Bighorn-Desert View Water Agency

Reche Spreading Grounds Recharge Feasibility Study

February 2011

Todd Engineers

Alameda, California

Reche Spreading Grounds
 Recharge Feasibility Study

Prepared for:
Bighorn-Desert View Water Agency
622 S. Jemez Trail
Yucca Valley, California 92284

Prepared by:
Todd Engineers
2490 Mariner Square Loop, Suite 215
Alameda, CA 9501-1080

February 2011

Table of Contents

Page

1. INTRODUCTION 1
1.1 Background 1
1.2 Hydrogeologic Setting 1
1.3 Study Objectives 3
1.4 Scope of Work 3
2. WELL DRILLING, CONSTRUCTION AND DEVELOPMENT 5
2.1 Pre-Drilling Activities 5
2.2 Technical Approach 5
2.3 Drilling 6
2.4 Subsurface Lithology 6
2.5 Hydraulic Properties of Selected Soil Samples 7
2.6 Well Construction 8
2.7 Well Development 9
2.8 Hydrogeologic Cross Section 9
3. AQUIFER TESTING 10
3.1 Technical Approach 10
3.2 Well Construction of HDWD 24 11
3.3 Step-Drawdown Pumping Test Details 11
3.4 Constant-Discharge Pumping Test 11
3.5 Results 12
4. GROUNDWATER MODELING AND ANALYSIS 14
4.1 Spreading Basin Size and Capacity 14
4.2 Flow Modeling Results 14
4.3 Groundwater Mounding 15
4.4 Groundwater Flowpaths 15
5. WATER QUALITY EVALUATION 16
5.1 Water Quality Sampling and Analysis for BDVWA MW1 and MW2 16
5.2 Impacts of Mixing SWP Water and Native Groundwater 17
5.2.1 SWP Water Quality 17
5.2.2 Groundwater Quality in the Reche Subbasin 18
5.3 Impacts from Percolation of SWP Water 20
5.4 Impacts from Groundwater Mounding 21
6. REGULATORY PERMIT REQUIREMENTS 22
6.1 Regulatory Agencies 22
6.2 Regulatory Permit Status 24
7. CONCLUSIONS 25
8. REFERENCES 26

List of Tables

Table 1 BDVWA MW1 Soil Sample Hydraulic Properties
Table 2 Monitoring Well Construction Details
Table $3 \quad$ HDWD Well No. 24 Aquifer Test Results
Table 4 Groundwater Quality Sampling Results Summary
Table 5 SWP Water Quality Summary
Table 6 Comparison of SWP and Groundwater Quality

List of Figures

Figure 1 DWR and USGS Basins and Subbasins
Figure 2 Faults and Hydraulic Barriers
Figure $3 \quad$ Watershed and Drainages
Figure 4 Groundwater Levels
Figure $5 \quad$ Water Providers and Morongo Basin Pipeline
Figure 6 Reche Spreading Grounds and Well Locations
Figure $7 \quad$ Groundwater Flow Model Area
Figure $8 \quad$ Sonic Drilling Rig Setup
Figure 9 Exploratory Boring/Well Log for BDVWA MW1
Figure 10 Exploratory Boring/Well Log for BDVWA MW2
Figure 11 Cross Section A-A'
Figure 12 Drawdown and Recovery over Time in Observation Well BDVWA MW2
Figure 13 Drawdown over Log Time in Observation Well BDVWA MW2
Figure 14 Recovery over Dimensionless Time in Observation Well BDVWA MW2
Figure 15 Simulated Water Table Mounding after Recharge of 1,500 AF after 6 Months
Figure 16 Simulated Water Table Elevations over Time in Response to Recharge
Figure 17 Simulated Flow Paths from Recharge of 1,500 AF in Alternating Years
Figure 18 Cation/Anion Composition of Groundwater and SWP Water

List of Appendices

Appendix A Drilling Permits

Appendix B Soil Hydraulic Property Laboratory Report

Appendix C Well Development Forms
Appendix D Aquifer Testing Data
Appendix E Groundwater Flow Model
Appendix F Water Quality Laboratory Report
Appendix G Regulatory Permits and Permit Applications

1. INTRODUCTION

1.1 Background

The Bighorn-Desert View Water Agency (BDVWA) is located in the western Mojave Desert of San Bernardino County (also known as the High Desert). Groundwater is the primary source of water supply in the region, but increasing water demand is expected to stress limited groundwater resources in the future. BDVWA's service area includes most of the Pipes and Reche groundwater subbasins (Study Area), two of seventeen subbasins that comprise the greater USGS Morongo Groundwater Basin and are also included in the DWR Ames Valley Groundwater Basin.

During 2007 and in cooperation from Mojave Water Agency (MWA), BDVWA completed a comprehensive evaluation of hydrogeologic conditions and an assessment of water supply and demand for three High Desert groundwater basins, including the Ames Valley Groundwater Basin (Kennedy/Jenks/Todd LLC, 2007). The scope of the 2007 study was divided into two interrelated tasks: 1) the development of a basin conceptual model describing the basin geology and geometry, groundwater recharge and discharge sources, aquifer parameters, and groundwater occurrence, flow, and quality over time; and 2) an assessment of current and future water supply and demand under varying future climatic conditions. The combination of these two components provided the scientific basis to support future groundwater management decisions.

Results of the 2007 regional study demonstrated the need to augment the water supply of the Ames Valley Basin to satisfy future water demands. Specifically, the study identified an opportunity for a conjunctive use project in the Reche Subbasin involving surface recharge of imported State Water Project (SWP) water delivered through the Morongo Basin Pipeline within Pipes Wash, a dry alluvial wash that traverses the Study Area.

BDVWA initiated the Reche Spreading Grounds Recharge Feasibility Study (Study) to further evaluate the feasibility of implementing a conjunctive use project at the proposed Pipes Wash recharge area, herein referred to as the Reche Spreading Grounds.

1.2 Hydrogeologic Setting

The Pipes and Reche subbasins represent two of seventeen subbasins that comprise the greater USGS Morongo Groundwater Basin (Stamos et al., 2004). The two subbasins are also included in the DWR Ames Valley Groundwater Basin (DWR, 2004) (Figure 1). The region is tectonically active and is characterized by numerous primarily northwest-trending geologic faults that serve as partial barriers to groundwater flow. As shown in Figure 2, the Pipes Subbasin is separated from the neighboring Reche Subbasin to the east by two geologic faults, the Johnson

Valley Fault in the north and inferred Pipes Barrier in the south. Bedrock outcrops of the Little San Bernardino Mountains form the western and southern boundaries of the Pipes Subbasin. The Reche Subbasin is separated from neighboring subbasins by the Johnson Valley Fault and inferred Pipes Barrier to the west, the Kickapoo Fault to the north, and Homestead Valley Fault to the east. A groundwater divide forms the southern subbasin boundary, while bedrock outcrops represent the remaining boundaries.

Consolidated, pre-Tertiary rocks comprise the bedrock underlying the basin fill deposits of the Pipes and Reche subbasins. Bedrock is generally considered to be non water-bearing and constitutes the basin floor. As a result of historical faulting in the area, the elevation of bedrock across the subbasin is highly variable but generally ranges from 300 to 600 feet below ground surface (bgs). Basin fill deposits are represented by Tertiary and Quaternary alluvial and fluvial deposits, including interbedded layers of unconsolidated to semi-consolidated gravel, sand, silt, and clay.

Natural recharge to the Pipes and Reche subbasins is represented primarily by subsurface inflow fed by runoff generated in the upland areas of the adjacent San Bernardino Mountains, where average annual precipitation ranges from 6 to 16 inches. Runoff percolates through the permeable alluvial sediments to the water table and enters the Pipes Subbasin as groundwater. Subsurface inflow is concentrated beneath three dry washes - Pipes Wash, Whalen's Wash, and an unnamed wash associated with Ruby Mountain Creek (Figure 3). Recharge from precipitation that falls directly on the groundwater basin area is considered negligible due to low precipitation (about 4 inches per year) and high evaporation rates.

Groundwater flows in an east/northeast direction across the Pipes and Reche subbasins and exits through specific areas along the Homestead Valley Fault to the Giant Rock Subbasin (Figures 2 and 4). Clay gouge and low permeability zones associated with the Johnson Valley Fault and Pipes Barrier impede groundwater flow from Pipes Subbasin to Reche Subbasin, although groundwater does seep through these partial barriers. The Homestead Valley Fault similarly impedes groundwater flow from the Reche Subbasin to the Giant Rock Subbasin.

Groundwater has served as the sole source of water supply historically in the Study Area. Service areas for three water agencies overlie portions of the Pipes and Reche subbasins, including BDVWA, HDWD, and CSA 70 W-1 (Figure 5). In addition to the water service providers, a small amount of groundwater is pumped from private wells. Several commercial water haulers purchase water from BDVWA and serve outlying areas. Also shown on Figure 5 is the Morongo Basin Pipeline, which conveys SWP water through the High Desert region.

For the past several decades, groundwater pumping has been the major outflow of groundwater from the Pipes and Reche subbasins. BDVWA is the only major pumper in the Pipes Subbasin, while BDVWA, HDWD, and CSA $70 \mathrm{~W}-1$ represent the major pumpers in the Reche Subbasin. Since routine groundwater level monitoring began in 1990, groundwater level declines have
been observed in municipal production wells. Most of the total groundwater level decline in the subbasin occurred from 1993 to 1999 due to increased groundwater production during those years. Since 1999, the average rate of groundwater level declines has decreased in response to decreased groundwater production.

Groundwater quality in the Reche Subbasin is generally high, as represented by average total dissolved solids (TDS) concentrations of less than 300 milligrams per liter (mg/L). No elevated concentrations of inorganic or organic constituents above drinking water standards were identified from available groundwater quality data prior to this Study.

1.3 Study Objectives

The primary purpose of this Study was to evaluate the feasibility of recharging up to 1,500 acrefeet per year (AFY) of imported SWP water through the Reche Spreading Grounds. The 1,500 AFY represents the maximum amount of SWP water likely to be available for recharge in the Reche Subbasin. Specific project objectives included the following:

1. Characterize subsurface conditions beneath the Reche Spreading Grounds to determine the feasibility of long-term infiltration of SWP water
2. Evaluate the hydraulic impacts of recharge operations at various rates and schedules, including water table mounding beneath the spreading grounds and groundwater flow to downgradient discharge points
3. Characterize groundwater quality establishing baseline conditions to evaluate future water quality impacts from recharge operations
4. Identify regulatory permit requirements to construct and operate the Reche Spreading Grounds

1.4 Scope of Work

The scope of work for this Study was divided into the following tasks: 1) conduct a field investigation to characterize the geologic and groundwater conditions in the vicinity of the Reche Spreading Grounds and 2) develop a numerical groundwater flow model to evaluate potential groundwater impacts from recharge operations, including identification of groundwater flow paths and fate of recharged water, and 3) communicate with regulatory agencies having oversight responsibilities for the proposed recharge project to identify permitting requirements. The field investigation task was comprised of the following technical components:

1. Drill two deep exploratory soil borings and complete each soil boring as a 4 -inch diameter, PVC groundwater monitoring well for future monitoring of water levels and quality.
2. Record lithology of formation samples collected during drilling and laboratory analyze selected formation samples to estimate hydraulic properties of the vadose zone beneath the proposed Reche Spreading Grounds.
3. Perform aquifer pumping tests on water supply well HDWD 24 (using one of the new monitoring wells as an observation well) to confirm hydraulic properties including aquifer transmissivity, hydraulic conductivity, and storativity.
4. Collect and analyze groundwater quality samples from both monitoring wells to establish baseline groundwater quality conditions

Figure 6 shows the locations of the two soil borings/monitoring wells (BDVWA MW1 and MW2) and HDWD 24 in relation to the proposed Reche Spreading Grounds. Also shown on the figure are the limits of environmental and biological surveys performed previously in support of this Study.

BDVWA MW1 was drilled primarily to identify the lithologic and hydraulic properties of the vadose zone in beneath the Reche Spreading Grounds. Selected formation samples were submitted to a laboratory for hydraulic testing, and the soil boring was subsequently completed as a monitoring well to confirm the current depth to groundwater and to allow for future monitoring of groundwater levels and water quality. An initial water quality sample was obtained from BDVWA MW1 and laboratory analyzed to characterize the ambient groundwater quality and establish baseline conditions to evaluate potential water quality impacts of recharge operations.

BDVWA MW2 was drilled and installed approximately 38 feet west of HDWD 24, an active water supply well located approximately 4,300 feet northeast (downgradient) of the Reche Spreading Grounds. BDVWA MW2 was drilled in close proximity to HDWD 24 to serve as an observation well during aquifer testing of HDWD 24. A water quality sample was obtained from BDVWA MW2 and analyzed to characterize the water quality at this location.

Results of the field investigation were evaluated and incorporated with other hydrogeologic information in a numerical groundwater flow model of the Pipes and Reche subbasins constructed using the MODFLOW code to complete the recharge feasibility analysis. The model area is shown on Figure 7. The groundwater flow model includes variable aquifer thickness and hydraulic conductivity, hydraulic barriers represented by faults, and time-varying subsurface inflow, septic return flow, production well pumping, and outflow from the Pipes and Reche subbasins. The model was calibrated to steady-state and transient flow conditions and then used to predict water table mounding response to different recharge volumes. Groundwater flowpaths from the recharge site to downgradient areas including local water supply wells were simulated to assess fate of the recharged water.

2. WELL DRILLING, CONSTRUCTION AND DEVELOPMENT

To characterize the geologic and groundwater conditions in the vicinity of the Reche Spreading Grounds, two deep exploratory soil borings were drilled and completed as 4-inch diameter groundwater monitoring wells (BDVWA MW1 and MW2). Selected formation core samples were submitted to a laboratory for analysis of hydraulic properties relevant to the recharge feasibility analysis. Well drilling, construction, and development activities, as well as subsurface conditions encountered and results of hydraulic property testing are described in this section.

2.1 Pre-Drilling Activities

On Monday August 2, 2010, preliminary well drilling sites were verified in the field by staff from Todd Engineers, BDVWA's biological consultant, Circle Mountain Biological Consultants, Inc., BDVWA, and HDWD. Final drilling sites were chosen based on geologic and hydrogeologic criteria, property access, and biological considerations. Final locations for BDVWA MW1 and MW2 are shown on Figure 6. BDVWA MW1 is located approximately 150 feet from the southeastern edge of Pipes Wash. BDVWA MW2 is located approximately 35 feet due west from HDWD 24.

Prior to field mobilization, drilling permits were obtained from San Bernardino County Health Department (Appendix A), and land access was granted by the U.S. Department of the Interior, Bureau of Land Management.

The Study Area includes critical habitat of the endangered Desert Tortoise. As such, protective measures described in the Technical Memorandum Biological monitoring during well exploratory activities (Circle Mountain Biological Consultants, Inc., August, 2010) were also taken to ensure no harm to habitat or animals during the field investigation. Protective measures included installation and maintenance of a tortoise fence around each drilling site, and protocol for entry to and exit from the drilling site. All onsite workers reviewed the technical memorandum and attended a protective measures training workshop on August 16, 2010, prior to commencing field activities.

2.2 Technical Approach

The sonic method was chosen to drill the two deep soil borings and install the monitoring wells. The sonic drilling method is known by several names including Rotasonic, Rotosonic, Sonicore, Vibratory, or Resonant Sonic drilling. Sonic drilling is a "dry" drilling method, meaning no materials (air, fluid, or additives) are added to the borehole during drilling. Sonic drilling is a dual-cased drilling system that uses high frequency mechanical vibrations to advance flushthreaded casing while collecting continuous, relatively undisturbed core samples. An added benefit of the sonic drilling method is that there are very few waste products to be disposed of at the completion of the project as nearly all the subsurface materials are preserved in the inner
core casing. Because it does not require the use of downhole drilling muds or other fluids, the sonic method also minimizes the time needed for well development.
During sonic drilling for this investigation, an 8 -, 9 -, or 10 -inch diameter outer casing (i.e., drill string) was vibrated into the ground using a sonic drill head to stabilize and hold open the borehole. An inner casing (i.e., 6 -inch core casing) was vibrated ahead of the outer casing to collect undisturbed formation materials as the core sample. At 10-foot intervals, the core barrel was brought up to the surface to retrieve the core sample, which was extruded into visqueen sleeves.

2.3 Drilling

On August 16, 2010, Boart-Longyear Drilling Company, Inc. (Upland, CA) mobilized a trackmounted sonic drill rig and support vehicles to the BDVWA MW1 site. The track-mounted rig was necessary to negotiate the soft terrain of Pipes Wash. Initial drilling was conducted between August 16 and August 22, 2010 to a total depth of about 250 feet. However, while placing the cement seal, attempts to remove the 8 -inch diameter casing were unsuccessful, and the PVC well casing eventually broke at about 20 feet above the top of the well screen (at a depth of 210 feet). The entire 8 -inch diameter casing could not be removed from the borehole even after over-drilling using 9 -inch and 10 -inch diameter drill casings. Therefore, on September 7, 2010, the soil boring was abandoned and grouted to the surface. Prior to abandonment a borehole destruction permit was obtained from the San Bernardino County Health Department, along with a new drilling permit for the replacement soil boring/monitoring well. BDVWA MW1 was drilled approximately 20 feet northeast of the original location. BDVWA MW1 was drilled and completed to a total depth of 256 feet (and screened from 236 to 256 feet) between September 7 and 11, 2010.

On September 7, 2010, a second truck-mounted sonic drill rig was mobilized to the BDVWA MW2 site. BDVWA MW2 was drilled to a total depth of 348.5 feet and completed to 348.5 feet (and screened from 298 to 348 feet) between September 7 and 16, 2010.

Figure 8 shows the sonic drilling rig setup at both monitoring well locations.

2.4 Subsurface Lithology

The lithology of each section of core sample was recorded and classified according to the Unified Soil Classification System (USCS) Visual Method by a Professional Geologist.

Figure 9 shows the lithologic log for BDVWA MW1, drilled at the site of the proposed Reche Spreading Grounds. Based on collected continuous core samples, subsurface lithology beneath the proposed recharge site is comprised predominantly of clean fine- to coarse-grained sand. Well- to poorly-graded sand (USCS classifications SW and SP) was logged from the ground surface to a depth of 226 feet bgs. A seven-foot thick low-plasticity silt layer (USCS
classification ML) was logged from 226 to 232 , which was underlain by a 3.5 -feet thick silty sand layer (USCS classification SM). Well- to poorly-graded sand was logged from 236 to 256.5 feet bgs, the total depth of the well. The water table in BDVWA MW1 was encountered at 236 feet bgs.

Based on the lithology encountered during drilling, no continuous fine-grained soil layers are present in the upper portions of the vadose zone that could significantly impede vertical infiltration beneath the proposed spreading grounds. Minor pooling of recharge water could occur above the finer-grained silt layer at 226 feet bgs, but recharge water would subsequently infiltrate (albeit at a slower rate) through the silt and/or flow sub-horizontally along the top of the silt before ultimately reaching the water table.

