pipeline along the northern right of way of Winters Road from Warren Vista Avenue to Pipes Wash. Note: Winters road is also known as Tracy Blvd. Figure 1 shows the location of the proposed pipeline construction.

In discussion between Mr. Rick Lucas and Raymond E. Ouellette with Kennedy/Jenks Consultants, Mr. Lucas indicated that the road identified as Winters Road is a "non-paved dedicated road" between Warren Vista Avenue up to the junction with Valley Vista Avenue. The portion identified as Tracy Blvd from Valley Vista Avenue west to Pipes Wash is not dedicated. Since this portion of the pipeline construction is not in a County Dedicated Road, it is our understanding that a "no objection permit" is required from the County. The BDVWA requests that a "no objection permit" be issued for this Right-of-Way work in this portion of the road.

Because we feel the project qualifies for a "no objection permit" and a formal encroachment permit is not necessary, we have not included detailed engineering plans with this submittal. However, a check in the amount of \$60.00 for processing is

enclosed. If you have any questions about this request, please contact me at 760-364-2315.

Very truly yours,

Marina D. West, PG

Marena Ott

General Manager

Enclosure

cc: Kennedy/Jenks Consultants, Ventura, CA.

Bighorn-Desert View Water Agency

Board of Directors

Terry Burkhart, President J. Larry Coulombe, Vice President Michael McBride, Director David Larson, Director Martha Oswalt, Director

Agency Office 622 S. Jemez Trail Yucca Valley, CA 92284-1440

> 760/364-2315 Phone 760/364-3412 Fax

Marina D West, P.G., General Manager Joanne L Keiter, Board Secretary

A Public Agency

www.bdvwa.org

July 14, 2010

Mr. Kevin Blakeslee, Deputy Chief San Bernardino County Public Works Department Transportation Operations Division Flood Control Section 825 East Third Street San Bernardino, CA 92415

Subject:

"Right of Way" Permit

Reche Groundwater Basin Recharge Project

Dear Mr. Blakeslee:

The Bighorn-Desert View Water Agency (BDVWA) wishes to implement a Ames/Reche Groundwater Basin Recharge Project located in San Bernardino County, California. One of the requirements of this project is the construction of an infiltration basin to percolate water into the Reche Groundwater Basin. The project proposed to be located on Bureau of Land Management (BLM) lands in the Pipes Wash located at Township 2 North, Range 5 East, Section 24, San Bernardino Base & Meridian. (T2N, R5E, S.B.B.& M.). As part of the construction of this infiltration basin, the BDVWA will need to construct the infiltration basin within the Pipes Wash.

In discussions between Mr. Tom Williams, Cindy Beck and Raymond E. Ouellette with Kennedy/Jenks Consultants, it was indicated that a "Right of Way" permit for this activity would not be required. We have enclosed three figures which identify the location of the proposed project and would like written confirmation that a "Right-of-Way" permit is not required for us to proceed.

If you have any questions about this project, please call me at 760-364-2315.

Very truly yours,

Marina D. West, PG

General Manager

Enclosure

cc: Kennedy/Jenks Consultants, Ventura, CA.

		FOR DEPART	MENT USE ONLY	
Date Received	Amount Received	Amount Due	Date Complete	Notification No.
	3	\$		

STATE OF CALIFORNIA DEPARTMENT OF FISH AND GAME NOTIFICATION OF LAKE OR STREAMBED ALTERATION

Complete EACH field, unless otherwise indicated, following the enclosed instructions and submit ALL required enclosures. Attach additional pages, if necessary.

1. APPLICANT PROPOSING PROJECT

Name	Marina D. West, General Manager		
Business/Agency	Bighorn Desert View Water Agency		
Street Address	622 S. Jemez Trail		
City, State, Zip	Yucca Valley, CA 92284-1440		
Telephone	(760) 364-2315	Fax	
Email	bdvwa2@mindspring.com	1	

2. CONTACT PERSON (Complete only if different from applicant)

Name	same as above
Street Address	
City, State, Zip	
Telephone	Fax
Email	

3. PROPERTY OWNER (Complete only if different from applicant)

Name	Bureau of Land Management Palm Spring	gs South Coast Field C	Office
Street Address	1201 Bird Center Drive		
City, State, Zip	Palm Springs, California 92262		
Telephone	(760) 833-7100	Fax	(760) 833-7199
Email			

4. PROJECT NAME AND AGREEMENT TERM

A. Project Name		Ame	es/Reche Groundwater Stora	age	
B. Agreement Term	Requested		Regular (<i>5 years or less</i>) Long-term (<i>greater than 5 ye</i>	ears)	
C. Project Term			D. Seasonal Work Period		E. Number of Work Days
Beginning (year)	Ending (yea	ar)	Start Date (month/day)	End Date (month/day)	

5. AGREEMENT TYPE

B. Gravel/Sand/Rock Extraction (Attachment A) Mine I.D. Number: C. Timber Harvesting (Attachment B) THP Number: Water Diversion/Extraction/Impoundment (Attachment C) SWRCB Number: Water from Mojave Water Age E. Routine Maintenance (Attachment D) F. DFG Fisheries Restoration Grant Program (FRGP) FRGP Contract Number: G. Master H. Master Timber Harvesting 6. FEES Please see the current fee schedule to determine the appropriate notification fee. Itemize each project's estimated content of the correct fee has been received A. Project A. Project B. Project Cost C. Project					
B. Gravel/Sand/Rock Extraction (Attachment A) Mine I.D. Number: C. Timber Harvesting (Attachment B) THP Number: D. Water Diversion/Extraction/Impoundment (Attachment C) SWRCB Number: Water from Mojave Water Age E. Routine Maintenance (Attachment D) F. DFG Fisheries Restoration Grant Program (FRGP) FRGP Contract Number: G. Master H. Master Timber Harvesting 6. FEES Please see the current fee schedule to determine the appropriate notification fee. Itemize each project's estimated conductorresponding fee. Note: The Department may not process this notification until the correct fee has been received. A. Project B. Project Cost C. Project 1 Ames/Reche Groundwater Storage \$30,000.00 \$7	heck th	the applicable box. If box B, C, D, or E is checked, complet	te the specified attac	chment.	
C. Timber Harvesting (Attachment B) THP Number: Water from Mojave Water Age E. Routine Maintenance (Attachment D) F. DFG Fisheries Restoration Grant Program (FRGP) FRGP Contract Number: G. Master H. Master Timber Harvesting 6. FEES Please see the current fee schedule to determine the appropriate notification fee. Itemize each project's estimated or and corresponding fee. Note: The Department may not process this notification until the correct fee has been received. A. Project B. Project Cost C. Project I Ames/Reche Groundwater Storage \$30,000.00		Standard (Most construction projects, excluding the category	gories listed below)		
D. Water Diversion/Extraction/Impoundment (Attachment C) SWRCB Number: Water from Mojave Water Age E. Routine Maintenance (Attachment D) F. DFG Fisheries Restoration Grant Program (FRGP) FRGP Contract Number: G. Master H. Master Timber Harvesting 6. FEES Please see the current fee schedule to determine the appropriate notification fee. Itemize each project's estimated coand corresponding fee. Note: The Department may not process this notification until the correct fee has been received A. Project B. Project Cost C. Project 1 Ames/Reche Groundwater Storage \$30,000.00 \$7	3.	Gravel/Sand/Rock Extraction (Attachment A)	Mine I.D. Number	:	
E. Routine Maintenance (Attachment D) F. DFG Fisheries Restoration Grant Program (FRGP) FRGP Contract Number: G. Master H. Master Timber Harvesting S. FEES Please see the current fee schedule to determine the appropriate notification fee. Itemize each project's estimated coand corresponding fee. Note: The Department may not process this notification until the correct fee has been received. A. Project B. Project Cost C. Project 1 Ames/Reche Groundwater Storage)	Timber Harvesting (Attachment B)	THP Number:		
F. DFG Fisheries Restoration Grant Program (FRGP) G. Master H. Master Timber Harvesting S. FEES Please see the current fee schedule to determine the appropriate notification fee. Itemize each project's estimated or and corresponding fee. Note: The Department may not process this notification until the correct fee has been received. A. Project B. Project Cost C. Project 1 Ames/Reche Groundwater Storage \$30,000.00 \$7). 🗸	✓ Water Diversion/Extraction/Impoundment (Attachment C)	SWRCB Number:	Water from Mojav	e Water Agency
G. Master H. Master Timber Harvesting S. FEES Please see the current fee schedule to determine the appropriate notification fee. Itemize each project's estimated coand corresponding fee. Note: The Department may not process this notification until the correct fee has been received. A. Project A. Project B. Project Cost C. Project Ames/Reche Groundwater Storage \$30,000.00	i	Routine Maintenance (Attachment D)			
H. Master Timber Harvesting 6. FEES Please see the current fee schedule to determine the appropriate notification fee. Itemize each project's estimated coand corresponding fee. Note: The Department may not process this notification until the correct fee has been received. A. Project A. Project B. Project Cost C. Project Ames/Reche Groundwater Storage \$30,000.00		☐DFG Fisheries Restoration Grant Program (FRGP)	FRGP Contract N	lumber:	
6. FEES Please see the current fee schedule to determine the appropriate notification fee. Itemize each project's estimated content and corresponding fee. Note: The Department may not process this notification until the correct fee has been received. A. Project A. Project Ames/Reche Groundwater Storage \$30,000.00 \$7)	☐ Master			
Please see the current fee schedule to determine the appropriate notification fee. Itemize each project's estimated content and corresponding fee. Note: The Department may not process this notification until the correct fee has been received. A. Project Ames/Reche Groundwater Storage \$30,000.00	4	Master Timber Harvesting			
values resident executed and the second executed are second executed and the second executed are second executed and the second executed and the second executed are second ex	rlease and cor	orresponding fee. Note: The Department may not process the	notification fee. Iter is notification until ti	he correct fee has b	estimated cost een received. C. Project Fee
y missirites its evaluation storage \$60,000.00 \$7		A. Project		B. Project Cost	C. Project Fee
2	*	Ames/Reche Groundwater Storage		\$30,000.00	\$750.00
				А	
3					
5	2				
D. Base Fee (if applicable)				(if applicable)	
E. TOTAL FEE ENCLOSED				A THE RESERVE TO SERVE THE PARTY OF THE PART	\$750.00
7. PRIOR NOTIFICATION OR ORDER	PRIO	DR NOTIFICATION OR ORDER			
A. Has a notification previously been submitted to, or a Lake or Streambed Alteration Agreement previously been issue by, the Department for the project described in this notification?	A. Has	s a notification previously been submitted to, or a Lake or St the Department for the project described in this notification?	reambed Alteration	Agreement previou	sly been issued
☐ Yes (Provide the information below) ☐ No	□Y.	Yes (Provide the information below) ☑No			
Applicant: Notification Number: Date:	App	plicant: Notification Nu	mber:	Date	
B. Is this notification being submitted in response to an order, notice, or other directive ("order") by a court or administrative agency (including the Department)?	3. Is thi	his notification being submitted in response to an order, noti			
☑ No ☐ Yes (Enclose a copy of the order, notice, or other directive. If the directive is not in writing, identify the person who directed the applicant to submit this notification and the agency he or she represents, and describe the circumstances relating to the order.)		No Yes (Enclose a copy of the order, notice, or other dependent on the person who directed the applicant to submit this notice.			
☐ Continued on additional pa				☐ Continued on	additional page(s)