Figure 10 shows the lithologic log for BDVWA MW2, located adjacent to HDWD 24. Similar to BDVWA MW1, subsurface lithology in BDVWA MW2 is also predominantly coarse-grained wellto poorly-graded sand (USCS classifications SW and SP) in the upper 206 feet of the vadose zone. Several thin silty sand and low-plasticity silt layers (USCS classifications SM and ML) were logged in the intervals between 206 and 211 feet bgs (SM), 223 and 227 feet bgs (ML), 255 and 262 feet bgs (ML) and 292 and 303 feet bgs (ML-SM). Well- to poorly-graded sand (USCS classifications SW and SP) was logged from 303 to 348.5 feet bgs, the total depth of the well. The water table in BDVWA MW2 was encountered at 298 feet bgs. Well BDVWA MW2 monitors the uppermost 50 feet of the aquifer under semi-confined conditions.

2.5 Hydraulic Properties of Selected Soil Samples

Selected formation sample cores from BDVWA MW1 were sealed in their respective plastic sleeves and transported under chain-of-custody to Keantan Laboratories (Diamond Bar, CA) for analysis of hydraulic properties relevant to the recharge feasibility analysis, including total and effective porosities and vertical hydraulic conductivity (K_{v}). Core samples were partially remolded in the laboratory and, therefore, are not considered undisturbed. However, the laboratory measurements of total and effective porosity and K_{V} are reasonable estimates. Saturated K_{v} tests were conducted in accordance with ASTM Standard D 5084 using a permeameter in combination with a constant-head system. Total and effective porosity tests were conducted using the ASTM D 854/2937 and SWRCB test methods, respectively. Prior to performing the measurements, Modified Proctor Compaction tests were performed in accordance with the American Society for Testing and Materials (ASTM) Procedure D 1557.

Selected core samples were chosen to ensure representative subsurface lithologies observed during drilling were characterized. In total, six 2.5 -foot sample cores from BDVWA MW1 ranging from 10 to 245 feet were selected for laboratory analyses. Vadose zone samples included the following depth intervals: 10-12.5 feet, 25-27.5 feet, 50-52.5 feet, 100-102.5 feet, and 150-152.5 feet. One sample core (242.5-245 feet) just below the water table was also analyzed.

The results of the laboratory analyses of the six core samples are summarized in Table 1. The laboratory report is presented in Appendix B. As shown in the table, the total and effective porosities and vertical hydraulic conductivity of the six samples are relatively uniform. Total porosity ranges from 41 to 45 percent. Effective porosity ranges from 22 to 23 percent. Vertical hydraulic conductivity ranges from 1.60 to 6.21 feet/day with a mean value of 4.13 feet/day. The lowest hydraulic conductivity value was measured for the deepest sample tested (242.5-245 feet). Overall, the physical property values are consistent with the identified soil types of well- to poorly-graded sand.

2.6 Well Construction

BDVWA MW1 and MW2 were constructed using four-inch diameter, flush-threaded, Schedule 80 PVC casing with 0.020 -inch slotted screen. Equipment, well materials, and tools that entered the borehole were steam cleaned by a pressure washer before use. No glues or adhesives were used to connect the casing sections or screen. PVC slip caps were used to cover the top of the well and the bottoms of wells. Filter pack material (washed, graded Monterey No.2/12 Lapis Lustre silica sand) was tremied through the annulus between the drill casing and the well casing as the drill casing was lifted. The filter pack extended five feet above the top of the screen. The level of filter pack in the annulus was verified by tag-line measurement during placement.

The well seal consisted of bentonite pellets and cement-bentonite grout. A three-foot bentonite pellet seal was placed directly above the filter pack. The level of the top of the bentonite seal was verified by tag-line measurement. Adequate time for hydration of the pellets was allowed prior to sealing the remaining annulus with cement-bentonite grout. A tremie pipe was used to slowly emplace the cement-bentonite grout seal in 50 -foot lifts while the drive casing was removed. Sealing was continued until grout returned to the ground surface. The seal was allowed to cure for at least 24 hours prior to well development. After the grout had set, it was inspected for shrinkage and additional grout was added, as necessary. Monitoring wells were sealed to the ground surface, and a concrete well pad and locking enclosure was constructed at each well head.

Table 2 summarizes the well construction details for BDVWA MW1 and MW2. As shown in the table, BDVWA MW1 was drilled to a total depth of 257 feet bgs. The groundwater level in BDVWA MW1 was estimated at 236 feet based on the water content of formation samples and observation by the geologist and sounding of the water level in the open borehole. The completed total depth of monitoring well BDVWA MW1 is 256 feet, with a screened interval of 236 to 256 feet. For BDVWA MW1, a three-foot above grade stand pipe was set in a 36-inch square by 6 -inch thick concrete pad, surrounded by four steel pipe bollards constructed for protection of the wellhead.

BDVWA MW2 was drilled to a total depth of 348.5 feet. The groundwater level in BDVWA MW2 was estimated at 298 feet based on the water content of formation samples and observation by
the geologist and sounding of the water level in the open borehole. The completed total depth of the well was 348 feet, with a screened interval of 298 to 348 feet. BDVWA MW2, was completed at-grade using a flush-mounted well vault set in a 36 -inch square by 6 -inch thick concrete pad.

2.7 Well Development

The monitoring wells were developed on September 23 and 24, 2010 using a combination of bailing, swabbing, and pumping. Water bailed and pumped from the wells was transported to the BDVWA office in Landers for disposal. Well development records are included in Attachment C. A Smeal Rig with a wire-line winch was used to rapidly bail the wells using a 4inch diameter by 8 - or 5 -foot long PVC bailer and swab the wells using a 4 -inch diameter surge block. For each well, multiple cycles of bailing and swabbing were performed prior to pumping with a submersible pump. During development of BDVWA MW1, a total of 38 gallons of groundwater were removed by bailing and 200 gallons were removed by pumping. During development of BDVWA MW2, a total of 35 gallons of groundwater were removed by bailing and 338 gallons were removed by pumping. During pumping, water quality parameters including temperature, pH , conductivity, turbidity, dissolved oxygen, and oxidation-reduction potential were monitored. In general, the field-measured water quality parameters stabilized rapidly indicating representative water quality samples could be obtained. Water quality samples were obtained from each monitoring well after development and submitted to an analytical laboratory as described in Section 2.5.

2.8 Hydrogeologic Cross Section

Figure 11 shows a hydrogeologic cross-section through the Pipes and Reche subbasins and the proposed Reche Spreading Grounds, including the well profiles of BDVWA MW1 and MW2, HDWD 24, and other wells in the vicinity (the location of the cross section is shown on Figure 6). The cross-section shows the spatial relationship between the alluvial aquifer in the vicinity of the Reche Spreading Grounds, bedrock, the Pipes Barrier, and the water table. As illustrated on the cross-section, the spreading grounds are located downgradient of the Pipes Barrier (a significant barrier to groundwater flow) and significant storage capacity (greater than 200 feet) exists beneath and adjacent to the proposed spreading grounds.

3. AQUIFER TESTING

Aquifer pumping tests, including a step-drawdown test and constant-discharge test, were performed on HDWD 24 to confirm aquifer hydraulic parameters. These parameters were used to estimate the travel time and ultimate fate of recharged SWP water through the saturated zone (see Section 4 Groundwater Flow Analysis). Although a constant-discharge pumping test conducted for HDWD 24 in 1988 provided some useful information on well specific capacity, time-drawdown data were of poor quality and consequently did not allow for reliable estimation of aquifer parameters. The installation of BDVWA MW2 close to HDWD 24 and subsequent observation of water level drawdown in BDVWA MW2 during the constant-discharge pumping test allowed for a more reliable estimation of aquifer hydraulic parameters.

3.1 Technical Approach

Pumping tests were conducted on HDWD 24 using the existing well pump, wellhead appurtenances, and water conveyance system features. The water generated during the pumping tests was discharged to HDWD's existing conveyance system. Discharge rates were controlled with an in-line gate valve, while discharge measurements were recorded with an inline totalizing flow meter down-stream from the gate value. A pressure gauge was installed upstream from the gate value to evaluate pump back-pressure during restricted and reduced flows. The flow meter provided both an odometer (cumulative volume) and instantaneous discharge reading from 0 to $3,000 \mathrm{gpm}$ in 50 gpm increments.

Water level measurements on the pumping well and observation well were made before during and after the pumping tests. Water levels were recorded manually in HDWD 24 with an airline installed to a depth of 438 feet (as reported by HDWD). An example of how airline water level measurements are computed follows: a measurement of 62.5 psi represents a water column of 144 feet ($62.5 \mathrm{psi} \times 2.31$ feet/psi) above the bottom (438 feet) of the airline tubing and corresponds to a water level depth of 294 feet (438 feet -144 feet).The airline measurements could not be calibrated since direct water level measurements with an electric sounder was not possible. The airline pressure gauge was divided into increments of one pound per square inch (psi) from 0 to 300 psi; the gauge accuracy is $+/-0.5 \mathrm{psi}$, or 1.15 feet. Compressed nitrogen gas was used to pressurize the airline.

The water level in BDVWA MW2 was monitored continuously using a Level TROLL 700, 30 psi gauge pressure transducer and data logger (In-Situ, Inc., Fort Collins, CO). Transducer accuracy was confirmed with an electric sounder.

HDWD was requested not to operate HDWD 24 for at least 72 hours prior to testing. On the morning of October 4, 2010, the static water level in HDWD 24 was 294 feet below the top of the pressure gauge. The static water level for BDVWA MW2 was 287.63 feet below the top of
the PVC well casing. The difference in height between the pressure gauge at HDWD 24 and the top of the casing at BDVWA MW2 was approximately 6 feet.

3.2 Well Construction of HDWD 24

HDWD 24 was installed in 1988 by Hacker Drilling, Inc., Hemet, California. A 30-inch diameter surface casing was installed to 50 feet, cemented in place, and serves as the sanitary well seal (DWR Water Well Completion Report No. 192872). A 24 -inch diameter boring was drilled to 604 feet by reverse rotary drilling methods. Geophysical logging was conducted on the boring, but the logs are not available. The 14-inch diameter well was constructed with 360 feet (between 220 and 580 feet) of louver-type perforations with $3 / 32$-inch aperture size or slots (GSI/Water, November 30, 2000). The non-pumping or static water level at the time of well construction was about 252 feet below ground surface. Based on the static water level measurement of 294 feet on October 4, 2010, the saturated thickness of the alluvial aquifer adjacent to HDWD 24 is about 290 feet. Other single well pumping tests have been conducted on HDWD 24 but have not generated sufficient information on the well and aquifer parameters (see GSI/Water, November 30, 2000).

BDVWA MW2 is located about 38 feet from HDWD 24. BDVWA MW2 is screened between 298 and 348 feet bgs (50 feet in length) and overlaps about 17 percent of the submerged screened interval of HDWD 24.

3.3 Step-Drawdown Pumping Test Details

On October 4, 2010, a step-drawdown test was performed, during which the well was pumped at rates of between 600 and 800 gallons per minute (gpm). The pump was turned on at 11:51AM PST with the discharge valve wide open. The pumping rate was about 800 gpm . The pumping water level (PWL) in HDWD 24 stabilized at about 302 feet corresponding to a water level drawdown of 8 feet (302 feet - 294 feet). The control valve was throttled down to about 600 gpm, resulting in substantial back-pressure. The pumping water level in HDWD 24 at this reduced rate was about 299 feet, equivalent to about 5 feet of drawdown. The pump was turned off at 2:30 PM. The elapsed time of pumping was 159 minutes. The average pumping rate during the step-drawdown test was 671 gpm. The maximum drawdown observed in BDVWA MW2 during the step-drawdown test was 1.62 feet.

3.4 Constant-Discharge Pumping Test

A 24 -hour constant-discharge pumping test was performed on HDWD 24 between 8:00 AM October 5, 2010 and 8:00 AM October 6, 2010. Prior to the test, static water levels in HDWD 24 and BDVWA MW2 were measured at 293 feet and 287.60 feet, respectively. The average discharge rate during the test was 759 gpm . Water level recovery measurements were collected in HDWD 24 and BDVWA MW2 for four hours after the pump was turned off. Water levels in the
pumping well were periodically measured with the airline during the pumping test but were not very useful in estimating well or aquifer parameters. The maximum drawdown in the pumping well was 11 feet at 469 minutes (the accuracy of airline measurements in the pumping well was insufficient to measure water level changes after 469 minutes), and the specific capacity (SC) was 69 gallons per minute per foot of water level drawdown ($\mathrm{gpm} / \mathrm{ft}$ of dd) after about 8 hours of pumping. The SC provides a normalized measurement of the productivity of a pumping well and is calculated by dividing the discharge in gpm by the feet of drawdown. The SC varies with time and discharge. In general, the greater the elapsed time of pumping the smaller the SC and similarly, the greater the discharge the smaller the SC.

The SC is also related to the aquifer transmissivity and the well efficiency. The transmissivity can be estimated by multiplying the SC at 24-hours by 1,500 for an unconfined aquifer or 2,000 for a confined aquifer (Driscoll, 1986). Estimated transmissivities based on a SC of $69 \mathrm{gpm} / \mathrm{ft}$ of dd range between 103,500 and 138,000 gallons per day per foot (gpd/ft), or 13,800 to 18,500 square feet per day ($\mathrm{ft}^{2} /$ day). These values suggest a very productive and prolific aquifer. Using these transmissivities and a saturated thickness of 290 feet, the estimated aquifer hydraulic conductivity ranges between 48 and 64 feet per day (ft/day).

3.5 Results

Plots of drawdown and recovery over time in BDVWA MW2 are presented on Figures 12 through 14. The aquifer test data were analyzed using well hydraulic equations, and estimates were computed for the transmissivity and hydraulic conductivity. Pumping test results also provided an indication of the overall well efficiency of HDWD 24 and distance to hydraulic boundaries.

Figure 12 shows an arithmetic plot of drawdown in observation well BDVWA MW2 during the constant-discharge pumping and recovery test. The test is divided into two parts, the pumping period from 0 to 1,440 minutes and the recovery period between 1,440 minutes and 1,680 minutes. The manually measured data (red) are super-imposed on the continuous transducer/data logger measurements (black). Note that within the first 30 seconds of pumping the water level in BDVWA MW2 declined by one foot. In addition (because of the lack of a foot valve in the pump column), the water in the pump column discharged into the well resulting in a rapid rise of the water level when the pump was turned off. These higher water levels during the recovery period equilibrated quickly to resume the expected recovery trend. Typically, the shape of the pumping period curve is a mirror image of the recovery period curve. The maximum drawdown in BDVWA MW2 during the constant discharge test was about 2.76 feet. After four hours of recovery, the water level had recovered to within 0.87 feet from the initial static water level, or 68 percent recovery.

The drawdown and recovery data for BDVWA MW2 are plotted on semi-logarithmic charts as shown in Figures 13 and 14, respectively. The data were used to estimate aquifer hydraulic
properties using the modified non-equilibrium equation referred to as the Cooper-Jacob method (Driscoll, 1986). Figure 13 shows drawdown during the pumping period. The figure shows that instead of the linear relationship expected for a homogeneous aquifer of infinite lateral extent, the drawdown curve continues to steepen with time. This steepening suggests that the cone of depression has encountered multiple barrier boundaries. The barrier boundaries define the areal extent of the aquifer. This response is consistent with the hydrogeologic conceptual model of this area of the Reche Subbasin, where the alluvial aquifer is unsaturated (i.e., no-flow boundary) both southeast of HDWD 24 beneath the Mesa and to the east, where bedrock is encountered. Casing storage (Schafer, 1978 and Driscoll, 1986) of the pumping well can affect observation well data and was estimated to occur prior to 5 minutes. In addition, the pumping discharge fluctuated during the first few minutes of pumping due to the reduced pressure in the conveyance system. Because of these limitations, early time-drawdown data prior to 10 minutes was not used in the pumping test analysis.

A relatively short and linear segment between 10 and 100 minutes of pumping suggests that the transmissivity is $489,000 \mathrm{gpd} / \mathrm{ft}$, or $65,400 \mathrm{ft}^{2} /$ day (Figure 13). The period between 40 and 400 minutes indicates a transmissivity of $334,000 \mathrm{gpd} / \mathrm{ft}$, or $44,700 \mathrm{ft}^{2} / \mathrm{day}$. Using these transmissivities and a saturated thickness of 290 feet, the hydraulic conductivity ranges from 154 to $226 \mathrm{ft} /$ day. The Theis method analysis of the pumping period data indicates that the transmissivity is $300,000 \mathrm{gpd} / \mathrm{ft}$, or $40,100 \mathrm{ft}^{2} /$ day. Based on the transmissivity estimated using the Theis method and a saturated thickness of 290 feet, the hydraulic conductivity is $138 \mathrm{ft} / \mathrm{day}$.

Analysis of recovery period data (Figure 14) plotted as elapsed time since pumping began divided by the elapsed time since pumping stopped suggests a similar transmissivity of 466,000 $\mathrm{gpd} / \mathrm{ft}$ or $62,300 \mathrm{ft}^{2} / \mathrm{day}$. Using this transmissivity and a saturated thickness of 290 feet, the hydraulic conductivity is $215 \mathrm{ft} / \mathrm{day}$. Note that the early recovery data (right side of Figure 14), after the pump was turned off, shows the systematic effect of the water released from the pump column due to the lack an effective foot valve; this recovery anomaly lasted for about 10 minutes.

The well efficiency of the pumping well can be estimated by dividing the transmissivity derived from the actual SC of the pumping well $\left(13,800\right.$ to $18,500 \mathrm{ft}^{2} /$ day $)$ by the transmissivity derived from time-drawdown analysis methods ($40,100 \mathrm{ft}^{2} /$ day [Theis method] to $65,400 \mathrm{ft}^{2} /$ day [CooperJacob method]). Comparison of the estimated transmissivity suggests that HDWD 24 is between 30 and 50 percent efficient. However, it is noted that well efficiencies are probably underestimated due to the influence of the hydraulic barriers on actual SC data.

Note that a reliable storage coefficient could not be estimated from this pumping test because of the early time- drawdown limitations and boundary conditions encountered. The aquifer tapped by HDWD 24 is probably unconfined with a specific yield between 10 and 15 percent.

4. GROUNDWATER MODELING AND ANALYSIS

A water balance and numerical groundwater flow model was constructed and used to assist in characterization of groundwater flow conditions and recharge basin feasibility. The analysis was conducted using the MODFLOW and MODPATH models. The objectives of the modeling were to evaluate hydraulic impacts associated with future operation of the Reche Spreading Grounds, including prediction of water table mounding beneath the recharge site and groundwater flow paths from the site to downgradient discharge locations.

Complete documentation of the model input, construction, calibration process, and results is included in Appendix E. The model area is shown on Figure 7. The model area includes key portions of the Pipes and Reche groundwater subbasins encompassing the spreading grounds, and active water supply wells, including HDWD Well 24 , BDVWA Wells $2,3,4,6,7,8$, and 9 , and CSA $70 \mathrm{~W}-1$ Wells 1,2 , and 3 . Aquifer properties including heterogeneous aquifer permeability, thickness, and storage coefficients were simulated appropriately across the model area, and appropriate boundary conditions were also developed. The model was calibrated to observed water levels between 1995 and 2009. Once calibrated, planned recharge operations were simulated using the flow model. Water table mounding heights over time and flow paths and travel times between the recharge site and wells were simulated using anticipated recharge and pumping rates and schedules.

4.1 Spreading Basin Size and Capacity

The infiltration rate needed to accept 1,500 AF over a six-month recharge period via a surface spreading grounds area of five acres was compared with the estimated vertical hydraulic conductivity of selected vadose zone soil samples. For a five-acre spreading basin area recharging 1,500 AF/six months, the estimated infiltration rate is 1.64 feet/day. Hydraulic conductivities of the vadose zone soil samples averaged 4.13 feet/day (Table 2). Under a hydraulic gradient of 1 (which is likely to occur for ponded water conditions), the infiltration capacity is equivalent to the hydraulic conductivity. Therefore, the infiltration capacity of the soil materials beneath the proposed recharge site exceeds the planned operational infiltration rate of the five-acre recharge site, and the site is capable of accepting 1,500 AF over a period of six months.

4.2 Flow Modeling Results

Details of the construction, calibration, and results of the Pipes and Reche groundwater basin MODFLOW model are presented in Appendix E. The final model was developed after preliminary and intermediate calibration runs, based on the initial results and modified based on observed model response to input parameter changes. In summary, good calibration quality was achieved with relatively small differences between observed and simulated heads in space
and time. The final calibrated steady state models simulate flows within and between the Pipes and Reche subbasins, which are consistent with observed conditions.

The model was subsequently used to predict the mound heights, flow paths, and travel times of recharged water under a 1,500 AF/six month operational scenario. A five-acre recharge area was simulated in Pipes Wash, and transient flow was simulated in response to multiple recharge events. The initial operational scenario simulated was four 1,500 AF/six-month recharge events over alternate years. Groundwater elevations and flowpaths were simulated over time and used to assess performance of the recharge facility and groundwater basin response.

4.3 Groundwater Mounding

For a surface recharge project, water levels rise beneath the recharge area creating a groundwater mound. The height and extent of this mound varies over time with hydraulic properties of the aquifer and the amount of water being recharged. The development of a groundwater mound beneath the spreading grounds was evaluated using the MODFLOW model. The model estimates the groundwater elevations and corresponding height of the groundwater recharge mound as a function of time and distance from the recharge area.

The calculated heights and distribution of the mound at the end of the first six-month recharge period is illustrated on Figure 15. The mound height over time directly beneath the spreading basin is illustrated on Figure 16. As shown on the figures, the maximum mound height beneath the spreading basin is approximately 19 feet after the first six-month recharge period, 20 feet after the second six-month recharge period, and 22 feet after the third six-month recharge period. Groundwater levels are expected to increase 1 foot or more up to 8,000 feet to the northwest of the spreading grounds. As shown on Figure 15, water levels contours stack up against Pipes Barrier due to the low permeability of the fault zone. The predicted maximum groundwater level rise is approximately 5 feet at HDWD 24 (4,300 feet from the center of the spreading grounds).

4.4 Groundwater Flowpaths

Figure 17 shows the simulated groundwater flowpaths from the Reche Spreading Grounds during and after three 6-month recharge events. As shown on the figure, recharge water diverges radially away from the recharge area before trending northeast in the general direction of HDWD 24. The travel time between the recharge site and HDWD 24 is approximately 2 to 3 years.

5. WATER QUALITY EVALUATION

Potential impacts to groundwater quality from proposed recharge of SWP water at the Reche Spreading Grounds were evaluated for this Study. The process of mixing imported SWP water with native groundwater could potentially impact groundwater quality in the Reche Subbasin by introducing contaminants in SWP water to groundwater and/or inducing geochemical reactions in the subsurface that precipitate or dissolve minerals present in the aquifer formation, groundwater, or recharge water. In addition, as imported SWP water percolates through the base of the spreading grounds, recharged SWP water may initially mobilize and transport any soluble salts and/or contaminants in the underlying unsaturated zone to the water table. Finally, as observed in the Warren Subbasin south of the Study Area (Nishikawa et al., 2003), rising groundwater due to enhanced recharge (groundwater mounding) can also entrain naturally occurring or anthropogenic contaminants in the unsaturated zone (e.g., nitrate) or cause migration of low quality water away from the spreading grounds.

This section presents the water quality results for samples collected from BDVWA MW1 and MW2 for this Study. These results, in combination water quality data for BDVWA MW1 and MW2 and major production wells in the Reche Subbasin, were used to evaluate each of the potential water quality impacts from recharging SWP water.

5.1 Water Quality Sampling and Analysis for BDVWA MW1 and MW2

After installation and development of the monitoring wells, groundwater quality samples were obtained from BDVWA MW1 and MW2 on September 23 and 24, 2010, respectively. The sample from monitoring well BDVWA MW1 was analyzed for the following water quality parameters:

- General Chemicals (inorganic parameters and major anions)
- Metals (heavy metals and major cations)
- Volatile Organic Compounds (VOCs)
- Semi-volatile Organic Compounds (SVOCs)
- Pesticides and Herbicides
- Radionuclide's including Gross Alpha and Beta Radiation, Uranium, Radium 226 and 228, Strontium, and Tritium

The sample from monitoring well BDVWA MW2 was analyzed for general chemicals, metals, and gross alpha radiation only. The water samples were transported under chain-of-custody to Clinical Laboratory San Bernardino (Grand Terrace, CA).

Table 4 summarizes the water quality sampling results for BDVWA MW1 and MW2; the Certified Analytical Laboratory Report is included as Attachment F. Ambient groundwater quality beneath the proposed spreading grounds as measured in the water quality samples from

BDVWA MW1 and MW2 is generally good, with relatively low TDS, nitrates, and heavy metals. TDS concentrations in BDVWA MW1 and MW2 are 270 and 320 milligrams per liter (mg / L), respectively. Low concentrations of two volatile organic compounds TCE and PCE were detected in the sample from BDVWA MW1 but the concentrations were below State and Federal MCLs. Detectable concentrations of uranium and gross alpha radiation were also measured in the water quality samples, but the concentrations were below State and Federal MCLs.

5.2 Impacts of Mixing SWP Water and Native Groundwater

The predominant beneficial use of groundwater in the Study Area is municipal water supply. Therefore, the significance of potential impacts is defined by drinking water standards, including maximum contaminant levels (MCLs) and health advisory levels. Primary MCLs are enforceable standards based on potential impacts to human health; secondary MCLs are associated with aesthetic impacts such as taste, color, or odor, but are not considered to be a risk to human health.

For an assessment of the potential groundwater quality impacts associated with mixing SWP water and native groundwater, SWP water quality data were obtained, evaluated, and compared to current groundwater quality in the Reche Subbasin.

5.2.1 SWP Water Quality

The quality of SWP water was evaluated using analytical results from discrete monthly grab samples and continuous automated station water quality data downloaded from the California Department of Water Resources Division of Operations and Maintenance State Water Project website. Based on communications with MWA, it was determined that the Check 41 water quality monitoring station located on the California Aqueduct is representative of current SWP water quality for the Morongo Basin Pipeline.

Inorganic and Physical Water Quality

Table 5 summarizes the inorganic water quality data for monthly grab water quality samples collected at SWP Check 41 from January 2008 through September 2009. As shown in the table, detected concentrations of constituents in SWP water analyzed at Check 41 are generally below their respective primary or secondary MCL. Manganese was detected in one month above its secondary MCL, but for the other 18 months was not detected above its reporting limit. In addition, turbidity in SWP water is consistently detected above the secondary MCL; however, turbidity is not expected to impact groundwater quality, as any suspended solids in SWP water will be filtered out by the aquifer formation prior to reaching the groundwater table. The average TDS concentration and specific conductance (or electrical conductivity (EC)) of SWP from

January 2008 to September 2009 was 286 milligrams per liter (mg/L) and 495 microSiemens per centimeter ($\mu \mathrm{S} / \mathrm{cm}$), respectively.

To characterize the inorganic water chemistry for SWP, major cation and anion data are plotted on a Trilinear Diagram, shown on Figure 18. Data from separate samples are grouped together in the yellow highlighted fields on the three portions of the plot. These data provide information on the general water chemistry of SWP and indicate that SWP water is generally neutral and can be categorized as sodium/chloride-type water.

In addition to monthly grab samples, DWR also continuously monitors for several physical properties in SWP water, including EC and pH. Using a conversion factor, EC values can also be used to estimate TDS, providing data to supplement the measured TDS concentrations in the monthly grab samples. Figure 6 shows the daily EC data and estimated TDS values for SWP water at Check 41 from January 2000 to December 2009. As shown on the figure, the EC varied during this period generally between 300 and $700 \mu \mathrm{~S} / \mathrm{cm}$, with an average of $452 \mu \mathrm{~S} / \mathrm{cm}$, similar to average EC in 2008 and 2009. The average EC value equates to a TDS concentration of $262 \mathrm{mg} / \mathrm{L}$ (based on the average conversion factor of $0.58 \mathrm{EC}(\mu \mathrm{S} / \mathrm{cm})=$ TDS $(\mathrm{mg} / \mathrm{L})$ derived from monthly grab sample data). The average pH value of SWP water at Check 41 from January 2000 to December 2009 was 8.05 .

Organic Water Quality

DWR routinely monitors SWP water for over 150 organic compounds, including pesticides, herbicides, and volatile organic compounds (VOCs). Grab samples are collected and analyzed in March, June, and September of each year. Based on water quality results obtained from eight quarterly sampling events from March 2007 through September 2009, only two organic contaminants (the herbicide simazine and the pesticide diuron) were detected in four of the eight quarterly sampling events of SWP water at Check 41. Detected concentrations of simazine were $0.03,0.05,0.1$, and 3.35 micrograms per liter ($\mu \mathrm{g} / \mathrm{L}$), which are below the MCL for simazine of $4 \mu \mathrm{~g} / \mathrm{L}$. Currently, no MCL has been established for diuron; detected concentrations of diuron in SWP water at Check 41 were $0.25,0.99,1.65$ and $7.72 \mu \mathrm{~g} / \mathrm{L}$, which are below the USEPA maximum health advisory level of $10 \mu \mathrm{~g} / \mathrm{L}$.

5.2.2 Groundwater Quality in the Reche Subbasin

Groundwater quality in the Reche Subbasin was characterized from water quality samples collected from BDVWA MW1 and MW2 for this Study and from 2008 and 2009 groundwater quality data for the seven major water supply wells located in the subbasin. Water supply wells include those operated by BDVWA, CSA 70 W-1, and HDWD.

Inorganic and Physical Water Quality

Table 6 summarizes the most recent inorganic and physical water quality data from BDVWA MW1 and MW2 and for major production wells in the Reche Subbasin. The table shows that inorganic and physical water quality in BDVWA MW1 and MW2 and in major water supply wells in the Reche Subbasin are very similar. Overall, groundwater quality in the Reche Subbasin is high, with all constituents meeting primary and secondary drinking water standards. TDS concentrations in all wells range from 180 to $320 \mathrm{mg} / \mathrm{L}$, with an average TDS concentration of $253 \mathrm{mg} / \mathrm{L}$. Based on the comparison of TDS concentrations for SWP water in the Morongo Basin Pipeline (average TDS concentration of $262 \mathrm{mg} / \mathrm{L}$ since 2000) and native groundwater, recharge of SWP water is not expected to significantly increase the concentration of soluble salts in the Reche Subbasin. These findings are in agreement with a recent study completed by MWA (2007) that evaluated the effect of importing 1,000 AFY of SWP water on TDS concentrations in the Ames Valley Basin and found that there would be effectively no change in TDS concentrations in the Ames Valley Basin from importation of SWP water. In addition, the pH of native groundwater in the Reche Subbasin ranges from 7.8 to 8.1, similar to the average pH of SWP water (8.05). Therefore, recharge of SWP water is not expected to change the pH of native groundwater significantly.

Figure 18 shows the inorganic water quality data for production wells in the Reche Subbasin compared with SWP water on a Trilinear Diagram. The figure shows that although the inorganic composition of native groundwater and SWP water are slightly different, mixing of the two waters will result in a relatively neutral water type and, as such, is not expected to degrade groundwater quality in the Reche Subbasin (a neutral water type is indicated by water chemistry that plots in the central portion of the center diamond on Figure 18). Water chemistry resulting from the mixing of SWP water and local groundwater will plot along the mixing lines in between the two water signatures). Collectively, these data do not indicate a significant impact to groundwater quality from the mixing of SWP water in the Reche Subbasin.

Organic Water Quality

Based on results of 2008 and 2009 water quality results from major water supply wells, no organic compounds, including VOCs, pesticides, and herbicides, have been detected in groundwater. Low concentrations of two volatile organic compounds (TCE and PCE) were detected in the sample collected from BDVWA MW1, but concentrations are below State and Federal MCLs.

As described in Section 5.2.1, only two organic constituents (simazine and diuron) have been detected during four of last eight quarterly sampling events of SWP water at Check 41. However, in each case, detected concentrations are below respective MCL and health advisory levels and are not expected to significantly impact groundwater quality.

Radionuclide Water Quality

Detectable concentrations of uranium and gross alpha radiation were also measured in water quality samples from BDVWA MW1 and MW2, but concentrations are below State and Federal MCLs.

5.3 Impacts from Percolation of SWP Water

Previous studies have demonstrated that soils in environments with limited areal recharge like the High Desert may contain naturally elevated concentrations of salts (Graham et al., 2008, Izbicki, 2008). Naturally-occurring nitrate in soil is a concern in some High Desert environments. These constituents and others can be leached by artificially recharged water and transported to groundwater (Izbicki, 2008). Previous researchers have identified such conditions in areas capped by desert pavement (Graham et al., 2008) or where geomorphic process lead to channel abandonment and stranding of infiltrated water in the unsaturated zone (Izbicki, 2007). Although the possibility of naturally occurring salts including nitrate in the unsaturated zone beneath Pipes Wash is not precluded, desert pavement does not occur within Pipes Wash, and Pipes Wash is deeply incised through the landscape, indicating that the wash has not migrated significantly from its current position in a relatively long time. In addition, this leaching process is most likely to occur during the initial period (or first flush) of recharge water through the unsaturated zone and would not represent a sustained source of constituents, even if present. Monitoring wells BDVWA MW1 and MW2 have also been installed to monitor changes in groundwater quality in the future.

Previous studies have also found that concentrated anthropogenic contaminants in the unsaturated zone (e.g., septic tank return flows) can be leached by artificially recharged water to groundwater (Umari, et al., 1993). The potential for recharge water percolating through the unsaturated zone to leach anthropogenic contaminants, such as nitrate, beneath the proposed spreading basin is likely to be low, because there is no development within Pipes Wash. Results of queries from the State Water Resources Control Board (SWRCB) Geotracker and Department of Toxic Substances Control (DTSC) Envirostor databases also show that there are currently no active regulated environmental contamination facilities within the entire Ames Valley Groundwater Basin. Historically, there have been two minor soil contamination cases located more than 2 miles west of the proposed spreading grounds: 1) a diesel tank leak at Hero Market located at 1160 Old Woman Springs Road in 2004, and 2) a gasoline spill as a result of vandalism at the BDVWA maintenance yard in 2009. In both instances, contamination was limited to shallow soils and immediately remediated. Based on these findings, the potential for groundwater impacts related to mobilized subsurface contamination from industrial facilities is considered insignificant.

In addition to the potential leaching of constituents in the vadose zone, percolation of constituents in SWP water could result in higher dissolved organic carbon (DOC) in
groundwater. If sufficiently high, this condition could result in elevated trihalomethanes (TTHMs), a by-product of drinking water chlorination, once groundwater is extracted and treated. DOC values for SWP water are shown on Table 5 and average $2.3 \mathrm{mg} / \mathrm{L}$, a value typical for surface waters. These concentrations are expected to decline prior to reaching groundwater due to bacterial assimilation of DOC in the relatively thick vadose zone. In addition, HDWD has been recharging SWP water in the nearby Warren Valley Subbasin since 1995, and TTHM concentrations in HDWD's water supply have always met drinking water standards (HDWD, 2009).

5.4 Impacts from Groundwater Mounding

Nishikawa et al. (2003) found that high nitrate concentrations in groundwater following recharge of SWP water through spreading basins in the Warren Subbasin were caused by the entrainment of septic tank return flows (septage) by a rising groundwater table. Groundwater elevations adjacent to spreading basins in the Warren Subbasin were found to have increased as much as 250 feet.

To evaluate the potential for such rising groundwater associated with recharge operations to entrain contaminants in the unsaturated zone, the MODFLOW model was used to predict the height of the groundwater mound over time, as described in Section 4.3. Conceptually, the imported SWP water percolates through the unsaturated zone to the water table, resulting in a rise in water levels beneath and in the vicinity of the spreading grounds, creating a groundwater mound. Once recharge is halted, the groundwater mound will dissipate. Based on the results of recharge model, only a few feet of mounding are predicted for recharge of 1,500 AF over six months. In comparison to observed groundwater level declines in some wells within the Reche Subbasin over the past 20 years (greater than 25 feet in some areas), recharge operations are not expected to raise groundwater levels even above historical elevations. As such, entrainment of constituents that have not been saturated in the past is not likely to occur.

A review of a recent aerial photograph of the Project area indicates less than about 10 parcels on the outer edge of the potential zone of influence that may have a septic tank. Additionally, as mentioned previously, there are no regulated environmental sites within the Ames Valley Groundwater Basin. Thus, the risk of industrial contamination becoming entrained or mobilized as a result of proposed recharge operations is judged to be insignificant. However, it may be prudent to conduct a septic tank survey in the immediate Project area to provide baseline conditions prior to recharge.

6. REGULATORY PERMIT REQUIREMENTS

6.1 Regulatory Agencies

Todd Engineers and Kennedy/Jenks contacted the local, State, and Federal Regulatory Agencies with oversight responsibilities for the Reche recharge project to inventory and itemize the permits from each Agency required to construct and operate the Reche Spreading Grounds. The following summarizes the required or potentially required permits by agency. Some of this information was previously provided to BDVWA in a Memorandum dated April 29, 2010 and subsequent emails.

County of San Bernardino

The County of San Bernardino has several agencies that may have regulatory oversight responsibilities for this project. If construction of a pipeline will be necessary along the right-ofway of any county dedicated road, then the County of San Bernardino, Public Works Department, Transportation Operations Division, Transportation Permit Section will be responsible for issuing a permit. However, in Township 2 N, Range 5 E, Section 24, the road identified as Winters Road, is not fully dedicated to the County of San Bernardino. This means that the County has only limited jurisdiction over this road. The letter requesting a "no objection permit" was submitted to the County.