8. PROJECT LOCATION

O. I ROOLOT LOOK II	OIL							
A. Address or descri			roject wit	th a reference	on to t	ha naaraat ait	v or town one	I provide deivine
directions from a n	najor road or	highway)	ojeci wii	ur a referenc	ce lo l	ne nearest city	y or town, and	provide ariving
Located within the Pip unincorporated comm 1 attached for map.	es Wash no unity of Flan	rthwest of the int ningo Heights in	tersection south Sa	n of Winters an Bernardir	Road	d and Warren unty near the	Vista Avenue. own of Yucca	Site is within the Valley. See Exhibit
Driving directions:								
From 29 Palms Highw Warren Vista Avenue. undeveloped dirt road	Turn left on	Winters Road.	Four who	eel drive vel	hicle r	7). Turn right of equired to acc	on Buena Vist ess Pipes Wa	a Drive. Turn left on ash down an
			D: 11				Continue	d on additional page(s)
B. River, stream, or la	NAME OF TAXABLE PARTY.		Pipes W					
C. What water body is					9			
D. Is the river or strea state or federal Wi			project lis	sted in the		□Yes	✓ No	Unknown
E. County San Be	ernardino							
F. USGS 7.5 Minute 0	Quad Map N	ame		G. Townsh	ip	H. Range	I. Section	J. 1/4 Section
Yu	icca Valley N	lorth		2 Nort	h	5 East	24	NE
							Continue	d on additional page(s)
K. Meridian (check or	ne)	Humboldt	☐Mt. [Diablo 🔽	San E	Bernardino		
L. Assessor's Parcel I	Number(s)							
062922201 and 06292	21121						Continue	d on additional page(s)
M. Coordinates (If ava	ailable, provi	de at least latitud	de/longite	ude or UTM	coord	dinates and ch	eck appropria	te boxes)
	Latitude:	116 24	57.93 W	1	Longi	tude:	34 14 2	1.55 N
Latitude/Longitude		Degrees/Minute	s/Second	ds [] Deci	mal Degrees	Dec	imal Minutes
UTM	Easting:		Northi	ing:			□Zon	e 10
Datum used for Latitu	de/Longitude	e or UTM		□ NA	D 27		☑ NAD 83 o	r WGS 84

9. PROJECT CATEGORY AND WORK TYPE (Check each box that applies)

PROJECT CATEGORY	NEW CONSTRUCTION	REPLACE EXISTING STRUCTURE	REPAIR/MAINTAIN EXISTING STRUCTURE
Bank stabilization – bioengineering/recontouring			
Bank stabilization – rip-rap/retaining wall/gabion			
Boat dock/pier			
Boat ramp			
Bridge			
Channel clearing/vegetation management			
Culvert			
Debris basin			
Dam			
Diversion structure – weir or pump intake			
Filling of wetland, river, stream, or lake			
Geotechnical survey			
Habitat enhancement - revegetation/mitigation			
Levee			
Low water crossing			
Road/trail			
Sediment removal – pond, stream, or marina			
Storm drain outfall structure			
Temporary stream crossing			
Utility crossing: Horizontal Directional Drilling			
Jack/bore			
Open trench			
Other (specify): Spreading Grounds & Monitoring V	Vells 🔽		

10. PROJECT DESCRIPTION

- A. Describe the project in detail. Photographs of the project location and immediate surrounding area should be included.
 - Include any structures (e.g., rip-rap, culverts, or channel clearing) that will be placed, built, or completed in or near the stream, river, or lake.
 - Specify the type and volume of materials that will be used.
 - If water will be diverted or drafted, specify the purpose or use.

Enclose diagrams, drawings, plans, and/or maps that provide all of the following: site specific construction details; the dimensions of each structure and/or extent of each activity in the bed, channel, bank or floodplain; an overview of the entire project area (i.e., "bird's-eye view") showing the location of each structure and/or activity, significant area features, and where the equipment/machinery will enter and exit the project area.

This project includes construction of approximately 15 acres of spreading grounds within the Pipes Wash for storage and recovery of imported State Water Project water by Bighorn Desert View Water Agency to help increase the reliability of the overall water supply in the region. Construction activities will include the following: 1. Minor grading and vegetation removal for creation of small earthen berms to minimize surface runoff (and evaporation) and maximize infiltration through the floor of the spreading grounds to the underlying groundwater table. 2. Construction of a small concrete outlet and diffusion structure from the SWP feed pipeline into the spreading grounds (structure will be approximately 8.5 feet long by 5 feet wide, by 2 feet tall). 3. Construction of two or three monitoring wells northeast of spreading grounds (within the Pipes Wash).

Exhibit 3 attached show the preferred location of the spreading grounds in red. However, pre-design testing will be done to determine the best location for the spreading ground boundaries, so a 39 acre area is shown in yellow to indicate possible alternative locations of the spreading grounds.

alternative locations of the spreading grounds.			
Photographs are included on page 26 of the MND attached.			
			Continued on additional page(s)
B. Specify the equipment and machinery that will be used to com	nplete the project.		
a. One to two personnel for execution of on-site mitigation monitor	oring program (an ex	rpected or	itput from CEQA/NEPA)
b. Up to two personnel c. Up to four light-duty four-wheel drive vehicles			
d. One JD D4 Track dozer			
e. One paddlewheel scraper			
75.7			Continued on additional page(s)
C. Will water be present during the proposed work period (specif	fied in box 4.D) in		☑ No (Skip to box 11)
the stream, river, or lake (specified in box 8.B).		Yes	No (Skip to box 11)

FG2023

11. PROJECT IMPACTS

A. Describe impacts to the bed, channel, an Specify the dimensions of the modification volume of material (cubic yards) that will	ons in length (linear feet) and area (square	e feet or acres) and the type and						
Per the Draft MND for this project, impacts o vegetation mitigation and monitoring plan for all applicable provisions of the San Bernardii Plant Protection.	disturbed riparian vegetation will be dev	eloped and the project will comply with						
B. Will the project affect any vegetation?	✓ Yes (Complete the tables below)							
Vegetation Type	Temporary Impact	Permanent Impact						
Protected plant species within spreading ground area listed on add'l pgs	Linear feet:unknown Total area:	Linear feet: unknown Total area:						
	Linear feet:							
Tree Species	Number of Trees to be Removed	Trunk Diameter (range)						
None	0							
		Continued on additional page(s)						
C. Are any special status animal or plant sp near the project site?	pecies, or habitat that could support such	species, known to be present on or						
☑ Yes (List each species and/or describe See attached	e the habitat below)	Unknown						
		☐ Continued on additional page(s)						
D. Identify the source(s) of information that s	supports a "yes" or "no" answer above in	Box 11.C.						
CEQA Initial Study and Draft Mitigated Nega	tive Declaration for Water Infrastructure I	Restoration Program (May 2010)						
		Continued on additional page(s)						
E. Has a biological study been completed for	or the project site?							
☑Yes (Enclose the biological study)	□No							
Note: A biological assessment or study m	ay be required to evaluate potential proje	ect impacts on biological resources.						
F. Has a hydrological study been completed	d for the project or project site?							
☑Yes (Enclose the hydrological study)	□ No							
Note: A hydrological study or other inform recurrence intervals) may be required to	nation on site hydraulics (e.g., flows, chai evaluate potential project impacts on hyd	nnel characteristics, and/or flood Irology.						