The County of San Bernardino, Public Works Department, Transportation Operations Division, Flood Control District was contacted regarding any rights-of-way that might be impacted by the construction of an infiltration basin within Pipes Wash. The County Flood Control District does not have any rights-of-way in the Pipes Wash area and as such they do not require any permits for work within the Pipes Wash.

The County of San Bernardino, Planning Department, Land Development, was contacted. They indicated that they had no additional comments except to ensure that adequate provisions should be made to intercept and conduct the tributary off-site and on-site drainage flows around and though the site in a manner that will not adversely affect adjacent or downstream properties at the time the site is developed.

Mojave Desert Air Quality Management District

The Mojave Desert AQMD is responsible for any projects that may generate or control air pollutants. Since this project may generate dust during the construction of a surface impoundment, the District was contacted to see what requirements may be applicable. If the surface impoundment is greater than 100 acres, then a Dust Control Plan will be required for the project. Otherwise, the project is exempt from specific regulations although the construction may be subject to general best management practices to reduce air pollution affecting neighboring properties.

California Department of Public Health

This Agency regulates the treatment of drinking water once it is removed from the groundwater basin. It does not regulate the discharge into the groundwater recharge basin. No permits are required from the Department of Public Health to construct or operate the spreading grounds.

California Department of Fish and Game

This Agency regulates activities that may impact the fish and game resources of the State of California. As such, they will issue a "stream bed alteration" permit for any work in Pipes Wash, and potentially "take" permits for plants and desert tortoise, if required.

California Regional Water Quality Control Board (Region 7, Colorado River)

The Colorado River RWQCB will be responsible for issuing a permit to discharge water to either Pipes Wash or to the land. During the construction of monitoring wells, if any dewatering activities resulted in the discharge of well purge water to the land, a RWQCB permit would have been required. Such a discharge did not occur during well construction, as water was contained and discharged offsite, so no permit was needed. For future discharges into the Pipes Wash, the General Order No. R7-2009-0300 issued by the RWQCB may be applicable. The Mojave Water Agency may obtain a general permit on behalf of BDVWA for recharge operations.

U.S. Army Corps of Engineers (ACOE)

The ACOE suggested that a request be sent to them asking whether Pipes Wash lies within the "Jurisdictional Waters of the Corps" or whether they are "isolated waters". If Pipes Wash is subject to the Corps "Jurisdictional Waters", then any activity such as constructing an infiltration basin will be subject to the Corps Nationwide 404 permit. If Pipes Wash is determined to be an "isolated water", then the ACOE does not have any jurisdiction unless the project involves filling more than $1 / 2$ acre of land. Then an individual 404 permit would be required.

U.S. Fish and Wildlife Service

The U.S. Fish and Wildlife Service office responsible for the Study Area is the Ventura Office. They believe that the Desert Tortoise is the major endangered species that may be present in the area. Another threatened species is the Parish's Daisy, a plant that is associated with carbonate formation and that may be washed down the various washes. The Agency indicated that once the project is authorized to proceed, a formal request of the presence of Endangered and Threatened Species within the project area should be submitted to their office. If this project proceeds on BLM land, the BLM must request a Section 7 Consultation with the US Fish and Wildlife Service. One of their concerns will be with the potential impact to wildlife species from the construction of this project.

U.S. Bureau of Land Management

This agency was not contacted by Todd Engineers or Kennedy/Jenks because BVWDA directly communicated with the U.S. Bureau of Land Management. Todd Engineers did comply with the desert tortoise mitigation measures during field investigation activities as required by BLM.

6.2 Regulatory Permit Status

US Army Corps of Engineers

The US ACE has been requested to make a determination as to whether Pipes Wash is a "jurisdictional water" under the Corps authority. On November 5, 2010 ACOE staff indicated they would be providing a letter within 21 days indicating the area is "non jurisdictional".

U.S. Fish and Wildlife Service and U.S. Bureau of Land Management

A Federal Endangered Species "Take" permit (A Section 10 permit) is required for any activity that occurs on Federal Lands (e.g., Bureau of Land Management) and that involves the destruction or "taking" of an endangered or threatened species (Desert Tortoise, etc.). This permit is called a Consultation Permit. BDVWA is directly negotiating this permit with the Bureau of Land Management.

Final permits or confirmations that permits will not be required will be obtained from agencies after design specifications are completed.

7. CONCLUSIONS

The following conclusions can be made based on the assessment of soil and aquifer properties, evaluation of water quality, performance of a preliminary field investigation, development of a site conceptual model and numerical groundwater flow model, and analysis of available storage and groundwater mounding.

- The vadose (unsaturated) and saturated zones beneath the proposed Reche Spreading Grounds are comprised primarily of sand and sufficiently permeable to provide for surface recharge. No significant low-permeability layers appear to be present in the vadose zone that would impede the percolation of recharge water to the water table.
- The current thickness of the vadose zone (determined by depth to water) is about 230 feet beneath the recharge site, providing sufficient vadose zone capacity for recharge and increased water table elevations.
- Measured soil and aquifer hydraulic properties including porosity and hydraulic conductivity indicate that recharge of 1,500 AF over six months is feasible.
- Analyses of water table mounding using the MODFLOW model indicate that more than 1,500 AF could potentially be stored on a seasonal basis for recovery.
- Ambient groundwater quality beneath the proposed spreading grounds as measured in the water quality samples from BDVWA MW1 and MW2 is generally good, with relatively low TDS nitrates and heavy metals. Low concentrations of two volatile organic compounds TCE and PCE were detected in the sample from BDVWA MW1, but concentrations were below State and Federal MCLs. Detectable concentrations of uranium and gross alpha radiation were also measured in the water quality samples, but the concentrations were below State and Federal MCLs.
- Based on a water quality evaluation comparing native groundwater and SWP water quality and potential impacts associated with groundwater mounding, recharge of SWP water at the Reche Spreading Grounds is not expected to degrade groundwater quality in the Reche Subbasin.
- Local, state, and federal regulatory agencies were contacted to identify permitting requirements for construction and operation of the recharge project. The recharge facility is located on Federal land under BLM jurisdiction. Permits will not be required by local county regulatory agencies. A general discharge permit may be required by the RWQCB, and a consultation permit may be required by BLM. Final permits or confirmations that permits will not be required will be obtained from agencies after design specifications are completed.

8. REFERENCES

American Society of Testing and Materials (ASTM). Standard D 2325 - Standard Test Method for Capillary-Moisture Relationships for Coarse- and Medium-Textured Soils by Porous-Plate Apparatus.

American Society of Testing and Materials (ASTM). Standard D 5084-03 - Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter.

California Department of Water Resources (DWR) (2004) Bulletin 118 Groundwater Basin descriptions, Ames Valley Groundwater Basin, Update February 27, 2004.

Driscoll, Fletcher G (editor) (1986) Groundwater and Wells (second edition), published by Johnson Division, St. Paul, Minnesota.

Graham, R. C., Hirmas, D. R., and Wood, Y. A. (2008) Large near-surface nitrate pools in soils capped by desert pavement in the Mojave Desert, California. Geology, 36(3), pp. 259-262, March 2008.

GSI/Water (2000) Investigations of possible effects of pumping Hi-Desert Water District Well 24 in the Reche Subbasin on water level changes in Big Horn Desert View Water Agency Wells 2, 3, 4, and USGS monitoring well 02N/05E-27A in the Flamingo Heights area of Pipes Subbasin. November 30.

Hi-Desert Water District (HDWD) (2009) Annual Water Quality Report, water testing performed in 2008.

Izbicki, J. A. (2008) Artificial Recharge through a Thick, Heterogeneous Unsaturated Zone. Ground Water, 46(3), pp. 475-488.

Izbicki, J. A. (2007) Physical and Temporal Isolation of Mountain Headwater Streams in the Western Mojave Desert, Southern California. Journal of the American Water Works Association, 43(1), pp. 26-40.

Kennedy/Jenks/Todd LLC Consultants (2007) Basin Conceptual Model and Assessment of Water Supply and Demand for the Ames Valley, Johnson Valley, and Means Valley Groundwater Basins. April.

Mojave Water Agency (2007) Groundwater Quality Analysis Technical Memorandum / Phase 1 between Mojave Water Agency and Schlumberger Water Services, May 7, 2007.

Nishikawa, T., Densmore, J.N., Martin, P., Matti, J. (2003) Wvaluation of the Source and Transport of High Nitrate Concentrations in Ground Water, Warren Subbasin, California, USGS Water-Resources Investigations Report 03-4009.

Ruekert \& Mielke, (R\&M) (2007), Report on the Geophysical Investigations for the Ames, Means, and Johnson Valleys, near Yucca Valley California. March 2007.

Schafer, David C. (1978) Casing storage can affect pumping test data, The Johnson Drillers Journal. January-February.

Stamos, C.L., Huff, J.A., Predmore, S.K., and Clark, D.A. (2004) Regional Water Table (2004) and Water-Level Changes in the Mojave River and Morongo Ground-Water Basins, Southwestern Mojave Desert, California.

Umari, A. M., Martin, P., and Schroeder, R. A. (1993) Potential for Ground-Water Contamination from Movement of Wastewater through the Unsaturated Zone.

Tables

Table 1
BDVWA MW1 Soil Sample Hydraulic Properties Reche Spreading Grounds Recharge Feasibility Study Bighorn Desert View Water Agency

Sample Depth feet	Lithology	Moisture Content \%	Dry Density (pcf)	Total Porosity \%	Effective Porosity \%	Hydraulic Conductivity (cm/sec)	Hydraulic Conductivity (feet/day)
$10.0-12.5$	Well-Graded SAND (SW)	7.9	98.19	45	23	$1.42 \mathrm{E}-03$	4.03
$25.0-27.5$	Well-Graded SAND (SW)	7.8	101.88	43	22	$1.43 \mathrm{E}-03$	4.05
$50.0-52.5$	Well-Graded SAND (SW)	7.6	99.48	44	22	$2.19 \mathrm{E}-03$	$1.76 \mathrm{E}-03$
$100.0-102.5$	Well-Graded SAND (SW)	9.8	104.36	41	22	4.21	
$150.0-152.5$	Well-Graded SAND (SW)	10.0	99.82	44	23	$1.37 \mathrm{E}-03$	3.89
$242.5-245$	Poorly-Graded SAND (SP)	10.4	103.12	42	23	$5.63 \mathrm{E}-04$	1.60

Samples analyzed by Keantan Testing Laboratories (Diamond Bar,California)

Table 2
Monitoring Well Construction Details Reche Spreading Grounds Recharge Feasibility Study

Bighorn Desert View Water Agency

Well Name	UTM 83 Northing ${ }^{1}$	UTM 83 Easting ${ }^{1}$	Monitoring Well Casing Elevation ${ }^{1}$	Date Completed	Well Depth	Screen Interval	Filter Pack Interval	Seal Interval	Water Level Date	Depth to Groundwater	Groundwater Elevation
	feet	feet	feet msl		feet	feet	feet	feet		feet	feet msl
BDVWA MW1	553813	3788804	3240	9/11/2010	256.5	236-256	231-256.5	0-231	9/23/2010	236	3004
BDVWA MW2	554669	3789565	3282	9/16/2010	348.5	298-348	293-348.5	0-293	9/23/2010	298	2984

${ }^{1}$ Northing and easting coordinates and elevations were obtained from GPS and are approximate; survey to be perfromed in the future.

Table 3
HDWD Well No. 24 Aquifer Test Results Reche Spreading Grounds Recharge Feasibility Study Report Bighorn-Desert View Water Agency

HDWD 24 Constant-Rate Pumping Test	
Test Date	$5-$ Oct-10
Test Duration	1440 minutes
Average Pumping Rate	759 gpm
Drawdown in Pumping Well	11 feet (approximate)
Specific Capacity	69 gpm/foot
Radial Distance to Observation Well BDVWA MW2	35 feet
Drawdown in Observation Well at end of test	2.76 feet
Aquifer Saturated Thickness	290 feet
Aquifer Transmissivity from Specific Capacity	13,800 to 18,500 feet ${ }^{2} /$ day
Hydraulic Conductivity from Specific Capacity	48 to 64 feet/day
Aquifer Transmissivity from Drawdown in BDVWA MW2	44,700 feet ${ }^{2} /$ day
Hydraulic Conductivity from Drawdown in BDVWA MW2	154 feet/day
Aquifer Transmissivity from Recovery in BDVWA MW2	62,300 feet ${ }^{2} /$ day 2
Hydraulic Conductivity from Recovery in BDVWA MW2	215 feet/day

Table 4
Groundwater Quality Sampling Results Summary Reche Spreading Grounds Recharge Feasibility Study Bighorn-Desert View Water Agency

Analyte	Test Method	Reporting Limit and Units ${ }^{1}$	BDVWA MW1 Result	BDVWA MW2 Result
General Chemical Analytes				
Alkalinity Total as CaCO3	SM2320 B	$5.0 \mathrm{mg} / \mathrm{L}$	190	170
Bicarbonate	SM2320 B	$5.0 \mathrm{mg} / \mathrm{L}$	230	210
Calcium	SM3500CaD	$1.0 \mathrm{mg} / \mathrm{L}$	49	43
Carbonate	SM 2320 B	$5.0 \mathrm{mg} / \mathrm{L}$	ND	ND
Chloride	EPA 300.0	1.0 mg/L	17	34
Langelier Index at Source Temp	SM 203	NA	0.11	NT
Langelier Index at 60 C	SM 203	NA	0.81	NT
Aggressive Index	SM 203	NA	12.06	NT
Cyanide	SM 4500 CNF	$100 \mathrm{ug} / \mathrm{L}$	ND	ND
Specific Conductance	SM 2510 B	2.0 umhos/cm	530	440
Fluoride	EPA 300.0	$0.10 \mathrm{mg} / \mathrm{L}$	0.83	1.1
Total Hardness as CaCO3	SM 2340 C	$5.0 \mathrm{mg} / \mathrm{L}$	140	130
Hydroxide	SM 2320 B	$5.0 \mathrm{mg} / \mathrm{L}$	ND	ND
MBAS	SM 5540 C	$0.10 \mathrm{mg} / \mathrm{L}$	ND	ND
Nitrate	EPA 353.2	2.0 mg/L	2.5	2.2
Nitrate + Nitrite as N	EPA 353.2	10,000 ug/L	580	500
Nitrite as N	EPA 353.2	1,000 ug/L	ND	ND
Perchlorate	EPA 314	4.0 ug/L	ND	ND
pH Lab	SM 4500HB	NA, pH units	7.7	7.9
Sulfate	EPA 300.0	$0.50 \mathrm{mg} / \mathrm{L}$	21	35
TFS/Total Dissolved Solids	SM5440 C	$5.0 \mathrm{mg} / \mathrm{L}$	270	320

Metals				
Aluminum	EPA 200.7	$50 \mathrm{ug} / \mathrm{L}$	400	610
Antimony	SM 3113 B	6.0 ug/L	ND	ND
Arsenic	SM 3113 B	2.0 ug/L	ND	ND
Barium	EPA 200.7	$100 \mathrm{ug} / \mathrm{L}$	ND	ND
Beryllium	SM 3113 B	1.0 ug/L	ND	ND
Boron	EPA 200.7	$100 \mathrm{ug} / \mathrm{L}$	180	160
Cadmium	SM 3113 B	1.0 ug/L	ND	ND
Chromium (Total)	SM 3113 B	$10 \mathrm{ug} / \mathrm{L}$	ND	ND
Copper	EPA 200.7	$50 \mathrm{ug} / \mathrm{L}$	ND	ND
Iron	EPA 200.7	$100 \mathrm{ug} / \mathrm{L}$	300	490
Lead	SM 3113 B	$5.0 \mathrm{ug} / \mathrm{L}$	ND	ND
Magnesium	EPA 200.7	1.0 mg/L	9.3	8.8
Manganese	EPA 200.7	$20 \mathrm{ug} / \mathrm{L}$	220	110
Mercury	EPA 245.1	1.0 ug/L	ND	ND
Nickel	SM 3113 B	$10 \mathrm{ug} / \mathrm{L}$	ND	ND
Potassium	EPA 200.7	1.0 mg/L	4.6	4.8
Selenium	SM 3113 B	$5.0 \mathrm{ug} / \mathrm{L}$	ND	ND
Silver	SM 3113 B	$10 \mathrm{ug} / \mathrm{L}$	ND	ND
Sodium	EPA 200.7	1.0 mg/L	63	45
Thallium	EPA 200.7	$1.0 \mathrm{ug} / \mathrm{L}$	ND	ND
Vanadium	EPA 200.7	3.0 ug/L	4.2	3.1
Zinc	EPA 200.7	$50 \mathrm{ug} / \mathrm{L}$	ND	ND
Radiochemistry				
Gross Alpha	EPA 900.0	$3.0 \mathrm{pCi} / \mathrm{L}$	11	7.3
Gross Alpha Counting Error	EPA 900.0	$\mathrm{pCi} / \mathrm{L}$	2.3	1.7
Gross Alpha Min Detection Activity	EPA 900.0	$\mathrm{pCi} / \mathrm{L}$	1.4	1.0
Gross Beta	EPA 900.0	$4.0 \mathrm{pCi} / \mathrm{L}$	ND	NA
Gross Beta Counting Error	EPA 900.0	pCi/L	1.5	NA
Gross Beta Min Detection Activity	EPA 900.0	$\mathrm{pCi} / \mathrm{L}$	1.3	NA
Uranium	EPA 900.0	$1.0 \mathrm{pCi} / \mathrm{L}$	14	NA
Uranium Counting Error	EPA 900.0	$\mathrm{pCi} / \mathrm{L}$	1.6	NA
Uranium Min Detection Activity	EPA 900.0	$\mathrm{pCi} / \mathrm{L}$	0.87	NA
Total Alpha Radium 226	EPA 903.0	$0.549 \mathrm{pCi} / \mathrm{L}$	$0.000+/-0.340$	NA
Radium 228	Ra-05	$0.279 \mathrm{pCi} / \mathrm{L}$	$0.000+/-0.653$	NA
Strontium 90	EPA 905.0	$1.06 \mathrm{pCi} / \mathrm{L}$	$1.33+/-0.747$	NA
Tritium	EPA 906.0	$386 \mathrm{pCi} / \mathrm{L}$	$0.000+/-222$	NA

Table 4
Groundwater Quality Sampling Results Summary Reche Spreading Grounds Recharge Feasibility Study Bighorn-Desert View Water Agency

Analyte	Test Method	Reporting Limit and Units ${ }^{1}$	BDVWA MW1 Result	BDVWA MW2 Result
Volatile Organic Compounds				
Trichloroethene (TCE)	EPA 524.2	$0.5 \mathrm{ug} / \mathrm{L}$	0.57	NA
Tetrachloroethene (PCE)	EPA 524.2	$0.5 \mathrm{ug} / \mathrm{L}$	3.5	NA
All other EPA 524.2 analytes	EPA 524.2	0.5-5.0 ug/L	ND	NA
VOC Pesticides				
Ethylene Dibromide (EDB)	EPA 504.1	0.05 ug/L	ND	NA
Dibromochloropropane (DBCP)	EPA 504.1	$0.2 \mathrm{ug} / \mathrm{L}$	ND	NA