12. MEASURES TO PROTECT FISH, WILDIFE, AND PLANT RESOURCES

A. Describe the techniques that will be used to prevent sediment from entering watercours	ses during and after	construction.
All water/sediment discharges during and after construction will fall under the requirements permit from the Colorado River Regional Water Quality Control Board (Region 7). These rimpacts to the Pipes Wash.	-	
	Continued on add	itional page(s)
B. Describe project avoidance and/or minimization measures to protect fish, wildlife, and p	plant resources.	4
Mitigation measures and local ordinances will be followed per the Draft MND to minimize in resources within the project area. Note that this is a dry wash so no impacts to fish will oc		d plant
	☐ Continued on add	
C. Describe any project mitigation and/or compensation measures to protect fish, wildlife,	and plant resources.	
	☐ Continued on add	itional page(s)
	Continued on addi	ilional page(3)
13. PERMITS		
List any local, state, and federal permits required for the project and check the correspondence permit that has been issued.	ding box(es). Enclose	e a copy of
A. Colorado River Basin Regional Water Quality Control Board (See Attached)		☐Issued
B. US Fish and Wildlife Service (See Attached)		☐Issued
C. US Army Corp of Engineers (See Attached)	✓ Applied	☐Issued
D. Unknown whether □local, □state, or □ federal permit is needed for the project.		
	☐ Continued on add	litional page(s)

FG2023

14. ENVIRONMENTAL REVIEW

A. Has a draft or final document National Environmental Prot Species Act (ESA)?					
✓ Yes (Check the box for each	ch CEQA, NEPA, CESA,	and ESA docum	nent that has beer	n prepared an	d enclose a copy of each)
No (Check the box for eac	h CEQA, NEPA, CESA,	and ESA docum	nent listed below t	hat will be or i	s being prepared)
☐ Notice of Exemption	✓ Mitigated Negation	ive Declaration	n NE	PA documer	nt (type):
☐ Initial Study	☐ Environmental In	mpact Report	□CE	SA documer	nt (<i>type</i>):
☐ Negative Declaration	☐ Notice of Determ	nination (Enclo	se) 🗆 ES	A document	(type):
☐THP/ NTMP	☐ Mitigation, Monit	oring, Reportir	ng Plan		
B. State Clearinghouse Number	r (if applicable)				
C. Has a CEQA lead agency be	een determined?	☑Yes (Com	plete boxes D, E	E, and F)	□No (Skip to box 14.G)
D. CEQA Lead Agency		Bighorn I	Desert View Wa	ter Agency	
E. Contact Person	Marina D. West, Gener	al Manager	F. Telephone	Number	(760) 364-2315
G. If the project described in th	is notification is part of	f a larger proje	ct or plan, briefly	y describe th	at larger project or plan.
]Continued on additional page(s)
H. Has an environmental filing	fee (Fish and Game C	ode section 71	11.4) been paid?		
✓ Yes (Enclose proof of pay Note: If a filing fee is required, is paid.					a filing fee has not been paid) Agreement until the filing fee
45 CITE INCRECTION					·
15. SITE INSPECTION	2 - 4 Page 1 (42)			F 1151	
Check one box only. ☐ In the event the Department of the presentative to enter the reasonable time, and here	e property where the p	project describe	ed in this notifica	ation will take	e place at any
	to first contact (insert	name)		Marina Wes	st
at (insert telephone numb to enter the property whe delay the Department's d the Department's issuance	ber) re the project describe letermination as to whe	(760) 364-23 ed in this notific ether a Lake or	cation will take p r Streambed Alte	lace. I unde	

16.	6. DIGITAL FORMAT	
	Is any of the information included as part of the notification available in	digital format (i.e., CD, DVD, etc.)?
	Yes (Please enclose the information via digital media with the compl	leted notification form)
	□No	<u> </u>
17.	7. SIGNATURE	
	I hereby certify that to the best of my knowledge the information in this authorized to sign this notification as, or on behalf of, the applicant. I un notification is found to be untrue or incorrect, the Department may suspict revoke any draft or final Lake or Streambed Alteration Agreement issue also that if any information in this notification is found to be untrue or into notification has already begun, I and/or the applicant may be subject to that this notification applies only to the project(s) described herein and the civil or criminal prosecution for undertaking any project not described he separately notified of that project in accordance with Fish and Game Control of the project in accordance with Fish and Game Control of the project in accordance with Fish and Game Control of the project in accordance with Fish and Game Control of the project in accordance with Fish and Game Control of the project in accordance with Fish and Game Control of the project in accordance with Fish and Game Control of the project in accordance with Fish and Game Control of the project in accordance with Fish and Game Control of the project in accordance with Fish and Game Control of the project in accordance with Fish and Game Control of the project in accordance with Fish and Game Control of the project in accordance with Fish and Game Control of the project in accordance with Fish and Game Control of the project in accordance with Fish and Game Control of the project in the project in accordance with Fish and Game Control of the project in the projec	anderstand that if any information in this beend processing this notification or suspend or sed pursuant to this notification. I understand accorrect and the project described in this ocivil or criminal prosecution. I understand that I and/or the applicant may be subject to be seriously unless the Department has been

Marina D. West

Print Name

FOR DEPARTMENT USE ONLY								
Date Received	Amount Received	Amount Due	Date Complete	Notification No.				
	\$	\$						

Beginning (year)

Ending (year)

STATE OF CALIFORNIA DEPARTMENT OF FISH AND GAME

RESOURCES AGENCY CALIFORNIA DEPARTMENT FISHS GAME

NOTIFICATION OF LAKE OR STREAMBED ALTERATION

Complete EACH field, unless otherwise indicated, following the enclosed instructions and submit ALL required enclosures. Attach additional pages, if necessary.

1. APPLICANT PRO	OPOSING PRO	JECT	T		
Name	>				
Business/Agency					
Street Address					
City, State, Zip					
Telephone				Fax	
Email					
2. CONTACT PERS	SON (Complete	only	if different from applicant)		
Name					
Street Address					
City, State, Zip					
Telephone				Fax	
Email					
3. PROPERTY OW	NER (Complete	only	if different from applicant)		
Name					
Street Address					
City, State, Zip					
Telephone				Fax	
Email					
4. PROJECT NAME	E AND AGREEI	MENT	TERM		
A. Project Name					
B. Agreement Term Requested			Regular (<i>5 year</i> s or less)		
			ong-term (greater than 5 yea	ars)	
C. Project Term			D. Seasonal Work Period		E. Number of Work Days

End Date (month/day)

Start Date (month/day)

5. A	5. AGREEMENT TYPE							
Check the applicable box. If box B, C, D, or E is checked, complete the specified attachment.								
A.	A. Standard (Most construction projects, excluding the categories listed below)							
B.	B. Gravel/Sand/Rock Extraction (Attachment A) Mine I.D. Number:							
C.	☐ Timber Harvesting (Attachment B)		THP Number:					
D.	D. Water Diversion/Extraction/Impoundment (Attachment C) SWRCB Number:							
E.	E. □ Routine Maintenance (<i>Attachment D</i>)							
F.	☐ DFG Fisheries Restoration Grant Program (F	RGP)	FRGP Contract N	umber:				
G.	□ Master							
Н.	☐ Master Timber Harvesting							
6. FE								
	ase see the current fee schedule to determine the corresponding fee. Note: The Department may not							
	A. Project	-		B. Project Cost	C. Project Fee			
1								
2								
3								
4								
5								
				D. Base Fee (if applicable)				
				E. TOTAL FEE				
7 PR	NOR NOTIFICATION OR ORDER			ENCLOSED				
A. F	las a notification previously been submitted to, or y, the Department for the project described in this		eambed Alteration	Agreement previou	ısly been issued			
	☐ Yes (Provide the information below)	No						
P	Applicant: No	tification Num	ber:	Date	:			
	s this notification being submitted in response to a dministrative agency (including the Department)?		e, or other directive	e ("order") by a cou	rt or			
	☐ No ☐ Yes (Enclose a copy of the order, notice person who directed the applicant to see describe the circumstances relating to	ubmit this noti			•			
				☐ Continued on	additional page(s)			

8. PROJECT LOCATION

A. Address or description of project location. (Include a map that marks the location of the project with a reference to the nearest city or town, and provide driving							
directions from a m							
						☐ Continue	ed on additional page(s)
B. River, stream, or la	ke affected	by the project.					
C. What water body is	the river, s	stream, or lake trib	utary to	?			
D. Is the river or stream state or federal Wil			oject lis	sted in the	□ Yes	□No	□ Unknown
E. County							
F. USGS 7.5 Minute C	Quad Map N	Name		G. Township	H. Range	I. Section	J. 1/4 Section
						☐ Continue	ed on additional page(s)
K. Meridian (check on	e)	☐ Humboldt	□ Mt.	Diablo □ San	Bernardino		
L. Assessor's Parcel N	Number(s)						
						☐ Continue	ed on additional page(s)
M. Coordinates (If ava	ailable, prov	ride at least latitud	e/longit	tude or UTM cod	ordinates and che	eck appropria	ite boxes)
	Latitude:			Lon	gitude:		
Latitude/Longitude		Degrees/Minutes	/Secon	ıds □ De	cimal Degrees	□ Dec	imal Minutes
UTM	Easting:		North	ing:		□ Zor	ne 10
Datum used for Latitud	de/Longitud	de or UTM	□ NAD 27 □ N			□ NAD 83 c	or WGS 84

9. PROJECT CATEGORY AND WORK TYPE (Check each box that applies)

PROJECT CATEGORY	NEW CONSTRUCTION	REPLACE EXISTING STRUCTURE	REPAIR/MAINTAIN EXISTING STRUCTURE
Bank stabilization – bioengineering/recontouring			
Bank stabilization – rip-rap/retaining wall/gabion			
Boat dock/pier			
Boat ramp			
Bridge			
Channel clearing/vegetation management			
Culvert			
Debris basin			
Dam			
Diversion structure – weir or pump intake			
Filling of wetland, river, stream, or lake			
Geotechnical survey			
Habitat enhancement – revegetation/mitigation			
Levee			
Low water crossing			
Road/trail			
Sediment removal – pond, stream, or marina			
Storm drain outfall structure			
Temporary stream crossing			
Utility crossing: Horizontal Directional Drilling			
Jack/bore			
Open trench			
Other (specify):			

10. PROJECT DESCRIPTION

A. Describe the project in detail. Photographs of the project loc	ation and immediate surrounding area should be included.
 Include any structures (e.g., rip-rap, culverts, or channel of the stream, river, or lake. 	clearing) that will be placed, built, or completed in or near
- Specify the type and volume of materials that will be used	1.
- If water will be diverted or drafted, specify the purpose or	use.
Enclose diagrams, drawings, plans, and/or maps that provided dimensions of each structure and/or extent of each activity in entire project area (i.e., "bird's-eye view") showing the location features, and where the equipment/machinery will enter and	n the bed, channel, bank or floodplain; an overview of the on of each structure and/or activity, significant area
	☐ Continued on additional page(s)
B. Specify the equipment and machinery that will be used to co	mplete the project.
	☐ Continued on additional page(s)
C. Will water be present during the proposed work period (specthe stream, river, or lake (specified in box 8.B).	cified in box 4.D) in ☐ Yes ☐ No (Skip to box 11)
D. Will the proposed project require work in the wetted portion	☐ Yes (Enclose a plan to divert water around work site)
of the channel?	□ No
	-

11. PROJECT IMPACTS

A. Describe impacts to the bed, channel, and bank of the river, stream, or lake, and the associated riparian habitat. Specify the dimensions of the modifications in length (linear feet) and area (square feet or acres) and the type and volume of material (cubic yards) that will be moved, displaced, or otherwise disturbed, if applicable.		
		☐ Continued on additional page(s)
B. Will the project affect any vegetation?	☐ Yes (Complete the tables below) □	
Vegetation Type	Temporary Impact	Permanent Impact
	Linear feet:	Linear feet:
	Total area:	Total area:
	Linear feet:	Linear feet:
	Total area:	Total area:
Tree Species	Number of Trees to be Removed	Trunk Diameter (range)
		☐ Continued on additional page(s)
C. Are any special status animal or plant specie near the project site?	es, or habitat that could support such	species, known to be present on or
☐ Yes (List each species and/or describe the habitat below) ☐ No ☐ Unknown		
		☐ Continued on additional page(s)
D. Identify the source(s) of information that sup	ports a "yes" or "no" answer above in	
, , ,	•	
E. Has a biological study been completed for the	an project site?	☐ Continued on additional page(s)
E. Has a biological study been completed for the project site?		
☐ Yes (Enclose the biological study)	□ No	
Note: A biological assessment or study may be required to evaluate potential project impacts on biological resources.		
F. Has a hydrological study been completed for the project or project site?		
☐ Yes (<i>Enclose the hydrological study</i>)	□ No	
Note: A hydrological study or other information	, ,	

12. MEASURES TO PROTECT FISH, WILDIFE, AND PLANT RESOURCES

A. Describe the techniques that will be used to prevent sediment from entering watercou	irses during and after co	nstruction.
	☐ Continued on addition	onal page(s)
B. Describe project avoidance and/or minimization measures to protect fish, wildlife, and	l plant resources.	
	☐ Continued on addition	onal page(s)
C. Describe any project mitigation and/or compensation measures to protect fish, wildlife	e, and plant resources.	
	☐ Continued on addition	onal page(s)
		onal page(s)
13. PERMITS		
List any local, state, and federal permits required for the project and check the correspo each permit that has been issued.	nding box(es). Enclose a	a copy of
A	☐ Applied [☐ Issued
		☐ Issued
C	• •	□ Issued
D. Unknown whether □ local, □ state, or □ federal permit is needed for the project	t. (Check each box that	t applies)
	☐ Continued on addition	onal page(s)

14. ENVIRONMENTAL REVIEW

A. Has a draft or final docu National Environmental Species Act (ESA)?	ument been prepared for th I Protection Act (NEPA), Ca	ne project pursuant to t alifornia Endangered S	he California Environ pecies Act (CESA) a	nmental Quality Act (CEQA), and/or federal Endangered
☐ Yes (Check the box for	or each CEQA, NEPA, CESA,	, and ESA document that	has been prepared ar	nd enclose a copy of each)
□ No (Check the box fo	or each CEQA, NEPA, CESA,	and ESA document listed	d below that will be or	is being prepared)
☐ Notice of Exemption	☐ Mitigated Negat	tive Declaration	☐ NEPA docume	nt (<i>type</i>):
☐ Initial Study	☐ Environmental Ir	mpact Report	☐ CESA docume	nt (<i>type</i>):
☐ Negative Declaration	n ☐ Notice of Determ	nination (Enclose)	☐ ESA document	t (<i>type</i>):
☐ THP/ NTMP	☐ Mitigation, Monit	toring, Reporting Plan		
B. State Clearinghouse Nu	umber (<i>if applicable</i>)			
C. Has a CEQA lead agen	cy been determined?	☐ Yes (Complete bo	exes D, E, and F)	□ No (Skip to box 14.G)
D. CEQA Lead Agency				,
E. Contact Person		F. Tel	ephone Number	
G. If the project described	in this notification is part or	f a larger project or pla	ın, briefly describe th	nat larger project or plan.
] Continued on additional page(s)
H. Has an environmental f	iling fee (Fish and Game C	Code section 711.4) bed		
☐ Yes (Enclose proof o	of payment)	□ No (<i>Briefly explai</i>	in below the reason	a filing fee has not been paid)
Note: If a filing fee is requi	ired, the Department may r	not finalize a Lake or S	treambed Alteration	Agreement until the filing fee
15. SITE INSPECTION				
Check one box only.				
representative to ent	artment determines that a ster the property where the pd hereby certify that I am at	project described in this	s notification will tak	e place at any
☐ I request the Departi	ment to first contact (insert	name)		
delay the Departmer	number) where the project describe nt's determination as to whe suance of a draft agreemen	ether a Lake or Stream	ill take place. I undenbed Alteration Agre	chedule a date and time erstand that this may ement is required and/or

Is any of the information included as part of the notification available in digital format (i.e., CD, DVD, etc.)? Yes (Please enclose the information via digital media with the completed notification form) No 17. SIGNATURE I hereby certify that to the best of my knowledge the information in this notification is true and correct and that I am

I hereby certify that to the best of my knowledge the information in this notification is true and correct and that I am authorized to sign this notification as, or on behalf of, the applicant. I understand that if any information in this notification is found to be untrue or incorrect, the Department may suspend processing this notification or suspend or revoke any draft or final Lake or Streambed Alteration Agreement issued pursuant to this notification. I understand also that if any information in this notification is found to be untrue or incorrect and the project described in this notification has already begun, I and/or the applicant may be subject to civil or criminal prosecution. I understand that this notification applies only to the project(s) described herein and that I and/or the applicant may be subject to civil or criminal prosecution for undertaking any project not described herein unless the Department has been separately notified of that project in accordance with Fish and Game Code section 1602 or 1611.

Signature of Applicant or Applicant's Authorized Representative

Date

Print Name

STATE OF CALIFORNIA DEPARTMENT OF FISH AND GAME

NOTIFICATION OF LAKE OR STREAMBED ALTERATION

Applicant Name:	
Project Name:	

ATTACHMENT C

Water Diversion Questionnaire

I. DIVERSION OR OBSTRUCTION

Please provide the additional information below *if* the project is directly related to any diversion, obstruction, extraction, or impoundment of the natural flow of a river, stream, or lake. If you have a current or expired Lake or Streambed Alteration Agreement (LSAA) for some activity related to your project, provide the LSAA number in your project description below.

- A. Attach plans of any diversion or water storage structure or facility that will be constructed or if no structures or facilities will be constructed, photographs of the project site, including any existing facilities or structures.
- B. Please complete the water use table below. For diversion rate, use gallons per day (gpd) if rate is less than 0.025 cubic foot per second (cfs) (approximately 16,000 gallons per day).

SEASON OF DIVERSION		PURPOSE OF USE	DIVERSION RATE (cfs or gpm)	AMOUNT (acre fe	
BEGINNING DATE (Mo. & Day)	ENDING DATE (Mo. & Day)			FROM STORAGE	BY DIVERSION

- C. Attach a topographic map that is labeled to show the following:
 - 1. Source of the water
 - 2. Points of diversion
 - 3. Areas of use
 - 4. Storage areas
- D. Specify the maximum instantaneous rate of withdrawal (using proposed equipment) in cubic feet per second (cfs) or gallons per minute (gpm):

E.	Che	ck ea	ch box below that applies to the project water rights and attach supporting documents.		
			Riparian. Attach the most recent statement of riparian rights filed with the State Water Resources Control Board (SWRCB).		
			Diversion for immediate use		
			Diversion to storage (for less than 30 days)		
		Арр	ropriative		
			Pre-1914		
			Post-1914. Attach a copy of the applicant's water right application, permit, or license filed with or issued by the SWRCB.		
			Diversion for immediate use. Attach a copy of the applicant's water right application, permit, or license filed with or issued by the SWRCB.		
			Diversion to storage. Attach a copy of the applicant's water right application, permit, or license filed with or issued by the SWRCB.		
			Small domestic or livestock stockpond use. Attach a copy of the applicant's registration of water use form filed with the SWRCB. (See Water Code section 1228 et seq.)		
			chased or contracted water. Attach a copy of the applicant's contract or letter from the licant's water provider.		
		Othe	er. Describe below or attach separate page.		
F.			ate lowest level of flow in the river, stream, or lake at the point of diversion during the season of diversion in gpm or cfs:		
G.	Other information. After the Department reviews the project description, and based on the project's location and potential impacts to fish and wildlife resources, the Department will determine if additional information is needed to complete the notification. Such information could include more site-specific information to ensure that the terms and conditions in the Lake or Streambed Alteration Agreement issued to the applicant will be adequate to protect the fish and wildlife resources the diversion or obstruction could adversely affect. Site-specific information could include specific studies based on the season of diversion, the location of the diversion relative to other diversions in the watershed, the method of diversion, and the quantity of water to be diverted, such as the following:				

- Water Availability Analysis to determine if the water can be diverted without causing substantial adverse effects on downstream fish and wildlife resources. Water availability analyses are based on a comparison of flows without any diversions (unimpaired flows) and flows available when all known diversions are "subtracted" (impaired flows). The protocol for water availability analyses is available on request.
- 2. Instream Flow Study to determine the minimum bypass flows needed and maximum rates of withdrawal possible to provide adequate depths and velocities to protect habitat for all life stages of aquatic resources. The study plan, which must be prepared by a qualified fisheries biologist and approved by the Department, will determine the effects of the proposed diversion on flow depth and velocity.
- 3. Water Quality Study to assess the effects of the proposed water diversion or impoundment on water temperature and water quality at and downstream from the point of diversion.