Semi-Volatile Organic Compounds							
All EPA 508.1 analytes	EPA 508.1	$0.01-25 \mathrm{ug} / \mathrm{L}$	ND	NA			

Other Pesticides				
Endothall	EPA 548.1	$45 \mathrm{ug} / \mathrm{L}$	ND	NA
Diquat	EPA 549.2	4.0 ug/L	ND	NA
2,3,7,8-TCDD	EPA 1613 B	5.0 pg/L	ND	NA
Other Analytes				
Asbestos	EPA 600/R-94/134	0.19 million fibers/L	ND	NA

Explanations
NA - Not analyzed
ND - Not detected above reporting limit
mg / L - milligrams per liter
ug/L - micrograms per liter
pg / L - picograms per liter
MBAS - Methyl blue active substances
1 - Reporting Limit includes miniumum detectable activity for radionucleides

Table 5
SWP Water Quality Summary

Reche Spreading Grounds Recharge Feasibility Study Bighorn-Desert View Water Agency

	Drinking Water Standards	SWP Water Quality Data		
		Mininum	Maximum	Average
	(all values in mg/L unless designated otherwise)			
MAJOR IONS				
Calcium		15	34	27
Magnesium		5	15	10
Potassium		--	--	--
Sodium		24	71	59
Bicarbonate ${ }^{1}$		64	111	96
Chloride	$250{ }^{\text {b }}$	28	100	74
Sulfate	$250{ }^{\text {b }}$	19	81	48
MINOR IONS				
Boron		0.1	0.3	0.2
Bromide		0.10	0.37	0.26
Iron	$0.3{ }^{\text {b }}$	ND	0.010	0.007
Manganese	$0.050^{\text {b }}$	ND	0.067	ND
Nitrite and Nitrate, as N	$10^{\text {a }}$	0.10	1.80	0.93
PHYSICAL PARAMETERS AND OTHER PROPERTIES				
Specific Conductance (uS/cm)	$900^{\text {b }}$	233	600	495
Total Dissolved Solids (TDS)	$500^{\text {b }}$	152	350	286
pH (units)		--	--	--
Alkalinity, as CaCO_{3}		52	91	78
Hardness, as CaCO_{3}		70	138	108
Turbidity (NTU)	$5^{\text {b }}$	1	18	5
Organic Carbon, Dissolved		1.0	3.7	2.3
Organic Carbon, Total		1.0	3.9	2.5
Phosphate, Ortho, as P		0.01	0.10	0.04
Phosphorus, Total		0.02	0.15	0.06
TRACE METALS				
Aluminum	$0.1^{\text {a }}$	--	--	--
Antimony	$0.006^{\text {a }}$	--	--	--
Arsenic	$0.010^{\text {a }}$	0.002	0.006	0.004
Barium	$1^{\text {a }}$	--	--	--
Beryllium	$0.004^{\text {a }}$	ND	ND	ND
Cadmium	$0.005^{\text {a }}$	--	--	--
Chromium	$0.050^{\text {a }}$	0.001	0.005	0.002
Copper	$1^{\text {b }}$	0.001	0.003	0.002
Lead	$0.015^{\text {a }}$	ND	ND	ND
Mercury	$0.002^{\text {a }}$	--	--	--
Nickel	$0.1{ }^{\text {a }}$	--	--	--
Selenium	$0.050^{\text {a }}$	0.001	0.002	0.001
Silver	$0.1{ }^{\text {b }}$	--	--	--
Thallium	$0.002^{\text {a }}$	--	--	--
Zinc	$5.0^{\text {b }}$	ND	ND	ND

Notes:

$\mathrm{mg} / \mathrm{L}=$ milligrams per liter
uS/cm = microSiemens per centimeter
NTU = nephelometric turbidity units
-- = Not Analyzed
ND = Not detected above reporting limit
${ }^{1}$ Calculated bicarbonate concentration: Alkalinity $\times 1.2192$
${ }^{\text {a }}$ Primary Maximum Contaminant Level (MCL)
${ }^{\text {b }}$ Secondary MCL

Table 6
Comparison of SWP and Groundwater Quality Reche Spreading Grounds Recharge Feasibility Study Bighorn-Desert View Water Agency

	Drinking Water Standards (MCLs)	MONITORING WELL		PRODUCTION WELL						
		BDVWA MW1	$\begin{gathered} \text { BDVWA } \\ \text { MW2 } \end{gathered}$	$\begin{gathered} \text { BDVWA } \\ 6 \end{gathered}$	$\begin{gathered} \text { BDVWA } \\ 7 \end{gathered}$	$\begin{gathered} \text { BDVWA } \\ 9 \end{gathered}$	$\begin{aligned} & \text { HDWD } \\ & 24 \end{aligned}$	$\begin{gathered} \text { CSA W-70 } \\ 1 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { CSA W-70 } \\ 2 \end{array}$	$\begin{gathered} \text { CSA W-70 } \\ 3 \end{gathered}$
		09/23/10	09/24/10	12/08/08	12/08/08	07127109	11/24/09	11/06/08	11/06/08	11/06/08
	(values in mg/L unless designated otherwise)									
MAJOR IONS										
Calcium		49	43	42	40	39	45	26	33	35
Magnesium		9	9	7	7	66	8	4	5	5
Potassium		5	5	3	3	3	2	2	2	3
Sodium		63	45	49	49	53	37	43	46	42
Bicarbonate ${ }^{1}$		230	210	190	200	170	210	140	160	170
Chloride	$250{ }^{\text {b }}$	17	34	18	18	24	12	18	20	17
Sulfate	$250{ }^{\text {b }}$	21	35	34	33	48	22	28	30	28
MINOR IONS										
Boron		0.18	0.16	0.15	0.13	0.12	--	ND	ND	0.15
Bromide		--	--	--	--	--	--	--	--	--
Iron	$0.3{ }^{\text {b }}$	0.3	0.5	ND						
Manganese	$0.050^{\text {b }}$	0.2	0.1	ND						
Nitrite and Nitrate, as N	$10^{\text {a }}$	0.6	0.5	1.5	1.6	2.3	$1{ }^{\text {c }}$	1.4	1.6	1.4
PHYSICAL PARAMETERS AND OTHER PROPERTIES										
Specific Conductance (mS/cm)	$900{ }^{\text {b }}$	530	440	440	450	480	440	350	390	390
Total Dissolved Solids (TDS)	$500^{\text {b }}$	270	320	280	290	290	250	180	200	200
pH (units)	$6.5-8.5^{\text {b }}$	7.7	7.9	7.9	7.9	8.1	7.8	8	8	7.9
Alkalinity, as CaCO_{3}		190	170	160	160	140	170	110	130	140
Hardness, as CaCO_{3}		140	130	130	130	120	150	80	110	110
Turbidity (NTU)	$5^{\text {b }}$			0.1	0.3	ND	ND	ND	ND	ND
Organic Carbon, Dissolved		--	--	--	--	--	--	--	--	--
Organic Carbon, Total		--	--	--	--	--	--	--	--	--
Phosphate, Ortho, as P		--	--	--	--	--	--	--	--	--
Phosphorus, Total		--	--	--	--	--	--	--	--	--
TRACE METALS										
Aluminum	$0.1{ }^{\text {a }}$	0.4	0.61	ND						
Antimony	$0.006{ }^{\text {a }}$	ND								
Arsenic	$0.010^{\text {a }}$	ND	ND	ND	ND	ND	0.0034	0.0041	0.0041	0.039
Barium	$1^{\text {a }}$	ND								
Beryllium	$0.004^{\text {a }}$	ND								
Cadmium	$0.005^{\text {a }}$	ND								
Chromium (total)	$0.050^{\text {a }}$	ND	ND	ND	ND	ND	0.0068	ND	ND	ND
Copper	$1{ }^{\text {b }}$	ND								
Lead	$0.015^{\text {a }}$	ND								
Mercury	$0.002^{\text {a }}$	ND								
Nickel	$0.1{ }^{\text {a }}$	ND								
Selenium	$0.050^{\text {a }}$	ND								
Silver	$0.1{ }^{\text {b }}$	ND								
Thallium	$0.002^{\text {a }}$	ND								
Zinc	$5.0{ }^{\text {b }}$	ND								

Notes:
Data are from most recent water quality sample available for each well
$\mathrm{mg} / \mathrm{L}=$ milligrams per liter
$\mathrm{mS} / \mathrm{cm}=$ microSiemens per centimeter
NTU = nephelometric turbidity units
-- = Not Analyzed
ND = Not detected above reporting limit
${ }^{1}$ Calculated bicarbonate concentration: Alkalinity $\times 1.2192$
${ }^{\text {a }}$ Primary Maximum Contaminant Level (MCL)
${ }^{\text {b }}$ Secondary MCL
${ }^{\text {c }}$ Calculated from nitrate (as NO_{3}) result

Figures

February 2011
TODD ENGINEERS Alameda, California

Figure 8 Sonic Drilling Rig Setup

TODD ENGINEERS Alameda, California		FIGURE 9 EXPLORATORY BORING/WELL LOG FOR BDVWA MW1				
		PROJECT NO.: 62602 PROJECT LOCATION: BDVWA - Reche Recharge FS HOLE NO.: BDVWA MW1 HOLE LOCATION: Pipes Wash ELEVATION: 3,230 (approx.) LOGGED BY: Ryan Strandberg DATE STARTED: $8 / 17 / 2010$ Lat $344^{\prime} 14.336^{\prime \prime}$ Long $116^{\prime} 24.941 "$ DATE FINISHED: $9 / 11 / 2010$				
DRILLING INFORMATION			COMPLETION/INFORMATION			
DRILLING AGENCY: Boart Longyear DRILLER: Ken DRILLING EQUIPMENT: Track-mounted Sonic DRILLING METHOD: Sonic DRILL BIT: 8-inch SAMPLE TYPE: Core SAMPLES TAKEN: Continuous FIRST WATER: 236 feet TOTAL DEPTH: 257 feet			CASING SIZE \& TYPE: 4-inch PVC Schedule 80 CASED INTERVAL: 0 - 236 feet SCREEN SIZE AND TYPE: PVC Schedule 800.020 slot SCREENED INTERVAL: $236-256$ feet FLLTER PACK: \#2/12 Lapus Lustre Sand PACKED INTERVAL: 231-256.5 Feet SEAL/BUFFER TYPE: Enviroplug Medium SEAL/BUFFER INTERVAL: 228-231 feet SURFACE SEAL TYPE: Cement - bentonite SURFACE SEAL INTERVAL: 0-228 feet WELLHEAD: Above Grade Riser 3' stovepipe			
$\begin{aligned} & \text { DEPTH } \\ & \text { (FEET) } \end{aligned}$	LITHOLOGIC DESCRIPTION		GRAPHIC LOG		LABORATORYSAMPESSINTERVAL	REMARKS
			тНоо.og	CoMELLITON		
					二	10-12.5

TODD ENGINEERS Alameda, California		FIGURE 10 EXPLORATORY BORING/WELL LOG FOR BDVWA MW2					
		PROJECT NO.: 62602 HOLE NO.: BDVWA MW2 ELEVATION: 3,307 (approx.) DATE STARTED: 9/08/2010 Lat $34^{\prime} 14.700^{\prime \prime}$ Long $116^{\prime} 24.380^{\prime \prime}$ PROJECT LOCATION: BDVWA - Reche Recharge FS hole location: Pipes Wash adazcent to HDWD 24 LOGGED BY: Ryan Strandberg DATE FINISHED: 9/16/2010					
DRILLING INFORMATION			COMPLETION/INFORMATIO				
DRILLIN DRILLE DRILLIN DRILLIN DRILL SAMPLE FIRST TOTAL	Ng AGENCY: Boart Longyear R: Ken NG EQUIPMENT: Truck-mounted So NG METHOD: Sonic BIT: 8-inch \qquad SAMPLE ES TAKEN: Continuous WATER: 298 feet DEPTH: 348.5 feet	Core	CASING SIZE \& TYPE: 4-inch PVC Schedule 80 CASED INTERVAL: 0-298 feet SCREEN SIZE AND TYPE: PVC Schedule 800.020 slot SCREENED INTERVAL: 298-348 feet FILTER PACK: \#2/12 Lapus Lustre Sand PACKED INTERVAL: 293-348.5 Feet SEAL/BUFFER TYPE: Enviroplug Medium SEAL/BUFFER INTERVAL: 288-293 feet SURFACE SEAL TYPE: Cement - bentonite SURFACE SEAL INTERVAL: 0-228 feet WELLHEAD: At grade Christy box				
$\begin{aligned} & \text { DEPTH } \\ & \text { (FEET) } \end{aligned}$	LITHOLOGIC DESCRIPTION		GRAPHIC LOG			$\begin{aligned} & \text { LABORATORY } \\ & \text { SAMPLESL } \\ & \text { INTERVAL } \end{aligned}$	REMARKS
			LтноӧY				
			\%				

February 2011	Figure 14 Recovery over TODD ENGINEERS Dimensionless Time in Observation Well Alameda, California
BDVWA MW2	

February 2011	Figure 16 Simulated Water Table Elevations over Time in Response to Recharge
TODD ENGINEERS Alameda, California	Ren

LEGEND

-	BDVWA \#6	12/8/08	\bigcirc	CSA 70 W-1	2/16/05
\bigcirc	BDVWA \#7	12/8/08	\checkmark	CSA 70 W-2	2/16/05
\triangle	BDVWA \#9	7/12/09	\square	CSA 70 W-3	2/16/05
\square	HDWD \#24	11/30/09	\bigcirc	BDVWA MW1	8/23/10
\square	HDWD \#24	11/24/09	-	BDVWA MW2	9/24/10
\diamond	HDWD \#6	7/18/97		SWP Water	

February 2011
TODD ENGINEERS
Alameda, California

Figure 18 Cation/Anion Composition of Groundwater and SWP Water

Appendix A

Drilling Permits

County of San Bernardino

Department of Public Health

Division of Environmental Health Services
385 N. Arrowhead Avenue
San Bernardino, CA 92415-0160

FAX

```
Date 8/9/2010
Number of pages including cover sheet

To: Bighorn Desert View Water
\(\qquad\)
\(\qquad\)
\(\qquad\)
Fax Phone (760) 364-3412

CC:

From:
Marvyn Cerdenio
\(\qquad\)
\(\qquad\)
\(\qquad\)
\begin{tabular}{ll}
\hline Phone & \\
Fax Phone & (909) 387-4666 \\
& (909) 387-4323 \\
&
\end{tabular}

REMARKS:
\(\square\) Urgent \(\quad \boxtimes\) For your review \(\square\) Reply ASAP \(\square\) Please comment

Copy of approved well permits for 2 monitoring wells in Yucca Valley


County of San Bernardine DEPARTMENT OF PUBLIC HEALTH ENVRONMENTAL HEALTH SERVICES 3 BS N. Arrowhead Ave., and Floor San Bernardine, CA 92415-0180 (908) 884-4055 www,sbcounty.tyow/daht

WELL PERMIT
(Please Print)

1. OWNER: Name BIGHORN DESERTVIEN WATER 位

Site Address 622 S. JEMEZ TRAIL
city yucca Valley Zip 92284
Mailing Address \(\qquad\)
City \(\qquad\) Zip \(\qquad\)
Telephone Number (760) \(\qquad\) 3642315
2. WELL DRILLER: BOART LONGYEAR

Business Nome
\(\frac{\text { AUGUST } 23,2010}{\text { Star Dato }}\)
\[
\frac{\text { AV GUST } 26,2010}{\text { Compaction Date }}
\]
3. INTENDED WELL USE (check):

5. ANNULAR SEAL:

Furnished by:
\(\square\) Driven Conductor Dias. \(\qquad\) Contractor

K Sealing Material \(\qquad\) grout in., Wall (Gage) \(\qquad\) 3
6. DEPTH OF WELL (feet);

Proposed \(\qquad\) 200 Existing \(\qquad\)
DIAMETER OF BORE (in): \(\quad 10\)
7. CASING INSTALLED:Steel X Plastic


Gravel Pack:
\(\qquad\) 175 YesNo
From \(\qquad\) to \(\qquad\) 200 ft .
8. PERFORATIONS (if applicable):

From \(\qquad\) 180 10 \(\qquad\) 200 f.

Pumping rate (gm) \(\qquad\)
9. SEALED ZONES (if applicable):

From \(\qquad\) to \(\qquad\) ft .
10. LOCATION INFORMATION

T6 \# 4747 155-7
(a) TOWNSHIP:

Tier 2- Nos Range 5 ( 10 N Section 248
(b) Assessor's Parcel No. \(\qquad\) 62922201
(c) Latitude and Longitude

Lat: \(34{ }^{\circ} \cdot 14.2 x^{n} N / S\)
Long: \(1166^{\circ} 24 \mathrm{~N}\)
(d) Solid or Liquid Disposal Site within Two Miles
- Yes 配

Location \(\qquad\)


Assessor's Parcel No. \(\qquad\) 62922201
w

11. PLOT PLAN:
(a) In perspective io the well site, akelch and label the following ftems: well tot property lines. olher walls (inclute abandoned wells), sewage disposal sysiems (sewers, septic tanks, leaching fields, aeepage pits, testpools). lakes and ponds, watercourses and animais ar fowi kept, Indicate the distance, in feet, of any of line following which are within 500 f. of the well site:
(c) None of the above are within 500 feal of the well site,
12. I have read this application and agree to gomply with afl laws regulating the type of work being performad C-57 Contractor's Signalure \(\qquad\) Date \(7-27-10\) Counly Registration No. \(\qquad\) 161 California License No.

Sent ko Water Agency for review.Water Agency conditions or recommendations attached.Denied
V Approved subject to the following:
A. Natify the Departiment. \(\qquad\) Safe Drinking Water Program, (909) 3B7-4666 . Iwenty-four (24) hours in advance to make an inspection of the following operations:Frior to sealing of the annular space or filling of the conductor casing.
(1)

During destruction of wells, prior to pouring the sealing material.
B. \(\square\) Submit to the Department, within thirty (3D) days after completion of work, a copy of:
W" Water Wall Driller's ReportBacterial Analysis
\(\square\) Inoryanic Chemicel Analysis
\(\square\) General PhysicalGeneral MineralOrganic Chamdcal analysis

Fomments

County of San Bernardine DEPARTMENT OF PUBLIC HEALTH ENVIRONMENTAL HEALTH SERVICES 385 N. Arrowhead Ave., Ind Fiver San Aemardino, CA 92415-0160 (909) 884-4056 Wwwesbrcpunty.gowitahs
WELL PERMIT
(Please Print)


Items a through 9 to De estimated for new wells, exact for all other wells
5. ANNULAR SEAL:

Seal Depth \(\qquad\) \(2-75\) ft.
Fumiahed by:Owner Contractor Driven Conductor Bia. \(\qquad\) in., Wall (Gage)
Sealing Material \(\qquad\) Grout Thickness \(2 \rightarrow 2 \mathrm{in}\).
6. DEPTH OF WELL (feet);

Proposed \(\qquad\) 300 Existing
DIAMETER OF BORE (in.): \(\qquad\)
7. CASING INSTALLED:Steel X PlasticOther
\begin{tabular}{|c|c|c|c|}
\hline From (ft.) & To (ft.) & Dis. (in.) & Wall (Gage) \\
\hline 0 & 280 & 4 & \(\leq C t i .80\) \\
\hline & & & \\
\hline
\end{tabular}

Gravel Pack: Xii YesNo
From \(\qquad\) 275 to \(\qquad\) 300 ft.
8. PERFORATIONS (If applicable);

From 280 to 300 ft .
Pumping rate (gm) \(\qquad\)
9. SEALED ZONES (if applicable):

From \(\qquad\) to \(\qquad\) ft.
10. LOCATION INFORMATION TL \# \(\# 474755 / 6\)
(a) TOWNSHIP:

Tier \(\qquad\) 2 (1) S Range 5 (e) section 24 H
(b) Assessors Parcel No. 62921101
(c) Latitude and Longitude

Lat: \(\qquad\) \(34: 14: 45\) " N/S
Long: HULa ", 24 : 2, "N/S
(d) Solid or Liquid Disposal Site within Two MilesYes
紬
Location \(\qquad\)
\begin{tabular}{|l|l|}
\hline So al NOT FHLL \(\mathbb{N}\) \\
Cap \\
Check Valve \\
Electrical \\
Stab \\
Tag \\
Building \& Safety Notified \\
\hline
\end{tabular}

Seal \(\qquad\)
Cap \(\qquad\)
Check Valve \(\qquad\)
Electrical \(\qquad\)
Stab \(\qquad\)
Tag \(\qquad\)
Building \& Safely Notified \(\qquad\)

Assessor's Parcel No. \(\qquad\) 62921101

w

PLOT PLAN:
(a) In perspective to the weil sile, sketch and label the following ilems: well lot property lines, olher wells (include abandpnepd wellis), sewage disposal ayslems (sewers, septic tenks. leaching fiekds, seepage plis, cessponis), lakes and ponds, watercourses and animais or fowl kepl.
(b) (ndicate the distance, In feat, of any of the followirg whith are within 500 ft . of the well site:
(c) \(\square\) None of the above are within 500 feet of the
well site,

Scaid: \(1 / 2\) inch \(=100\) feet
12. I have read this application and agree to comply with all laws regulating the type of work being performed C-57 Contractor's Signature /W/ReN Wather California License No.
\(\qquad\) .694686

\section*{DISPOSITION OF PERMIT \\ (For Department Uso Dnly)}
\(\square\) Sent to Water Agency for review.
\(\square\) Water Agency conditions or recommendations attached.
\(\square\) Denied
Approved subject to the following:
A. V] Notify the Department, \(\qquad\) Safe Drinking Water Program, (909) 387-4666 - Iwenty-four (24) hours in advance to make an inspaction of the following operations: \(\square\) Prior to sealing of the annular space of filling of the conductor casing.
\& After installation of the surface protective slab andmanemenement. \(\square\) During destruction of wells, prior to pouring the sepaling material.
B. (ᄌ) Submit to the Department, within thirty (30) days after complelion of work, a copy of. \(\square\) Water Well Driler's Report \(\square\) Bactarial Analysis \(\square\) Inorganic Chemicel Analysis \(\square\) Radiological Analysis \(\square\) General Mineral \(\square\) Organic Chemical analysis \(\square\) Genaral Physical
"omments
\(\qquad\)

\section*{Appendix B}

\section*{Soil Hydraulic Property Laboratory Report}

\section*{KEANTAN}

LABORATORIES

October 27, 2010
Todd Engineer
2490 Mariner Square Loop, Suite 215
Alameda, California 94501-1080
Attn: Daniel Craig

\section*{Subject: Report/Laboratory Test Results \\ Project Name: BDVWA- Reche Recharge \\ Project Number: N/A \\ KTL Project No.: 06-344-004}

\section*{To Daniel Craig}

Enclosed are results of the laboratory testing program conducted on samples from the above referenced project. The testing performed for this program was conducted in general accordance with testing procedures as follows:

TYPE OF TEST
Permeability
Total Porosity
Effective Porosity

TEST PROCEDURE
ASTM D 5084
ASTM D 854/2937
SWRCB

Attached herewith are Summary of Permeability Test Result (6), Summary of Total Porosity Test Result (6), and Summary of Effective Porosity Test Result (6).
We appreciate the opportunity to provide testing services to Todd Engineer. If you have any questions regarding the test results, please contact us.

Very truly yours,
Keantan Laboratories


Kean Tan RCE \# 50498

Encls.


\section*{SUMMERY OF LABORATORY TEST RESULT}

For
Trancas Market/61701

PROJECT NAME.: BDVWA Reche Recharge KTL NO.: 06-344-004
PROJECT NO.: N/A
DATE.:
10/26/2010
CLIENT.: Todd Engineering
SUMMARIZED BY.: K. Tan
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c} 
Boring \\
NO.
\end{tabular} & \begin{tabular}{c} 
DEPTH \\
(FT)
\end{tabular} & \begin{tabular}{c} 
MOISTURE \\
CONTENT \\
(\%) \\
ASTM D 2937
\end{tabular} & \begin{tabular}{c} 
DRY \\
DENSITY \\
(pcf) \\
ASTM D \\
2937
\end{tabular} & \begin{tabular}{c} 
TOTAL \\
POROSITY \\
ASTM D 2937/854
\end{tabular} & \begin{tabular}{c} 
EFFECTIVE \\
POROSITY \\
SWRCB
\end{tabular} & \begin{tabular}{c} 
HYDRAULIC \\
CONDUCTIVITY \\
(cm/sec) \\
ASTM D 5084
\end{tabular} \\
\hline MW-1 & \(10-12.5\) & 7.90 & 98.19 & .45 & .23 & \(1.42 \mathrm{E}-03\) \\
\hline MW-1 & \(25-28\) & 7.81 & 101.88 & .43 & .22 & \(1.43 \mathrm{E}-03\) \\
\hline MW-1 & \(50-52.5\) & 7.61 & 99.48 & .44 & .22 & \(2.19 \mathrm{E}-03\) \\
\hline MW-1 & \(100-102\) & 9.80 & 104.36 & .41 & .22 & \(1.76 \mathrm{E}-03\) \\
\hline MW-1 & \(150-152.5\) & 9.98 & 99.82 & .44 & .23 & \(1.37 \mathrm{E}-03\) \\
\hline MW-1 & \(242-245\) & 10.44 & 103.12 & .42 & .23 & \(5.63 \mathrm{E}-04\) \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline
\end{tabular}

\section*{KeanTan Laboratories}

\section*{Total Porosity}

ASTM D 854-83
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Project Number: & \multicolumn{2}{|l|}{05-344-004} & \multicolumn{2}{|l|}{Prepared By jk} & Date: & 10/28/2010 \\
\hline Project Name: & \multicolumn{2}{|l|}{BDVWA Reche Recharge} & Tested by & & Date: & 10/28/2010 \\
\hline & & & \multicolumn{2}{|l|}{Checked by} & Date: & 10/28/2010 \\
\hline Boring Number & MW-1* & MW-1* & MW-1* & MW-1* & MW-1* & MW-1* \\
\hline Sample Number & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline Depth (ft) & 10-12.5 & 25-28 & 50-52.5 & 100-102 & 150-152.5 & 242-245 \\
\hline Specfic Gravity of Soil (ASTM D 854) & 2.66 & 2.66 & 2.67 & 2.65 & 2.66 & 2.66 \\
\hline Weight of Soil (Wt)+ring & 516.40 & 530.40 & 520.40 & 547.50 & 530.20 & 545.00 \\
\hline Weight of Ring (Wr) & 135.00 & 135.00 & 135.00 & 135.00 & 135.00 & 135.00 \\
\hline Weight of Soil (Wt) & 381.40 & 395.40 & 385.40 & 412.50 & 395.20 & 410.00 \\
\hline Moisture content of soil & 7.90 & 7.81 & 7.61 & 9.80 & 9.98 & 10.44 \\
\hline Weight of Soil (Dry) (Ws) & 353.48 & 366.76 & 358.15 & 375.68 & 359.34 & 371.24 \\
\hline Unit weight of of water ( yw ) (g/cm3) & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline Volume of Soil (Vs) & 132.89 & 137.88 & 134.14 & 141.77 & 135.09 & 139.56 \\
\hline Diameter (cm) & 6.35 & 6.35 & 6.35 & 6.35 & 6.35 & 6.35 \\
\hline Height (cm) & 7.62 & 7.62 & 7.62 & 7.62 & 7.62 & 7.62 \\
\hline Volume & 241.20 & 241.20 & 241.20 & 241.20 & 241.20 & 241.20 \\
\hline Total Porosity & 0.45 & 0.43 & 0.44 & 0.41 & 0.44 & 0.42 \\
\hline
\end{tabular}
Kis. Keantan Laboratories
Project Number:


\({\underset{\sim}{0}}_{\text {总 }}^{\text {N }}\)

E.



\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline (y) & & & STM D 5084 Permeability & & & & \\
\hline Project Number: & 06-344-004 & & Tested By: & & & Date & 10/24/2010 \\
\hline Project Name: & BDWWA Reche & echarge & Computed By: & & & Dale & 10/24/2010 \\
\hline Boring Number: & MW1 & & Checked By: & & & Dale & 10/24/2010 \\
\hline & Before Permeability & After Permeability & & & & & \\
\hline BORING NUMBER & MW-1 & & Cell Pressure (psi): & 83 & & & \\
\hline SAMPLE TYPE & Remold (80\%) & & Boltom Ptaten (psi): & 80 & & & \\
\hline SAMPLE NUMBER & 1 & & Top Playen (psi): & 82 & & & \\
\hline SAMPLE DEPTH (FT) & 10-12.5 & & Average Effective Siress (psi): & 3 & & & \\
\hline WET DENSITY (PCF) & & & \(\mathrm{g}(\mathrm{sq} \mathbf{i n})\) : & 0.3685 & & & \\
\hline MOISTURE CONTENT (\%) & 7.90 & 17.39 & Lengt ( cm ): & 7.62 & & Length (in): & 3 \\
\hline DRY DENSITY (PCF) & 98.19 & & radius: & 1.25 & & & \\
\hline SOIL DESCRIPTION & & & Area: & 4.91 & & & \\
\hline & & & change in time (sec): & 45 & & & \\
\hline & & & Time & Top (cm) & Bottom(cm) & Top (in) & Bottom (in) \\
\hline COLOR & & & 0 & 27 & 1.1 & 10.63 & 0.43 \\
\hline CONTAINER NUMBER & KB-3 & KB-13 & . 45 sec & 10.7 & 16.4 & 4.21 & 6.46 \\
\hline WT. WET SOIL + CONT. (gm) & 1354.4 & 503.8 & & & & & 6.4 \\
\hline WT. DRY SOIL + CONT. (gm) & 1261.5 & 441.6 & & & & & \\
\hline WT. CONTAINER (gm) & 85.55 & 84 & & & & & \\
\hline TUBENUMBER & & & & & & & \\
\hline SPECIFIC GRAVITY & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{l} 
Project Number: \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Tested By: & jk & & Date & 10/24/2010 \\
\hline Computed By: & & & Date & 10/24/2010 \\
\hline Checked By: & & & Date & 10/24/2010 \\
\hline Cell Pressure (psi): & 83 & & & \\
\hline Bottom Platen (psi): & 80 & & & \\
\hline Top Platen (psi): & 82 & & & \\
\hline Average Effective Siress (psi): & 3 & & & \\
\hline \(\mathrm{a}(\mathrm{sq} \mathrm{in})\) : & 0.3685 & & & \\
\hline Length (sm): & 7.62 & & Length (in): & 3 \\
\hline radius: & 1.25 & & & \\
\hline Area: & 4.91 & & & \\
\hline change in time (sec): & 45 & & & \\
\hline Time & Top (cm) & Bollom(cm) & Top (in) & Bottom (in) \\
\hline 0 & 26.4 & 1.5 & 10.39 & 0.59 \\
\hline .45 sec & 10.4 & 17.1 & 4.09 & 6.73 \\
\hline
\end{tabular}

\({ }_{2}^{5}\)
\(\sigma^{8}{ }^{\frac{1}{4}}\)

Keantan Laboratories
Project Number:

\(2.19 \mathrm{E}-03 \mathrm{~cm} / \mathrm{sec}\)

\(2.19 \mathrm{E} .03 \mathrm{~cm} / \mathrm{sec}\)
\(\square\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Keantan Laboratories} & \multicolumn{5}{|l|}{\begin{tabular}{l}
ASTM D 5084 \\
Permeability
\end{tabular}} \\
\hline Project Number: & \multicolumn{2}{|l|}{06-344-004} & Tested By: & & & Dale & 10/24/2010 \\
\hline Project Name: & \multicolumn{2}{|l|}{BDWWA Reche Recharge} & Computed By: & & & Date & \(10 / 24 / 2010\) \\
\hline Boring Number: & \multicolumn{2}{|l|}{MW1} & Checked By: & & & Date & 10/24/2010 \\