II. PERMANENT OR TEMPORARY RESERVOIR

Please provide the information below *if* the project includes the construction of a reservoir, whether permanent or temporary, and/or the filling of a reservoir by diverting or obstructing the flow of a river, stream, or lake.

Α.	Proposed use of the stored water:
В.	Construction plans for the reservoir and dam. (Attach plans)
C.	A complete description of the reservoir and dam, including the methods and materials that will be used to construct the reservoir and dam and the following dimensions certified by a licensed professional: the width, length, depth, and total surface area of the reservoir pool; the volume of water in acre-feet that will be stored in the reservoir; and the height and length of the dam.
D.	The amount of riparian land that will be inundated (i.e., upstream from the dam):
E.	Where vehicles will enter and exit the project site during construction and for maintenance purposes after construction. (Attach map)
F.	The maximum distance of the disturbance that will occur upstream and downstream during construction:
G.	The methods that will be employed to ensure that the flow is maintained below the dam at all times when water is being diverted into the reservoir.
Н	Specify the time period when the area below the dam becomes dry, if at all

I.	The methods that will be employed to ensure that adult and juvenile fish will be able to pass over or around the dam.			
J.	If a fish ladder is necessary to enable adult and juvenile fish to pass over or around the dam, provide construction plans and an operation plan for the fish ladder. (Enclose, if applicable)			
K.	The methods that will be employed to monitor and maintain water quality (including temperature) within the reservoir.			
III. <u>TE</u>	EMPORARY RESERVOIR			
	e provide the information below \emph{if} the project includes the construction of a temporary reservoir only the stream zone.			
A.	Date of dam installation:			
B.	Date of dam removal:			
C.	Amount of time it will take to construct the dam:			
D.	Amount of time it will take to remove the dam:			
E.	Methods to ensure that the reservoir pool will be drained in a manner that does not strand or otherwise harm fish:			

Ар	plicant Name:
Pro	oject Title:
	ATTACHMENT D
	Routine Maintenance
Se	he applicant is notifying the Department to obtain an agreement for routine maintenance activities, ction I must be completed and the information and documents described in Sections II and III must be bmitted with the notification.
I.	REGULARLY RE-OCCURRING MAINTENANCE ACTIVITIES
	These are generally activities designed to maintain channel capacity. Check each box that applies:
	☐ Sediment removal:
	☐ In and around bridges, culverts, storm drain outlets, and/or water diversion inlets
	☐ Stream channel bottom
	☐ Pond or lake
	☐ Marina basin
	☐ Other:
	☐ Clearing trash and debris
	☐ Removing fallen trees
	☐ Removing dead (not dormant) trees and shrubs
	☐ Vegetation:
	☐ Limbing and/or trimming of branches and tree limbs
	☐ Vegetation removal under high power lines
	☐ Mowing levee slopes and stream banks
	☐ Mowing within stream and floodway channels
	\square Removing emergent (e.g., bulrush and cattails) or other near water vegetation with:
	☐ hand tools
	☐ mechanical vegetation cutters and shredders
	☐ heavy equipment (soil disturbance)
	☐ chemicals

☐ Removing vegetation from the <i>upper half</i> of the bank with:			
☐ hand tools			
☐ mechanical vegetation cutters or shredders			
☐ heavy equipment (soil disturbance)			
☐ chemicals			
☐ Removing vegetation from the <i>lower half</i> of bank with:			
☐ hand tools			
☐ mechanical vegetation cutters or shredders			
☐ heavy equipment (soil disturbance)			
☐ chemicals			
☐ Removing vegetation within the channel with:			
☐ hand tools			
☐ mechanical vegetation cutters and shredders			
☐ heavy equipment (soil disturbance)			
☐ chemicals			
☐ Removing invasive, non-native plants with:			
☐ hand tools			
☐ mechanical vegetation cutters and shredders			
☐ heavy equipment (soil disturbance)			
☐ chemicals			
☐ Other:			
☐ Debris and brush pile burning			
☐ Burning levees			
☐ Minor erosion repair:			
☐ Repair at existing erosion control sites			
☐ New erosion repair			
Revegetation with local, native plant species			

NOTIFICATION OF LAKE OR STREAMBED ALTERATION ATTACHMENT D

Chemi	cal application:
	Herbicides
	Rodenticides
	Insecticides
Minor b	oridge work:
	Reinforcing pilings
	Reinforcing aprons
	Bridge painting (access and falsework)
Mate	erials to be used for reinforcement:
Other:	
Other:	
Other:	

II. MAP OR MAPBOOK

Maps must be of sufficient detail to assist in locating maintenance sites and should include the following:

- A. The applicant's jurisdictional boundaries
- B. All watercourses within the jurisdictional boundaries where maintenance will occur
- C. A key to identify each watercourse and the maintenance activities and location (e.g., bridges, water control diversions, and large scale maintenance) of those activities that are likely to occur

III. SPECIAL STATUS SPECIES LOCATIONS

A drawing, diagram, or map that shows the applicant's jurisdictional boundaries and the locations within that area where special status species are known to exist.

LAKE OR STREAMBED ALTERATION FEE SCHEDULE

The Department may refuse to process a notification or a request for an extension or amendment until the department receives the proper fee or fees.

STANDARD AGREEMENT

Any agreement other than an agreement for gravel, rock, or sand extraction, an agreement for timber harvesting, an agreement for routine maintenance, a master agreement, or a master agreement for timber operations.

Fee:

If the term of the agreement is 5 years or less.

For each project the agreement covers:

\$200 if the project costs less than \$5,000.

\$250 if the project costs from \$5,000 to less than \$10,000.

\$500 if the project costs from \$10,000 to less than \$25,000.

\$750 if the project costs from \$25,000 to less than \$100,000.

\$1,100 if the project costs from \$100,000 to less than \$200,000.

\$1,500 if the project costs from \$200,000 to less than \$350,000.

\$2,250 if the project costs from \$350,000 to less than \$500,000.

\$4,000 if the project costs \$500,000 or more.

Project cost means the cost to complete each project for which notification is required.

As a general rule, a notification for a standard agreement should identify only one project. If an entity chooses to identify more than one project in a single notification, the department may require the entity to separately notify the department for one or more of the projects included in the original notification based on their type or location.

If the notification includes more than one project, the fee shall be calculated by adding the separate fees for each project. For example, if a notification identifies three projects, one of which will cost less than \$5,000 to complete, one of which will cost \$7,500 to complete, and one of which will cost \$17,500 to complete, the fee for the first project would be \$200, the fee for the second project would be \$250, and the fee for the third project would be \$500. Hence, the total fee the entity would need to submit with the notification that identifies those three projects would be \$950.

An entity may not obtain a standard agreement for any project identified in the notification that qualifies for an agreement for gravel, rock, or sand extraction, an agreement for timber harvesting, an agreement for routine maintenance, a master agreement, or a master agreement for timber operations unless the department agrees otherwise.

Fee submittal: If the entity requests an agreement with a term of 5 years or less, the fee specified in the category for agreements with a term of 5 years or less must be submitted with the notification.

If the entity requests an agreement with a term longer than 5 years (Standard Long-term Agreement) the fee specified must be submitted with the notification.

STANDARD LONG-TERM AGREEMENT

Any agreement other than an agreement for gravel, rock, or sand extraction, an agreement for timber harvesting, an agreement for routine maintenance, a master agreement, or a master agreement for timber operations.

Fee:

If the term of the agreement is longer than 5 years.

\$2,400 base fee, plus

For each project the agreement covers:

\$200 if the project costs less than \$5,000.

\$250 if the project costs from \$5,000 to less than \$10,000.

\$500 if the project costs from \$10,000 to less than \$25,000.

\$750 if the project costs from \$25,000 to less than \$100,000.

\$1,100 if the project costs from \$100,000 to less than \$200,000.

\$1,500 if the project costs from \$200,000 to less than \$350,000.

\$2,250 if the project costs from \$350,000 to less than \$500,000.

\$4,000 if the project costs \$500,000 or more.

Project cost means the cost to complete each project for which notification is required.

As a general rule, a notification for a standard agreement should identify only one project. If an entity chooses to identify more than one project in a single notification, the department may require the entity to separately notify the department for one or more of the projects included in the original notification based on their type or location.

If the notification includes more than one project, the fee shall be calculated by adding the separate fees for each project. For example, if a notification identifies three projects, one of which will cost less than \$5,000 to complete, one of which will cost \$7,500 to complete, and one of which will cost \$17,500 to complete, the fee for the first project would be \$200, the fee for the second project would be \$250, and the fee for the third project would be \$500. Hence, the total fee the entity would need to submit with the notification that identifies those three projects would be \$950.