\hline & Before Permeability & After Permeability & & & & & \\
\hline BORING NUMBER & MW-1 & & Cell Pressure (psi): & 83 & & & \\
\hline SAMPLE TYPE & Remold (80\%) & & Bottom Platen (psi): & 80 & & & \\
\hline SAMPLE NUMBER & 3 & & Top Platen (psi): & 82 & & & \\
\hline SAMPLE DEPTH (FT) & 50-52.5 & & Average Effective Siress (psi): & 3 & & & \\
\hline WET DENSITY (PCF) & & & a (sq in): & 0.3685 & & & \\
\hline MOISTURE CONTENT (\%) & 7.61 & 16.42 & Length (em): & 7.62 & & Length (in) & 3 \\
\hline DRY DENSITY (PCF) & 99.48 & & radius: & 1.25 & & Leng (in) & 3 \\
\hline \multirow[t]{2}{*}{SOIL DESCRIPTION} & & & Area: & 4.91 & & & \\
\hline & & & change in time (sec): & 30 & & & \\
\hline & & & \multirow[t]{2}{*}{Time} & Top (cm) & Bollom(cm) & Tup (in) & Bottom (in) \\
\hline COLOR & & & & 25.9 & 1.5 & 10.20 & 0.59 \\
\hline CONTAINER NUMBER & M-500 & KB-21 & \multirow[t]{6}{*}{30 sec} & \multirow[t]{6}{*}{9.4} & \multirow[t]{6}{*}{17.4} & \multirow[t]{6}{*}{3.70} & \multirow[t]{6}{*}{6.85} \\
\hline WT. WET SOIL + CONT.(gm) & 746.9 & 500.1 & & & & & \\
\hline WT. DRY SOIL + CONT. (gm) & 706.9 & 441.6 & & & & & \\
\hline WT. CONTAINER (gm) & 181.61 & 85.4 & & & & & \\
\hline \multicolumn{3}{|l|}{TUBE NUMBER} & & & & & \\
\hline SPECIFIC GRAVITY & & & & & & & \\
\hline
\end{tabular}

Keantan Laboratorles



e

\(\begin{array}{cc}\text { Trial \# 1 } & 5.63 \mathrm{E}-04 \mathrm{~cm} / \mathrm{sec} \\ & \\ \text { Average Permeability } & 5.63 \mathrm{E}-04 \mathrm{~cm} / \mathrm{sec}\end{array}\)


\section*{Effective Porosity}
\begin{tabular}{cccccc} 
Project Number: & \(\mathbf{0 6 - 3 4 4 - 0 0 4}\) & Tested By: & jk & Date & 10/25/2010 \\
\hline Project Name: & BDVWA- Reche Recharge & Computed By: & jk & Date & 10/25/2010 \\
\hline Boring Number: & MW-1 & Checked By: & & Date & \\
\hline Sample Number: & \(\mathbf{1}\) & Sample Type: & Drive & \\
\hline Sample Depth: & \(\mathbf{1 0 - 1 2 . 5}\) & Soil Description: & \\
\hline Pore Volumn (1/10): & \(\mathbf{4 . 4 1}\) & & & \\
\hline Initial Bromide Concentration (M) & \(\mathbf{0 . 1}\) & & \\
\hline Burette Area (Sq.in) & 0.3685 & & & \\
\hline
\end{tabular}
\(\left.\begin{array}{|c|c|c|c|c|}\hline \text { Time } & \begin{array}{c}\text { Pore } \\ \text { Volumn }\end{array} & \begin{array}{c}\text { Burette } \\ \text { Reading } \\ \text { (CM) }\end{array} & \begin{array}{c}\text { Bromide } \\ \text { Concrentration } \\ \text { (M) }\end{array} & \text { C/Co } \\ \hline & & 0.00 & & 0.000\end{array}\right]\)

\begin{tabular}{|l|r|}
\hline Total Porosity & 0.45 \\
\hline Effective Porosity & 0.23 \\
\hline
\end{tabular}

\section*{Effective Porosity}
\begin{tabular}{cclcll} 
Project Number: & 06-344-004 & Tested By: & jk & Date & 10/25/2010 \\
\hline Project Name: & BDVWA- Reche Recharge & Computed By: & jk & Date & 10/25/2010 \\
\hline Boring Number: & MW-1 & Checked By: & Date & 10/25/2010 \\
\hline Sample Number: & \(\mathbf{2}\) & Sample Type: & Drive & \\
\hline Sample Depth: & \(\mathbf{2 5 - 2 8}\) & Soil Description: & \\
\hline Pore Volumn (1/10): & \(\mathbf{4 . 2 1}\) & & & \\
\hline Initial Bromide Concentration (M) & \(\mathbf{0 . 1}\) & & & \\
\hline Burette Area (Sq.in) & 0.3685 & & & \\
\hline
\end{tabular}
\(\left.\begin{array}{|c|c|c|c|c|}\hline \text { Time } & \begin{array}{c}\text { Pore } \\ \text { Volumn }\end{array} & \begin{array}{c}\text { Burette } \\ \text { Reading } \\ (\mathrm{CM})\end{array} & \begin{array}{c}\text { Bromide } \\ \text { Concrentration } \\ (\mathrm{M})\end{array} & \text { C/Co } \\ \hline 1 & 0.00 & & 0.000 & \\ \hline & & 0.10 & & 0.006\end{array}\right]\)

\begin{tabular}{|l|r|}
\hline Total Porosity & 0.43 \\
\hline Effective Porosity & 0.22 \\
\hline
\end{tabular}

\section*{Effective Porosity}
\begin{tabular}{cccccc} 
Project Number: & \(\mathbf{0 6 - 3 4 4 - 0 0 4}\) & Tested By: & jk & Date & 10/25/2010 \\
\hline Project Name: & BDVWA-Reche Recharge & Computed By: & jk & Date & 10/25/2010 \\
\hline Boring Number: & MW-1 & Checked By: & Date & \\
\hline Sample Number: & \(\mathbf{3}\) & Sample Type: & Drive & \\
\hline Sample Depth: & \(\mathbf{5 0 - 5 2 . 5}\) & Soil Description: & \\
\hline Pore Volumn (1/10): & \(\mathbf{4 . 3 6}\) & & \\
\hline Initial Bromide Concentration (M) & \(\mathbf{0 . 1}\) & & \\
\hline Burette Area (Sq.in) & \(\mathbf{0 . 3 6 8 5}\) & & \\
\hline
\end{tabular}


\begin{tabular}{|l|r|}
\hline Total Porosity & 0.44 \\
\hline Effective Porosity & 0.22 \\
\hline
\end{tabular}

\section*{Effective Porosity}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Project Number: & 06-344-004 & Tested By: & jk & Date & 10/25/2010 \\
\hline Project Name: & BDVWA- Reche Recharge & Computed By: & jk & Date & 10/25/2010 \\
\hline Boring Number: & MW-1 & Checked By: & & Date & 10/25/2010 \\
\hline Sample Number: & 4 & Sample Type: & Drive & & \\
\hline Sample Depth: & 100-102 & Soil Description: & & & \\
\hline Pore Volumn (1/10): & 4.05 & & & & \\
\hline 1nitial Bromide Concentration (M) & 0.1 & & & & \\
\hline Burette Area (Sq.in) & 0.3685 & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Time & Pore Volumn & Burette Reading (CM) & Bromide
Concrentration
\((\mathrm{M})\) & \(\mathrm{C} / \mathrm{Co}\) \\
\hline & 0.00 & & 0.000 & \\
\hline & 0.10 & & 0.008 & \\
\hline & 0.20 & & 0.021 & \\
\hline & 0.30 & & 0.028 & \\
\hline & 0.40 & & 0.039 & \\
\hline & 0.50 & & 0.045 & \\
\hline & 0.60 & & 0.059 & \\
\hline & 0.70 & & 0.071 & \\
\hline & 0.80 & & 0.089 & \\
\hline & 0.90 & & 0.100 & \\
\hline & 1.00 & & 0.100 & \\
\hline
\end{tabular}

\begin{tabular}{|l|r|}
\hline Total Porosity & 0.41 \\
\hline Effective Porosity & 0.22 \\
\hline
\end{tabular}

\section*{Effective Porosity}
\begin{tabular}{cccccc} 
Project Number: & 06-344-004 & Tested By: & jk & Date & 10/25/2010 \\
\hline Project Name: & BDVWA-Reche Recharge & Computed By: & jk & Date & Date \\
\hline Boring Number: & MW-1 & Checked By: & & \\
\hline Sample Number: & 5 & Sample Type: & Drive & \\
\hline Sample Depth: & \(\mathbf{1 5 0 - 4 5 2 . 5}\) & Soil Description: & \\
\hline Pore Volumn (1/10): & \(\mathbf{4 . 3 2}\) & & \\
\hline Initial Bromide Concentration (M) & \(\mathbf{0 . 1}\) & & \\
\hline Burette Area (Sq.in) & \(\mathbf{0 . 3 6 8 5}\) & & \\
\hline
\end{tabular}
\(\left.\begin{array}{|c|c|c|c|c|}\hline \text { Time } & \begin{array}{c}\text { Pore } \\ \text { Volumn }\end{array} & \begin{array}{c}\text { Burette } \\ \text { Reading } \\ \text { (CM) }\end{array} & \begin{array}{c}\text { Bromide } \\ \text { Concrentration } \\ (\mathrm{M})\end{array} & \text { C/Co } \\ \hline 1 & 0.00 & & 0.000 & \\ \hline 2 & 0.10 & & 0.005 & \\ \hline 7 & 0.20 & & 0.016 & \\ \hline 5 & 0.30 & & 0.031 & \\ \hline 6 & 0.40 & & 0.039 & \\ \hline 7 & 0.50 & & 0.048 & \\ \hline 8 & & 0.60 & & 0.059\end{array}\right]\)

\begin{tabular}{|l|r|}
\hline Total Porosity & 0.44 \\
\hline Effective Porosity & 0.23 \\
\hline
\end{tabular}

\section*{Effective Porosity}
\begin{tabular}{cclcll} 
Project Number: & 06-344-004 & Tested By: & jk & Date & 10/25/2010 \\
\hline Project Name: & BDVWA- Reche Recharge & Computed By: & jk & Date & \(\mathbf{1 0 / 2 5 / 2 0 1 0}\) \\
\hline Boring Number: & MW-1 & 6 & Checked By: & Date & \(\mathbf{1 0 / 2 5 / 2 0 1 0}\) \\
\hline Sample Number: & \(\mathbf{6 4 2 - 2 4 5}\) & Sample Type: & Drive & \\
\hline Sample Depth: & Soil Description: & \\
\hline Pore Volumn (1/10): & 4.14 & & & \\
\hline Initial Bromide Concentration (M) & 0.1 & & & \\
\hline Burette Area (Sq.in) & 0.3685 & & & \\
\hline
\end{tabular}
\(\left.\begin{array}{|c|c|c|c|c|}\hline \text { Time } & \begin{array}{c}\text { Pore } \\ \text { Volumn }\end{array} & \begin{array}{c}\text { Burette } \\ \text { Reading } \\ (\mathrm{CM})\end{array} & \begin{array}{c}\text { Bromide } \\ \text { Concrentration } \\ (\mathrm{M})\end{array} & \text { C/C0 } \\ \hline 1 & 0.00 & & 0.000 & \\ \hline 2 & 0.10 & & 0.004 & \\ \hline & & 0.20 & & 0.011\end{array}\right]\)

\begin{tabular}{|l|r|}
\hline Total Porosity & 0.42 \\
\hline Effective Porosity & 0.23 \\
\hline
\end{tabular}

\section*{KEANTAN LABORATORIES}

October 27, 2010
Todd Engineer
2490 Mariner Square Loop, Suite 215
Alameda, California 94501-1080
Attn: Daniel Craig

\section*{Subject: Report/Laboratory Test Results}

Project Name: BDVWA- Reche Recharge
Project Number: N/A
KTL Project No.: 06-344-004

\section*{To Daniel Craig}

Enclosed are results of the laboratory testing program conducted on samples from the above referenced project. The testing performed for this program was conducted in general accordance with testing procedures as follows:

\section*{TYPE OF TEST}

TEST PROCEDURE
Modified Proctor Compaction ASTM D 1557

Attached herewith is Summary of Modified Proctor Compaction Test.
We appreciate the opportunity to provide testing services to Todd Engineer. If you have any questions regarding the test results, please contact us.

Very truly yours, Keantan Laboratories


Encl.

mun.keantanlabs.com email: info@keantanlabs.com

\section*{Modified Compaction Test Results ASTM D 1557}

PROJECT NAME:BDVWA- Reche Recharge
PROJECT NO.: N/A
DATE: September 2010
BORING NO.: N/A
SAMPLE NO.: N/A
METHOD: A
DROP: 18 INCHES
NUMBER OF LAYERS: 5

KTL NO.: 06-344-004
CLIENT: Todd Engineer DEPTH (ft): 10 feet
USCS CLASS.: n/a

RAM WEIGHT: 10 LBS
RAM TYPE: MANUAL
BLOWS/LAYER: 25


Moisture Content (percent)
Optimum Moisture Content, \% Maximum Dry Density, pcf
7
122
PLATE CM- 1

KEANTAN
LABORATORIES

\section*{Modified Compaction Test Results ASTM D 1557}

PROJECT NAME:BDVWA- Reche Recharge PROJECT NO.: N/A
DATE: September 2010
BORING NO.: N/A
SAMPLE NO.: N/A
METHOD: A
DROP: 18 INCHES
NUMBER OF LAYERS: 5

KTL NO.: 06-344-004
CLIENT: Todd Engineer DEPTH (ft): 25 feet
USCS CLASS.: n/a

RAM WEIGHT: 10 LBS
RAM TYPE: MANUAL
BLOWS/LAYER: 25


126
PLATE CM-2
www.keantanlabs.com email: info@keantanlabs.com

\section*{Modified Compaction Test Results ASTM D 1557}

PROJECT NAME:BDVWA- Reche Recharge PROJECT NO.: N/A
DATE: September 2010
BORING NO.: N/A
SAMPLE NO.: N/A
METHOD: A
DROP: 18 INCHES
NUMBER OF LAYERS: 5

KTL NO.: 06-344-004
CLIENT: Todd Engineer
DEPTH (ft): 50 feet
USCS CLASS.: n/a

RAM WEIGHT: 10 LBS
RAM TYPE: MANUAL
BLOWS/LAYER: 25


Zero Void Lines
\(-\quad\) S.G. \(=2.6\)
-- S.G. \(=2.7\)

Optimum Moisture Content, \% Maximum Dry Density, pcf
123.5

PLATE CM-3

KEANTAN
LABORATORIES

\section*{Modified Compaction Test Results ASTM D 1557}

PROJECT NAME:BDVWA- Reche Recharge PROJECT NO.: N/A
DATE: September 2010
BORING NO.: N/A
SAMPLE NO.: N/A
METHOD: A
DROP: 18 INCHES
NUMBER OF LAYERS: 5

KTL NO.: 06-344-004
CLIENT: Todd Engineer DEPTH (ft): 100 feet USCS CLASS.: n/a

RAM WEIGHT: 10 LBS RAM TYPE: MANUAL BLOWS/LAYER: 25


Zero Void Lines
S.G. \(=2.6\)
-- S.G. \(=2.7\)

Optimum Moisture Content, \%
9.5

Maximum Dry Density, pcf
129.0

PLATE CM-4
640 N. Diamond Bar Blvd., Diamond Bar, CA \(91765 \cdot\) Tel.: (909) 860-1896 • Fax: (909) 860-1856

\section*{Modified Compaction Test Results ASTM D 1557}

PROJECT NAME:BDVWA- Reche Recharge
PROJECT NO.: N/A
DATE: September 2010
BORING NO.: N/A
SAMPLE NO.: N/A
METHOD: A
DROP: 18 INCHES
NUMBER OF LAYERS: 5

KTL NO.: 06-344-004
CLIENT: Todd Engineer DEPTH (ft): 150 feet
USCS CLASS.: n/a

RAM WEIGHT: 10 LBS
RAM TYPE: MANUAL
BLOWS/LAYER: 25


\section*{KEANTAN}

LABORATORIES

\section*{Modified Compaction Test Results ASTM D 1557}

PROJECT NAME:BDVWA- Reche Recharge PROJECT NO.: N/A
DATE: September 2010
BORING NO.: N/A
SAMPLE NO.: N/A
METHOD: A
DROP: 18 INCHES
NUMBER OF LAYERS: 5

KTL NO.: 06-344-004
CLIENT: Todd Engineer
DEPTH (ft): 245 feet
USCS CLASS.: n/a

RAM WEIGHT: 10 LBS
RAM TYPE: MANUAL
BLOWS/LAYER: 25


Zero Void Lines
S.G. \(=2.6\)
S.G. \(=2.7\)

Optimum Moisture Content, \%
\[
9.5
\]

Maximum Dry Density, pcf

\section*{127.5}

PLATE CM-6

\section*{Appendix C}

\section*{Well Development Forms}

Job Tilt Bigriom DCSet View water Agency sob No. 09999068.00
Date \(93 / 10\)
shet I I of 1 Date \(\qquad\) 9(3)3/10

0530 DH Heaves lasine. Amie in yucca valley PICK upice for samples. Head to Mw-z.
0755 DM E MW-2
0815 BOART AMviES. TOADISL Awareness : Tailgate mitg. Head ace to MW-1. While Boart begin to setze \& MW-I. DM gors to BDVWA Oftia to get sample ontainers for MW-2 from michelle per michere, dump water mext to tincir office ( 10 miles from MW-1). Boart sct-up@MW-1.
0950 Sind 4 in x 18 f ballerf daun at 240 ft btoc it got stuac Pull it out. Sund dain shoter baiper \((4 \mathrm{in} \times 5 \mathrm{ft})\)-gits down. Bend in PVC? Begin to bail MW-1. Botling: surging finishea
1244 Beg in to purge. MW-1.
1404 Mw-1 developed.
1110 colcet sample \(\mathrm{MW}-1\). Stop pumping. Begin to pull at pump. Dernob ec MW-Mave to MW-2
15554 in \(\times 8\) ft bulier stopped @ 31 ft broc. 2nd bailer ( 4 in \(x 5 f 7\) ) Stopld @ \(1267+b\) boc@ MW-2. Reached botton w Binx Stt baiker. MW-1 funce secured.
1600 Begin to ball Mw-2. DM takes Den to Dump Doums by BDNWA office white eperator Den bail : surges \(\mathrm{MW}-2\)
Ba Stop surging-will resume tomarow maning. Load ip plywords dnums anto Den's trick to take back to shag. (used 5 drens)
1725 DH - Rodrt off-site.fenced sccurld @ MW-2.

Job Title Bighorn Desert View Water Agency sob no. 0999008.00
Date \(\qquad\) \(9124 / 10\) sheol I of

0700 DM \(\div\) Boart an-site Tailgate mtg-
0715 Begin to bail MW-2.
1010 Begin to purge MW-2.
\(1200 \mathrm{MW}-2\) developed
1205 collet sample MW-2. Begin to pull pump.
1250 Attempted to get water level @ well No. 24 but probe wont go past 57.
1345 Done-fences secured head to BDVWA office. Gie michel GPS unit, keys, + Turtle Awareness signature sheet. Dump purge water.
1425 Din * Don Offsite DM reads to lab.

Project Number: \(\qquad\) \(0989068 * 00\)

Water-Level Meter Solinet laterneerno meter
Water Quality Meter: YSI 6820
Purging Equipment: \(\qquad\)

Date: \(\qquad\) \(9123 / 10\)