An entity may not obtain a standard agreement for any project identified in the notification that qualifies for an agreement for gravel, rock, or sand extraction, an agreement for timber harvesting, an agreement for routine maintenance, a master agreement, or a master agreement for timber operations unless the department agrees otherwise.

Fee submittal: If the entity requests an agreement with a term of 5 years or less, the fee specified in the category for agreements with a term of 5 years or less must be submitted with the notification.

If the entity requests an agreement with a term longer than 5 years, the fee specified must be submitted with the notification.

SAND, ROCK AND GRAVEL EXTRACTION AGREEMENT

Any agreement for commercial or non-commercial mining or extraction of gravel, sand, rock, or other aggregate material.

Fee:

If the term of the agreement is <u>5 years or less:</u>

\$500 if the annual extraction volume is less than 500 cubic yards.

\$1,000 if the annual extraction volume is 500 to less than 1,000 cubic yards.

\$2,500 if the annual extraction volume is 1,000 to less than 5,000 cubic yards.

\$5,000 if the annual extraction volume is 5,000 or more cubic yards.

Fee:

If the term of the agreement is longer than 5 years:

\$10,000 base fee, plus \$1,000 annual fee

Fee submittal: If the entity requests an agreement with a term of 5 years or less, the fee specified in paragraph (1) must be submitted with the notification.

If the entity requests an agreement with a term longer than 5 years, the base fee specified in paragraph (2) must be submitted with the notification.

TIMBER HARVESTING OPERATION AGREEMENT

An agreement of five years or less that covers one or more projects that are included in a timber harvesting plan approved by the California Department of Forestry and Fire Protection.

Fee:

\$1,200 base fee, plus \$100 for each project the agreement covers, and

Fee submittal: The fee specified must be submitted with the notification.

MASTER TIMBER HARVESTING OPERATION AGREEMENT

An agreement with a term of greater than five years that covers timber operations on timberland that are not exclusively projects to extract gravel, sand, or rock; not exclusively projects that are included in a timber harvesting plan approved by the California Department of Forestry and Fire Protection; or not exclusively routine maintenance projects that the entity will need to complete separately at different time periods during the term of the agreement; and describes a procedure the entity must follow for construction, maintenance, or other projects the agreement covers.

Fee:

\$7,500 base fee, plus \$100 for each project the agreement covers, and \$1,000 annual fee **Fee submittal**: The base fee specified at a minimum must be submitted with the notification. The balance of all fees due must be paid prior to the issuance of the agreement.

Note: If an entity chooses to identify more than one project in a single notification, the total fee may exceed \$5,000 regardless of the term of the agreement.

ROUTINE MAINTENANCE AGREEMENT

An agreement that covers only multiple routine maintenance projects that the entity will complete at different time periods during the term of the agreement; and describes a procedure the entity must follow for any maintenance projects the agreement covers.

Fee:

If the term of the agreement is 5 years or less:

\$1,200 base fee, plus

\$100 for each maintenance project completed per calendar year.

Fee:

If the term of the agreement is longer than 5 years:

\$2,400 base fee, plus

\$100 for each maintenance project completed per calendar year.

Fee submittal: If the entity requests an agreement with a term of 5 years or longer then 5 years, the base fee at a minimum must be submitted with the notification. The balance of all fees due must be paid prior to the issuance of the agreement.

MASTER AGREEMENT

An agreement with a term of greater than five years that covers multiple projects that are not exclusively projects to extract gravel, sand, or rock; not exclusively projects that are included in a timber harvesting plan approved by the California Department of Forestry and Fire Protection; or not exclusively routine maintenance projects that the entity will need to complete separately at different time periods during the term of the agreement; and describes a procedure the entity must follow for construction, maintenance, or other projects the agreement covers.

Fee:

\$30,000 base fee, plus: \$250 for each project the agreement covers, and \$2,500 annual fee

Fee submittal: The base fee specified in paragraph (1) at a minimum must be submitted with the notification. The balance of all fees due must be paid prior to the issuance of the agreement.

An example of a project for which the department would issue a master agreement is a largescale development proposal comprised of multiple projects for which specific, detailed design plans have not been prepared at the time of the original notification. The master agreement will specify a process the department and entity will follow before each project begins and may identify various measures the entity will be required to incorporate as part of each project in order to protect fish and wildlife resources.

Kennedy/Jenks Consultants

8 June 2010

Memorandum

To: State of California Department of Fish and Game

From: Bighorn Desert View Water Agency

Subject: Notification of Lake or Streambed Alteration – Supplemental Information

K/J ProjectNumber

Additional text for Item 11-B

Protected plant species that exist within the spreading ground project area include:

Hedgehog cactus (Echinocereus enelmannii)

Beavertail cactus (Opuntia basilaris)

Silver cholla (Oputina echinocarpa)

Pencil cholla (Opuntia ramosissima)

Bear cactus (Opuntia ursine)

Catclaw acacia (Acacia greggii)

Joshua tree (Yucca brevifolia)

The impact to each species cannot be quantified until a final site location is chosen.

Additional text for Item 11-C

Protected animal species found within the 39 acre spreading ground project area include:

Desert tortoise (Gopherus agassizii) – Note that according to the Draft MND for this project, as long as the spreading grounds are constructed during the winter and in the southern portion of the study area, impacts on the desert tortoise could be avoided.

Burrowing Owl (Athene cunicularia) – Three burrows were found within the survey area and all are located outside of the boundaries of the 15-acre spreading basin preferred site. As long as the preferred site is used no mitigation measures are required.

Le Conte's thrasher (Toxostoma lecontei) – Impacts will be mitigated by scheduling the construction between late August to late January to avoid breeding and nesting birds and minimizing the amount of disturbed LeConte's thrasher habitat.

Kennedy/Jenks Consultants

Memorandum

State of California Department of Fish and Game 8 June 2010 Page 2

Additional text for Item 13

Permits known to be required for the spreading basin are as follows:

Colorado River Basin Regional Water Quality Control Board Region 7 (RWQCB) - For construction existing discharge permits may be able to be used. This is being evaluated and the correct permit will be applied for concurrently with this permit application. A permit will be also be required for the permanent facility but the type of permit will depend on future discussions with the RWQCB.

US Fish and Wildlife Service - Once the project is approved US Fish and Wildlife Service will require a formal request for the presence of Endangered and Threatened species within the project area.

US Army Corps of Engineers (ACOE) - Project is being submitted to ACOE to determine if the Pipes Wash is within ACOE "Jurisdictional Waters" or if it is "isolated waters". If it is the former a 404 Permit will be required from the ACOE.

Bighorn-Desert View Water Agency

CEQA Initial Study and Draft Mitigated Negative Declaration for

Water Infrastructure Restoration Program: AMES/RECHE GROUNDWATER STORAGE and RECOVERY PROGRAM; and PIPELINE INSTALLATION/REPLACEMENT PROJECT

May 2010

Prepared by: **Bighorn Desert View Water Agency** 622 S. Jemez Trail Yucca Valley, CA 92284-1440

Assisted by:
Candida Neal, AICP
A Land Use and Environmental Planning Consulting Firm
P.O. Box 1978
Claremont, CA 91711

CALIFORNIA ENVIRONMENTAL PROTECTION AGENCY

State of California Regional Water Quality Control Board

APPLICATION/REPORT OF WASTE DISCHARGE GENERAL INFORMATION FORM FOR WASTE DISCHARGE REQUIREMENTS OR NPDES PERMIT

WASTE DISCHARGE REQUIREMENTS OR NPDES PERMIT FACILITY INFORMATION I. A. Facility: Address: City: County: State: Zip Code: Contact Person: Telephone Number: **B.** Facility Owner: Name: Owner Type (Check One) 2. Corporation 1. Individual Address: 3. Governmental 4. Partnership Agency City: State: Zip Code: 5. Other: Contact Person: Telephone Number: Federal Tax ID: **C.** Facility Operator (The agency or business, not the person): Operator Type (Check One) 1. Individual 2. Corporation Address: 3. Governmental 4. Partnership City: State: Zip Code: 5. Other: Contact Person: Telephone Number: D. Owner of the Land: Name: Owner Type (Check One) 1. Individual 2. Corporation Address: 3. Governmental 4. Partnership Agency City: State: Zip Code: 5. Other: Contact Person: Telephone Number: E. Address Where Legal Notice May Be Served: Address: State: City: Zip Code: Contact Person: Telephone Number: F. Billing Address:

State:

Zip Code:

Telephone Number:

Address:

Contact Person:

City:

CALIFORNIA ENVIRONMENTAL PROTECTION AGENCY

State of California Regional Water Quality Control Board

APPLICATION/REPORT OF WASTE DISCHARGE GENERAL INFORMATION FORM FOR WASTE DISCHARGE REQUIREMENTS OR NPDES PERMIT

II. TYPE OF DISCHARGE

Check Type of Discharge(s) Described i	in this Application (A or B):	
A. WASTE DISCHARGE TO	LAND B. WAS	STE DISCHARGE TO SURFACE WATER
Check all that apply:		
Domestic/Municipal Wastewater Treatment and Disposal Cooling Water Mining Waste Pile Wastewater Reclamation Other, please describe:	☐ Animal Waste Solids ☐ Land Treatment Unit ☐ Dredge Material Disposal ☐ Surface Impoundment ☐ Industrial Process Wastew	Animal or Aquacultural Wastewater Biosolids/Residual Hazardous Waste (see instructions) Landfill (see instructions) ater Storm Water
III. Describe the physical location of the factorial describes the physical location describes the physical describes the physical location describes the physical describes the physi	LOCATION OF THE	FACILITY
1. Assessor's Parcel Number(s) Facility: Discharge Point:	2. Latitude Facility: Discharge Point:	3. Longitude Facility: Discharge Point:
☐ New Discharge or Facility	IV. REASON FOR F	
_	_	ip/Operator (see instructions)
Change in Design or Operation	☐ Waste Discharge Rec	quirements Update or NPDES Permit Reissuance
☐ Change in Quantity/Type of Dis	scharge Other:	
V. CALIFORNIA	ENVIRONMENTAL	QUALITY ACT (CEQA)
Name of Lead Agency:		
Has a "Notice of Determination" been file If Yes, enclose a copy of the CEQA documexpected type of CEQA document and exp	ment, Environmental Impact Repor	s No t, or Negative Declaration. If no, identify the
Expected CEQA Documents	: <u> </u>	
EIR Negative Declara	tion Expected CEQ	A Completion Date:

CALIFORNIA ENVIRONMENTAL PROTECTION AGENCY

State of California Regional Water Quality Control Board

APPLICATION/REPORT OF WASTE DISCHARGE GENERAL INFORMATION FORM FOR WASTE DISCHARGE REQUIREMENTS OR NPDES PERMIT

VI. OTHER REQUIRED INFORMATION

Please provide a COMPLETE characterization of your discharge. A complete characterization includes, but is not limited to, design and actual flows, a list of constituents and the discharge concentration of each constituent, a list of other appropriate waste discharge characteristics, a description and schematic drawing of all treatment processes, a description of any Best Management Practices (BMPs) used, and a description of disposal methods.

Also include a site map showing the location of the facility and, if you are submitting this application for an NPDES permit, identify the surface water to which you propose to discharge. Please try to limit your maps to a scale of 1:24,000 (7.5' USGS Quadrangle) or a street map, if more appropriate.

	VII. OTHER
Attach additional sheets to explain an	y responses which need clarification. List attachments with titles and dates below:
You will be notified by a representative	of the RWQCB within 30 days of receipt of your application. The notice will state if your
application is complete or if there is additional pursuant to Division 7, Section 13260 of	tional information you must submit to complete your Application/Report of Waste Discharge, f the California Water Code.
application is complete or if there is addi-	
application is complete or if there is additional pursuant to Division 7, Section 13260 of a certify under penalty of law that this certification and supervision in accordance with the complete or in the certification submitted. Based on my inquited the information, the information section is accordance with the certification of the certification is application.	the California Water Code. VIII. CERTIFICATION document, including all attachments and supplemental information, were prepared under ith a system designed to assure that qualified personnel properly gathered and evaluated iry of the person or persons who manage the system, or those persons directly responsible submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am av
application is complete or if there is additional pursuant to Division 7, Section 13260 of a certify under penalty of law that this certification and supervision in accordance with formation submitted. Based on my inquithering the information, the information section is a certification of the certification of the certification is a certification of the certification of the certification is application of the certification of	VIII. CERTIFICATION document, including all attachments and supplemental information, were prepared under ith a system designed to assure that qualified personnel properly gathered and evaluated try of the person or persons who manage the system, or those persons directly responsible submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am away submitting false information, including the possibility of fine and imprisonment

FOR OFFICE USE ONLY

TOR OTTICE USE ONE I										
Date Form 200 Received:	Letter to Discharger:	Fee Amount Received:	Check #:							

Form	Annroved	OMR No.	2040-0086

FORM	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	U.S. ENVIRO	ONME	NTAL	PROTECTI	101	N AGENCY	I F	EPA I.D. NUMBER			
1	\$EPA	GEN	NERAL INFORMATION									T/A C
CENEDAL	VLIA		nsolidated Permits Program General Instructions" before starting.)									D
GENERAL		(Read the	Gener	at mstr	uctions bejo	ore	starting.)	1	general instru	JCTION	13 IS	14 15
LABEL	. ITEMS		If a preprinted label has been provided, affix it in the designated space. Review the information carefully, if any of									
I. EPA I.D. I		is incorrect, cross through it and enter the correct data in the appropriate fill-in area below. Also, if any of the preprinted data in the appropriate fill-in area below.									data in the	
III. FACILITY	PLEASE	is absent (the area to the left of the label space lists the information that should appear), please provide it in the proper fill-in area(s) below. If the label is complete and correct, you									n the proper	
V. FACILITY						ne	ed not complete Items I, III, V, a	ind VI ((except	VI-B which		
ADDRES		must be completed regardless). Complete has been provided. Refer to the instructions and for the local purpose.								ns for d	letailed item	
VI. FACILITY LOCATION descriptions and for the legal authoridata is collected.								rization	s unde	r which this		
II. POLLUTANT	II. POLLUTANT CHARACTERISTICS INSTRUCTIONS: Complete A through J to determine whether you need to submit any permit application forms to the EPA. If you answer "yes" to any questions, you must											
submit this form	n and the supple o" to each questio	nrough J to determine whethe mental form listed in the pare in, you need not submit any o of the instructions for definition	nthesi f these	s follo	wing the qu s. You may faced terms	uest ans	tion. Mark "X" in the box in t	the	third column if the supplement	ntal for	m is a	ittached. If on C of the
	SPECIFIC QU	JESTIONS	YES	NO	FORM ATTACHED		SPECIFIC	C QL	JESTIONS	YES	NO	FORM ATTACHED
		ned treatment works which ers of the U.S.? (FORM 2A)				В	include a concentrated	an	ither existing or proposed) imal feeding operation or facility which results in a			
0 1 111 1			16	17	18	Ļ	discharge to waters of th		, ,	19	20	21
	ne U.S. other tha	tly results in discharges to n those described in A or B	22	23	24	b			er than those described in A in a discharge to waters of	25	26	27
		reat, store, or dispose of	- 22	20	24	F	. Do you or will you inje	ect	at this facility industrial or	23	20	27
hazardous wastes? (FORM 3)							containing, within one q	quar	the lowermost stratum ter mile of the well bore,			
C. Do you or wi	Il vov inject et thi	a facility any produced water	28	29	30	١.,	underground sources of dr			31	32	33
G. Do you or will you inject at this facility any produced water or other fluids which are brought to the surface in connection with conventional oil or natural gas production, inject fluids used for enhanced recovery of oil or natural gas, or inject fluids for storage of liquid hydrocarbons? (FORM 4)				35	36	-	processes such as mining solution mining of minera	you inject at this facility fluids for special as mining of sulfur by the Frasch process, of minerals, in situ combustion of fossily of geothermal energy? (FORM 4)				39
		tionary source which is one	34		- 33	J.			stationary source which is	37	38	
which will p	otentially emit 10	listed in the instructions and 00 tons per year of any air					instructions and which wi	vill p	ial categories listed in the otentially emit 250 tons per			
		Clean Air Act and may affect area? (FORM 5)	40	41	42	_			ated under the Clean Air Act ed in an attainment area?	43	44	45
0. 20 1000100							(FORM 5)	oout	and			
III. NAME OF	FACILITY											
1 SKIP			ı									
15 16 - 29 30	00117407									69		
IV. FACILITY	CONTACT	A. NAME & TITLE (last	firet	& title)					B. PHONE (area code & no.)			
С		THE CHARLEST	, ju si,						B. Frioriz (area code & no.)			
15 16							45 4	46	48 49 51 52-	55		
	ILING ADDRESS	S										
		A. STREET OR P.	.O. BC	X								
3	1 1 1 1 1		1 1		1 1 1							
15 16							45					
С		B. CITY OR TOWN		1 1			C. STATE	D	ZIP CODE			
4	1 1 1 1		ı	1 1	1 1 1	ļ		ı	· · ·			
VI. FACILITY							40 41 42 47		51			
VI. TACILITI		REET, ROUTE NO. OR OTHE	R SPI	ECIFIC	DENTIFIE	ER						
<u>c</u>												
5 15 16							45					
		B. COUNTY	′ NAM	E								
	 	<u> </u>	ı I	I 	 	 _		 				
46		C. CITY OR TOWN				_	D. STATE	F 2	ZIP CODE F. COUNTY C	ODF /	if know	(m)
c		- STIT ON TOWN		[1 1 1	I	I I I I I	T. 2			, KHOW	/

CONTINUED FROM THE FRONT	
VII. SIC CODES (4-digit, in order of priority) A. FIRST	B. SECOND
C (specify)	S. SLCOND
7	/
15 16 - 19 C. THIRD	15 [16 · 19] D. FOURTH
c (specify)	[c] (specify)
15 16 - 19	15 16 - 19
VIII. OPERATOR INFORMATION	
A. NAME	B.Is the name listed in Item VIII-A also the owner?
8	☐ YES ☐ NO
15 16	55 66
C. STATUS OF OPERATOR (Enter the appropriate letter i	
F = FEDERAL S = STATE M = PUBLIC (other than federal or state)	(specify)
P = PRIVATE O = OTHER (specify)	6 15 6 - 18 19 - 21 22 - 26
E. STREET OR P.O. BOX	
26	55
F. CITY OR TOWN	G. STATE H. ZIP CODE IX. INDIAN LAND
В	
15 16	40 41 42 47 - 51 52
X. EXISTING ENVIRONMENTAL PERMITS	
A. NPDES (<i>Discharges to Surface Water</i>) D. PSD	(Air Emissions from Proposed Sources)
9 N 9 P	
15 16 17 18 30 15 16 17 18	30
B. UIC (Underground Injection of Fluids)	E. OTHER (specify)
15 16 17 18 30 15 16 17 18	30
C. RCRA (Hazardous Wastes)	E. OTHER (specify)
C T	
15 16 17 18 30 15 16 17 18	30
XI. MAP	
	st one mile beyond property boundaries. The map must show the outline of the facility, the
location of each of its existing and proposed intake and discharge structures, injects fluids underground. Include all springs, rivers, and other surface water l	each of its hazardous waste treatment, storage, or disposal facilities, and each well where it
XII. NATURE OF BUSINESS (provide a brief description)	social in the map area. See mentione to produce requirements.
MI. NATORE OF BOOMESS (provide a biter description)	
XIII. CERTIFICATION (see instructions)	
	with the information submitted in this application and all attachments and that, based on my
am aware that there are significant penalties for submitting false information, in	n contained in the application, I believe that the information is true, accurate, and complete. I Including the possibility of fine and imprisonment.
A. NAME & OFFICIAL TITLE (type or print) B. SIGNA	
	O. DATE GIORED
COMMENTS FOR OFFICIAL USE ONLY	

								Form Appro	oved. OMB No. 2040-0086. Approval expires 8-31-9
				EPA	I.D. NUMBE	R (copy from	Item 1 of For	m 1)	
	r type in the ur		areas only	Appli					schargers Process Wastewater
NPDES I. Outfall Lo	cation								
		latitude a	and longitud	de of its loc	ation to the	nearest 15	seconds an	d the name of t	he receiving water.
Outfall Nu	ımber		Latitude			Longitude		Receiving Wa	
(list)		Deg.	Min.	Sec.	Deg.	Min.	Sec.		
II. Discharge	e Date (Whe	n do voi	u expect to	heain discl	harging?)				
2.00a. g	o Duto (Time	,,, do yo	a oxpoor to	bogiii dicoi	larging.)				
III. Flows, S	ources of P	ollution	, and Treat	ment Tech	nologies	ı			
wastew	ch outfall, p rater, cooling rater. Contin	y water,	and storm	water runo	ff; (2) The a	s contribution average flow	ng wastewa v contribute	iter to the effluid by each open	ent, including process wastewater, sanitary ation; and (3) The treatment received by the
Outfall	1.	Operation	ons Contrib	uting Flow			Average Flo		3. Treatment
Number			(List)			(1)	nclude Units	>)	(Description or List codes from Table 2D-1

B.	3. Attach a line drawing showing the water flow through the facility. Indicate sources of intake water, operations contributing wastewater to the effluent, and treatment units labeled to correspond to the more detailed descriptions in Item III-A. Construct a water balance on the line drawing by showing average flows between intakes, operations, treatment units, and outfalls. If a water balance cannot be determined (e.g., for certain mining activities), provide a pictorial description of the nature and amount of any sources of water and any collection or treatment measures.										
C.	_	orm runoff, leaks, or sp		y of the disch	narges			seasonal?			
		S (complete the following	ng table)		1 Eroc	NO (go to Secti	2. Flow				
		Outfall	-	a. Day	1. Fred	b. Months	a. Maximum Daily				
		Number	Per We	ek	Per Year	Flow Rate	b. Maximum Total Volume	c. Duration			
				(specify ave	erage)	(specify average)	(in mgd)	(specify with units)	(in days)		
N/ -	Dun al.: -41										
If t	oduction level	pplicable production-ba , not design), expresseduction is likely to vary,	ed in the te	erms and un	its used	I in the applicable e	ffluent guideline or I	vel of production (pro	ojection of actual e first 3 years of		
	Year	A. Quantity Per Day	B. Units (Of Measure		c. Op	eration, Product, Mat	terial, etc. (specify)			

CONTINUED FROM THE FRONT	EPA I.D. NUM	EPA I.D. NUMBER (copy from Item 1 of Form 1) Outfall Number							
V. Effluent Characteristics									
A and B: These items require you to repo	a different set of po	llutants and should I	be completed in a	ne pollutants to be discharged from each of your accordance with the specific instructions for that eary.					
General Instructions (See table 2D-2 for Pollutants) Each part of this item requests you to provide an estimated daily maximum and average for certain pollutants and the source of information. Data for all pollutants in Group A, for all outfalls, must be submitted unless waived by the permitting authority. For all outfalls, data for pollutants in Group B should be reported only for pollutants which you believe will be present or are limited directly by an effluent limitations guideline or NSPS or indirectly through limitations on an indicator pollutant.									
1. Pollutant	2. Maximum Daily Value (include units)	3. Average Daily Value (include units)		4. Source (see instructions)					

EPA Form 3510-2D (Rev. 8-90) Page 3 of 5 CONTINUE ON REVERSE

C. Use the space below to list any of the pollutants listed in Table 2D-3 of the instructions which you know or have reason to believe discharged from any outfall. For every pollutant you list, briefly describe the reasons you believe it will be present. 1. Pollutant 2. Reason for Discharge	will be
1. Pollutant 2. Reason for Discharge	
VI. Engineering Report on Wastewater Treatment	
 A. If there is any technical evaluation concerning your wastewater treatment, including engineering reports or pilot plant studies, ch appropriate box below. Report Available No Report 	eck the
B. Provide the name and location of any existing plant(s) which, to the best of your knowledge resembles this production facility with resproduction processes, wastewater constituents, or wastewater treatments.	spect to
Name Location	

EPA I.D. NUMBER (copy from Item 1 of Form 1)

VII. Other Information (Optional)		
Use the space below to expand upon an considered in establishing permit limitation	y of the above questions or to bring to the attention of the recons for the proposed facility. Attach additional sheets if necess	viewer any other information you feel should be ssary.
VIII. CERTIFICATION		
I certify under penalty of law that this do designed to assure that qualified person who manage the system, or those per knowledge and belief, true, accurate, ar possibility of fine and imprisonment for kn	cument and all attachments were prepared under my direct nel properly gather and evaluate the information submitted. sons directly responsible for gathering the information, th nd complete. I am aware that there are significant penalties nowing violations.	Based on my inquiry of the person or persons e information submitted is, to the best of my
A. Name and Official Title (type or print)		B. Phone No.
C. Signature		D. Date Signed

EPA Form 3510-2D (Rev. 8-90) PAGE 5 of 5

Please print or type in t	he unshaded	l areas only.		EPA ID N	lumber (co	py from Item 1 of Form 1)		oved, OMB No. 2040 expires 5-31-92.	-0086.
FORM 2E SEI	PA F	aciliti	es V	Vhic	h Do	Not Discha	rge Proces	s Wastev	vater
I. RECEIVING WATE	RS		******************						
	For thi	s outfall	list the	e latitu	de and	longitude, and nan	ne of the receiving	y water(s).	
Outfall	Latitu	de) hal	ongitud	e F	Receiving Water (name)	,	
Number (list)	Deg Min	Sec	Deg	Min	Sec	Pipes Wash			
ı //	16 24	1 57	34	14	2/				
II. DISCHARGE DATE	(If a new o	discharger,	the date	you ex	pect to be	egin discharging)			
III.TYPE OF WASTE	V14431	100	in in the state of the	000000000000000000000000000000000000000	(400.00)				
A. Check the box(es) i	ndicating th								
☐ Sanitary Wastes	□ ғ	Restaurant	or Cafe	teria Wa	astes	☐ Noncontac	t Cooling Water	Other Nonpro Wastewater	
authority (see in B. New Discharge	es — Provi structions). rs — Provi	de measu de estimat	es for th easurem	e param ents tak	neters liste	's listed in the left-hand ed in the left-hand colu de the source of estima	nn below, unless waiv ted values <i>(see instru</i> (2)	red by the permittir ctions).	
Pollutant or Parameter			Daily	imum Value		Value	Average Daily Value (last year) (include units)		Source of Estimate
raiametei		Mas		le units) Cor	ncentration	Mass	Concentration	Measurements Taken (last year)	(if new discharger)
Biochemical Oxygen Demand (BOD)									
Total Suspended Solids (T	SS)		······································						
Fecal Coliform (if believed or if sanitary waste is discl	L 1	2.				-			
Total Residual Chlorine (if chlorine is used)	200 200 200 200								
Oil and Grease									
*Chemical oxygen demand	d (COD)								
*Total organic carbon (TO	C)			3.	9 mg/l		2.5 mg/l	21.00	DWR SWP dat
Ammonia (as N)									
Discharge Flow	۷	alue							
рН (give range)	V	alue	8.1 t	0 8.5					
Temperature (Winter)						°C	°C		
Temperature (Summer)						°C	°C		
*If noncontact cooling wate	er is discharg	ed							

V. Except for leaks or spills, will the discharge described in this form be intermittent or seasonal?	
If yes, briefly describe the frequency of flow and duration.	□ No
This discharge will occur to take State Water Project water delivered through the Morongo Basin Pipeline to increase the reliability of the water supply in the region by placing this water into recharge basins. The availability of State Water Project water will be dependent on water consumption in general and therefore may not always be available for use as a recharge source.	
VI. TREATMENT SYSTEM (Describe briefly any treatment system(s) used or to be used)	
The State Water Project water will not be treated before placement into the recha water already meets or exceeds state drinking water requirements as indicated in drinking water monthly analyses for the period January 2008 through September 200 attached)	the attached
VII. OTHER INFORMATION (Optional)	
Use the space below to expand upon any of the above questions or to bring to the attention of the reviewer any other info should be considered in establishing permit limitations. Attach additional sheets, if necessary.	rmation you feel
More detail about the Water Infrastructure Restoration Program can be found in Ap CEQA Initial Study and Draft Mitigated Negative Declaration for the Ames/Reche Grand Recovery Program; and Pipeline Installation/Replacement Project(Appendix 6 at	oundwater Storage
VIII. CERTIFICATION	
I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.	
A. Name & Official Title	B. Phone No. (area code
Marina D. West, General Manager	& no.) (760) 364-2315
C. Signature	D. Date Signed