Generallnformation
Decontamination Process: \(\qquad\)
Personnel: \(\qquad\)
Personnel: D. Marvin

Well Development Data for Monitoring Well:


Notes/Comments: to taken e tire in Stat time coluonw

Project Number: \(\qquad\) \(098906 * \infty\) GeotroH End.
Water-Level Meter. Solinst titentace-Probe
Water Quality Meter: \(\qquad\)
Purging Equipment: \(\qquad\)

Date: \(\qquad\) 912310

General Information
Decontamination Process: \(\qquad\)
Personnel: \(\qquad\)


Notesicommens: collect sample MW-1 \& 1410

Project Number: \(\qquad\) \(0989060^{\circ} 00\)

Geotrcet End.
Water-Level Meter: Solinst-fnterfaee-Probe
Water Quality Meter: \(\qquad\) Purging Equipment:

Date: \(9 / 23 / 10 \div 9 / 24 / 10\)
General Information
Decontamination Process: \(\qquad\)
Pesemen:-maratio

Well Development Data for Monitoring Well:


Notes/Comments:
a/23310 1630-1700 surged whole screen (290-348) for 5 mmin . Then bottom 25 ft for 10 m in 9/24/10 0745-081s same surge method as \(9 / 23 / 10\) then entree surcen again for sin
* Dow taken e time is start time column.

Project Number: \(\qquad\) \(0989068^{2} 00\)

Date: \(\qquad\) 9124110 Geotrcit Env.
Water-Level Meter. Soling fnteffaee Probe
\(\qquad\)
Water Quality Meter: \(\qquad\)
Generallnformation
Decontamination Process: \(\qquad\)
Personnel: \(\qquad\)


Notes/Comments:
collect sample murzer205



\begin{tabular}{|c|c|}
\hline Equipment / Tools / Service & Supplies \\
\hline [\% Generator (KW) [ ] Compressor (Size) & \\
\hline [ ] Steam Cleaner []'Pump (Size) & \\
\hline [ ] Water Wagon & \\
\hline [ ] Other & \\
\hline Client Signature & Technician Signature \\
\hline
\end{tabular}

\section*{Appendix D} Aquifer Testing Data

Report Date: 10/6/2010 16:27
Report User Name: David
Report Computer Name: DAVID-PC

\section*{Log File Properties} File Name

Dan_Append_2010-10-06_12-06-08-225.ws|
Create Date 10/6/2010 12:06

\section*{Device Properties}

Device
Device Name
Serial Number
Firmware Version
Hardware Version
Log Configuration
Log Name
Created By
Computer Name
Application
Application Version
Create Date
Current Time Zone
Notes Size(bytes)
Overwrite when full
Scheduled Start Time Scheduled Stop Time Type
Interval

Level TROLL 700
HDWD24E
122996
2.08

2

Dan
David
DAVID-PC
WinSitu.exe
5.6.16.0

\section*{10/4/2010 11:21}

Pacific Daylight Time(Use Local Time)
Disabled
Manual Start
No Stop Time
Fast Linear
Days: 0 hrs: 00 mins: 00 secs: 20

Level Reference Settings At Log Creation

> Level Measurement Mode Level Depth To Water
> Specific Gravity 0.999 Level Reference Mode: Set new reference Level Reference Value: 0 (ft)

Level Reference Head Pressure 23.7936 (PSI)
Other Log Settings
\begin{tabular}{ll} 
Depth of Probe: & \(54.9278(\mathrm{ft})\) \\
Head Pressure: & \(23.7889(\mathrm{PSI})\) \\
Temperature: & \(22.5892(\mathrm{C})\)
\end{tabular}

Log Notes:
Date and Time
Note
10/4/2010 11:21 Used Battery: 20\% Used Memory: 4\% User Name: David
10/4/2010 11:21 Manual Start Command
10/5/2010 15:16 Log Download - Used Battery: 21\% Used Memory: 6\% User Name: David
10/6/2010 12:04 Log Download - Used Battery: 21\% Used Memory: 7\% User Name: David
\begin{tabular}{lr} 
Log Data: & 8769 \\
Record Count & 1
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Date/Time & Time (min & WL (ft) & DD (ft) & 10/5/10 8:21 & 21.0 & 1.314 & 1.382 & 10/5/10 8:43 & 42.3 & 1.451 & 1.519 \\
\hline 10/5/10 8:00 & 0.0 & -0.068 & & 10/5/10 8:22 & 21.3 & 1.329 & 1.397 & 10/5/10 8:43 & 42.7 & 1.456 & 1.524 \\
\hline 10/5/10 8:01 & 0.3 & 0.957 & 1.025 & 10/5/10 8:22 & 21.7 & 1.335 & 1.403 & 10/5/10 8:43 & 43.0 & 1.453 & 1.521 \\
\hline 10/5/10 8:01 & 0.7 & 1.468 & 1.536 & 10/5/10 8:22 & 22.0 & 1.327 & 1.395 & 10/5/10 8:44 & 43.3 & 1.461 & 1.529 \\
\hline 10/5/10 8:01 & 1.0 & 1.500 & 1.568 & 10/5/10 8:23 & 22.3 & 1.342 & 1.41 & 10/5/10 8:44 & 43.7 & 1.467 & 1.535 \\
\hline 10/5/10 8:02 & 1.3 & 1.129 & 1.197 & 10/5/10 8:23 & 22.7 & 1.330 & 1.398 & 10/5/10 8:44 & 44.0 & 1.468 & 1.536 \\
\hline 10/5/10 8:02 & 1.7 & 0.972 & 1.04 & 10/5/10 8:23 & 23.0 & 1.341 & 1.409 & 10/5/10 8:45 & 44.3 & 1.473 & 1.541 \\
\hline 10/5/10 8:02 & 2.0 & 0.994 & 1.062 & 10/5/10 8:24 & 23.3 & 1.340 & 1.408 & 10/5/10 8:45 & 44.7 & 1.469 & 1.537 \\
\hline 10/5/10 8:03 & 2.3 & 1.009 & 1.077 & 10/5/10 8:24 & 23.7 & 1.344 & 1.412 & 10/5/10 8:45 & 45.0 & 1.462 & 1.53 \\
\hline 10/5/10 8:03 & 2.7 & 1.069 & 1.137 & 10/5/10 8:24 & 24.0 & 1.361 & 1.429 & 10/5/10 8:46 & 45.3 & 1.464 & 1.532 \\
\hline 10/5/10 8:03 & 3.0 & 1.095 & 1.163 & 10/5/10 8:25 & 24.3 & 1.340 & 1.408 & 10/5/10 8:46 & 45.7 & 1.465 & 1.533 \\
\hline 10/5/10 8:04 & 3.3 & 1.112 & 1.18 & 10/5/10 8:25 & 24.7 & 1.346 & 1.414 & 10/5/10 8:46 & 46.0 & 1.465 & 1.533 \\
\hline 10/5/10 8:04 & 3.7 & 1.109 & 1.177 & 10/5/10 8:25 & 25.0 & 1.349 & 1.417 & 10/5/10 8:47 & 46.3 & 1.466 & 1.534 \\
\hline 10/5/10 8:04 & 4.0 & 1.116 & 1.184 & 10/5/10 8:26 & 25.3 & 1.353 & 1.421 & 10/5/10 8:47 & 46.7 & 1.468 & 1.536 \\
\hline 10/5/10 8:05 & 4.3 & 1.137 & 1.205 & 10/5/10 8:26 & 25.7 & 1.350 & 1.418 & 10/5/10 8:47 & 47.0 & 1.471 & 1.539 \\
\hline 10/5/10 8:05 & 4.7 & 1.127 & 1.195 & 10/5/10 8:26 & 26.0 & 1.357 & 1.425 & 10/5/10 8:48 & 47.3 & 1.475 & 1.543 \\
\hline 10/5/10 8:05 & 5.0 & 1.139 & 1.207 & 10/5/10 8:27 & 26.3 & 1.354 & 1.422 & 10/5/10 8:48 & 47.7 & 1.475 & 1.543 \\
\hline 10/5/10 8:06 & 5.3 & 1.147 & 1.215 & 10/5/10 8:27 & 26.7 & 1.342 & 1.41 & 10/5/10 8:48 & 48.0 & 1.478 & 1.546 \\
\hline 10/5/10 8:06 & 5.7 & 1.151 & 1.219 & 10/5/10 8:27 & 27.0 & 1.349 & 1.417 & 10/5/10 8:49 & 48.3 & 1.480 & 1.548 \\
\hline 10/5/10 8:06 & 6.0 & 1.160 & 1.228 & 10/5/10 8:28 & 27.3 & 1.348 & 1.416 & 10/5/10 8:49 & 48.7 & 1.482 & 1.55 \\
\hline 10/5/10 8:07 & 6.3 & 1.169 & 1.237 & 10/5/10 8:28 & 27.7 & 1.367 & 1.435 & 10/5/10 8:49 & 49.0 & 1.483 & 1.551 \\
\hline 10/5/10 8:07 & 6.7 & 1.183 & 1.251 & 10/5/10 8:28 & 28.0 & 1.370 & 1.438 & 10/5/10 8:50 & 49.3 & 1.484 & 1.552 \\
\hline 10/5/10 8:07 & 7.0 & 1.189 & 1.257 & 10/5/10 8:29 & 28.3 & 1.367 & 1.435 & 10/5/10 8:50 & 49.7 & 1.488 & 1.556 \\
\hline 10/5/10 8:08 & 7.3 & 1.190 & 1.258 & 10/5/10 8:29 & 28.7 & 1.369 & 1.437 & 10/5/10 8:50 & 50.0 & 1.487 & 1.555 \\
\hline 10/5/10 8:08 & 7.7 & 1.186 & 1.254 & 10/5/10 8:29 & 29.0 & 1.376 & 1.444 & 10/5/10 8:51 & 50.3 & 1.485 & 1.553 \\
\hline 10/5/10 8:08 & 8.0 & 1.188 & 1.256 & 10/5/10 8:30 & 29.3 & 1.374 & 1.442 & 10/5/10 8:51 & 50.7 & 1.491 & 1.559 \\
\hline 10/5/10 8:09 & 8.3 & 1.193 & 1.261 & 10/5/10 8:30 & 29.7 & 1.379 & 1.447 & 10/5/10 8:51 & 51.0 & 1.490 & 1.558 \\
\hline 10/5/10 8:09 & 8.7 & 1.199 & 1.267 & 10/5/10 8:30 & 30.0 & 1.376 & 1.444 & 10/5/10 8:52 & 51.3 & 1.491 & 1.559 \\
\hline 10/5/10 8:09 & 9.0 & 1.203 & 1.271 & 10/5/10 8:31 & 30.3 & 1.384 & 1.452 & 10/5/10 8:52 & 51.7 & 1.496 & 1.564 \\
\hline 10/5/10 8:10 & 9.3 & 1.207 & 1.275 & 10/5/10 8:31 & 30.7 & 1.391 & 1.459 & 10/5/10 8:52 & 52.0 & 1.493 & 1.561 \\
\hline 10/5/10 8:10 & 9.7 & 1.223 & 1.291 & 10/5/10 8:31 & 31.0 & 1.394 & 1.462 & 10/5/10 8:53 & 52.3 & 1.491 & 1.559 \\
\hline 10/5/10 8:10 & 10.0 & 1.225 & 1.293 & 10/5/10 8:32 & 31.3 & 1.377 & 1.445 & 10/5/10 8:53 & 52.7 & 1.497 & 1.565 \\
\hline 10/5/10 8:11 & 10.3 & 1.226 & 1.294 & 10/5/10 8:32 & 31.7 & 1.389 & 1.457 & 10/5/10 8:53 & 53.0 & 1.496 & 1.564 \\
\hline 10/5/10 8:11 & 10.7 & 1.236 & 1.304 & 10/5/10 8:32 & 32.0 & 1.392 & 1.46 & 10/5/10 8:54 & 53.3 & 1.498 & 1.566 \\
\hline 10/5/10 8:11 & 11.0 & 1.230 & 1.298 & 10/5/10 8:33 & 32.3 & 1.399 & 1.467 & 10/5/10 8:54 & 53.7 & 1.504 & 1.572 \\
\hline 10/5/10 8:12 & 11.3 & 1.242 & 1.31 & 10/5/10 8:33 & 32.7 & 1.394 & 1.462 & 10/5/10 8:54 & 54.0 & 1.510 & 1.578 \\
\hline 10/5/10 8:12 & 11.7 & 1.246 & 1.314 & 10/5/10 8:33 & 33.0 & 1.394 & 1.462 & 10/5/10 8:55 & 54.3 & 1.508 & 1.576 \\
\hline 10/5/10 8:12 & 12.0 & 1.249 & 1.317 & 10/5/10 8:34 & 33.3 & 1.402 & 1.47 & 10/5/10 8:55 & 54.7 & 1.504 & 1.572 \\
\hline 10/5/10 8:13 & 12.3 & 1.241 & 1.309 & 10/5/10 8:34 & 33.7 & 1.404 & 1.472 & 10/5/10 8:55 & 55.0 & 1.507 & 1.575 \\
\hline 10/5/10 8:13 & 12.7 & 1.254 & 1.322 & 10/5/10 8:34 & 34.0 & 1.402 & 1.47 & 10/5/10 8:56 & 55.3 & 1.506 & 1.574 \\
\hline 10/5/10 8:13 & 13.0 & 1.256 & 1.324 & 10/5/10 8:35 & 34.3 & 1.403 & 1.471 & 10/5/10 8:56 & 55.7 & 1.508 & 1.576 \\
\hline 10/5/10 8:14 & 13.3 & 1.262 & 1.33 & 10/5/10 8:35 & 34.7 & 1.407 & 1.475 & 10/5/10 8:56 & 56.0 & 1.518 & 1.586 \\
\hline 10/5/10 8:14 & 13.7 & 1.263 & 1.331 & 10/5/10 8:35 & 35.0 & 1.409 & 1.477 & 10/5/10 8:57 & 56.3 & 1.518 & 1.586 \\
\hline 10/5/10 8:14 & 14.0 & 1.266 & 1.334 & 10/5/10 8:36 & 35.3 & 1.409 & 1.477 & 10/5/10 8:57 & 56.7 & 1.515 & 1.583 \\
\hline 10/5/10 8:15 & 14.3 & 1.274 & 1.342 & 10/5/10 8:36 & 35.7 & 1.407 & 1.475 & 10/5/10 8:57 & 57.0 & 1.516 & 1.584 \\
\hline 10/5/10 8:15 & 14.7 & 1.271 & 1.339 & 10/5/10 8:36 & 36.0 & 1.408 & 1.476 & 10/5/10 8:58 & 57.3 & 1.517 & 1.585 \\
\hline 10/5/10 8:15 & 15.0 & 1.277 & 1.345 & 10/5/10 8:37 & 36.3 & 1.408 & 1.476 & 10/5/10 8:58 & 57.7 & 1.519 & 1.587 \\
\hline 10/5/10 8:16 & 15.3 & 1.279 & 1.347 & 10/5/10 8:37 & 36.7 & 1.410 & 1.478 & 10/5/10 8:58 & 58.0 & 1.522 & 1.59 \\
\hline 10/5/10 8:16 & 15.7 & 1.281 & 1.349 & 10/5/10 8:37 & 37.0 & 1.412 & 1.48 & 10/5/10 8:59 & 58.3 & 1.523 & 1.591 \\
\hline 10/5/10 8:16 & 16.0 & 1.280 & 1.348 & 10/5/10 8:38 & 37.3 & 1.420 & 1.488 & 10/5/10 8:59 & 58.7 & 1.527 & 1.595 \\
\hline 10/5/10 8:17 & 16.3 & 1.279 & 1.347 & 10/5/10 8:38 & 37.7 & 1.414 & 1.482 & 10/5/10 8:59 & 59.0 & 1.521 & 1.589 \\
\hline 10/5/10 8:17 & 16.7 & 1.284 & 1.352 & 10/5/10 8:38 & 38.0 & 1.424 & 1.492 & 10/5/10 9:00 & 59.3 & 1.517 & 1.585 \\
\hline 10/5/10 8:17 & 17.0 & 1.287 & 1.355 & 10/5/10 8:39 & 38.3 & 1.422 & 1.49 & 10/5/10 9:00 & 59.7 & 1.524 & 1.592 \\
\hline 10/5/10 8:18 & 17.3 & 1.290 & 1.358 & 10/5/10 8:39 & 38.7 & 1.429 & 1.497 & 10/5/10 9:00 & 60.0 & 1.522 & 1.59 \\
\hline 10/5/10 8:18 & 17.7 & 1.293 & 1.361 & 10/5/10 8:39 & 39.0 & 1.430 & 1.498 & 10/5/10 9:01 & 60.3 & 1.521 & 1.589 \\
\hline 10/5/10 8:18 & 18.0 & 1.298 & 1.366 & 10/5/10 8:40 & 39.3 & 1.433 & 1.501 & 10/5/10 9:01 & 60.7 & 1.523 & 1.591 \\
\hline 10/5/10 8:19 & 18.3 & 1.307 & 1.375 & 10/5/10 8:40 & 39.7 & 1.439 & 1.507 & 10/5/10 9:01 & 61.0 & 1.525 & 1.593 \\
\hline 10/5/10 8:19 & 18.7 & 1.310 & 1.378 & 10/5/10 8:40 & 40.0 & 1.440 & 1.508 & 10/5/10 9:02 & 61.3 & 1.529 & 1.597 \\
\hline 10/5/10 8:19 & 19.0 & 1.305 & 1.373 & 10/5/10 8:41 & 40.3 & 1.447 & 1.515 & 10/5/10 9:02 & 61.7 & 1.532 & 1.6 \\
\hline 10/5/10 8:20 & 19.3 & 1.311 & 1.379 & 10/5/10 8:41 & 40.7 & 1.445 & 1.513 & 10/5/10 9:02 & 62.0 & 1.532 & 1.6 \\
\hline 10/5/10 8:20 & 19.7 & 1.311 & 1.379 & 10/5/10 8:41 & 41.0 & 1.442 & 1.51 & 10/5/10 9:03 & 62.3 & 1.542 & 1.61 \\
\hline 10/5/10 8:20 & 20.0 & 1.308 & 1.376 & 10/5/10 8:42 & 41.3 & 1.448 & 1.516 & 10/5/10 9:03 & 62.7 & 1.540 & 1.608 \\
\hline 10/5/10 8:21 & 20.3 & 1.311 & 1.379 & 10/5/10 8:42 & 41.7 & 1.450 & 1.518 & 10/5/10 9:03 & 63.0 & 1.539 & 1.607 \\
\hline 10/5/10 8:21 & 20.7 & 1.312 & 1.38 & 10/5/10 8:42 & 42.0 & 1.451 & 1.519 & 10/5/10 9:04 & 63.3 & 1.542 & 1.61 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 10/5/10 9:04 & 63.7 & 1.538 & 1.606 & 10/5/10 9:25 & 85.0 & 1.595 & 1.663 & 10/5/10 9:47 & 106 & 1.642 & 1.71 \\
\hline 10/5/10 9:04 & 64.0 & 1.542 & 1.61 & 10/5/10 9:26 & 85.3 & 1.597 & 1.665 & 10/5/10 9:47 & 107 & 1.639 & 1.707 \\
\hline 10/5/10 9:05 & 64.3 & 1.550 & 1.618 & 10/5/10 9:26 & 85.7 & 1.593 & 1.661 & 10/5/10 9:47 & 107 & 1.641 & 1.709 \\
\hline 10/5/10 9:05 & 64.7 & 1.549 & 1.617 & 10/5/10 9:26 & 86.0 & 1.594 & 1.662 & 10/5/10 9:48 & 107 & 1.644 & 1.712 \\
\hline 10/5/10 9:05 & 65.0 & 1.544 & 1.612 & 10/5/10 9:27 & 86.3 & 1.597 & 1.665 & 10/5/10 9:48 & 108 & 1.647 & 1.715 \\
\hline 10/5/10 9:06 & 65.3 & 1.544 & 1.612 & 10/5/10 9:27 & 86.7 & 1.600 & 1.668 & 10/5/10 9:48 & 108 & 1.650 & 1.718 \\
\hline 10/5/10 9:06 & 65.7 & 1.542 & 1.61 & 10/5/10 9:27 & 87.0 & 1.601 & 1.669 & 10/5/10 9:49 & 108 & 1.660 & 1.728 \\
\hline 10/5/10 9:06 & 66.0 & 1.539 & 1.607 & 10/5/10 9:28 & 87.3 & 1.601 & 1.669 & 10/5/10 9:49 & 109 & 1.665 & 1.733 \\
\hline 10/5/10 9:07 & 66.3 & 1.541 & 1.609 & 10/5/10 9:28 & 87.7 & 1.606 & 1.674 & 10/5/10 9:49 & 109 & 1.658 & 1.726 \\
\hline 10/5/10 9:07 & 66.7 & 1.543 & 1.611 & 10/5/10 9:28 & 88.0 & 1.604 & 1.672 & 10/5/10 9:50 & 109 & 1.660 & 1.728 \\
\hline 10/5/10 9:07 & 67.0 & 1.542 & 1.61 & 10/5/10 9:29 & 88.3 & 1.602 & 1.67 & 10/5/10 9:50 & 110 & 1.659 & 1.727 \\
\hline 10/5/10 9:08 & 67.3 & 1.542 & 1.61 & 10/5/10 9:29 & 88.7 & 1.605 & 1.673 & 10/5/10 9:50 & 110 & 1.662 & 1.73 \\
\hline 10/5/10 9:08 & 67.7 & 1.541 & 1.609 & 10/5/10 9:29 & 89.0 & 1.602 & 1.67 & 10/5/10 9:51 & 110 & 1.662 & 1.73 \\
\hline 10/5/10 9:08 & 68.0 & 1.542 & 1.61 & 10/5/10 9:30 & 89.3 & 1.602 & 1.67 & 10/5/10 9:51 & 111 & 1.663 & 1.731 \\
\hline 10/5/10 9:09 & 68.3 & 1.544 & 1.612 & 10/5/10 9:30 & 89.7 & 1.602 & 1.67 & 10/5/10 9:51 & 111 & 1.663 & 1.731 \\
\hline 10/5/10 9:09 & 68.7 & 1.547 & 1.615 & 10/5/10 9:30 & 90.0 & 1.608 & 1.676 & 10/5/10 9:52 & 111 & 1.659 & 1.727 \\
\hline 10/5/10 9:09 & 69.0 & 1.548 & 1.616 & 10/5/10 9:31 & 90.3 & 1.607 & 1.675 & 10/5/10 9:52 & 112 & 1.666 & 1.734 \\
\hline 10/5/10 9:10 & 69.3 & 1.546 & 1.614 & 10/5/10 9:31 & 90.7 & 1.610 & 1.678 & 10/5/10 9:52 & 112 & 1.669 & 1.737 \\
\hline 10/5/10 9:10 & 69.7 & 1.547 & 1.615 & 10/5/10 9:31 & 91.0 & 1.608 & 1.676 & 10/5/10 9:53 & 112 & 1.663 & 1.731 \\
\hline 10/5/10 9:10 & 70.0 & 1.547 & 1.615 & 10/5/10 9:32 & 91.3 & 1.610 & 1.678 & 10/5/10 9:53 & 113 & 1.664 & 1.732 \\
\hline 10/5/10 9:11 & 70.3 & 1.547 & 1.615 & 10/5/10 9:32 & 91.7 & 1.610 & 1.678 & 10/5/10 9:53 & 113 & 1.663 & 1.731 \\
\hline 10/5/10 9:11 & 70.7 & 1.547 & 1.615 & 10/5/10 9:32 & 92.0 & 1.615 & 1.683 & 10/5/10 9:54 & 113 & 1.666 & 1.734 \\
\hline 10/5/10 9:11 & 71.0 & 1.549 & 1.617 & 10/5/10 9:33 & 92.3 & 1.618 & 1.686 & 10/5/10 9:54 & 114 & 1.668 & 1.736 \\
\hline 10/5/10 9:12 & 71.3 & 1.552 & 1.62 & 10/5/10 9:33 & 92.7 & 1.619 & 1.687 & 10/5/10 9:54 & 114 & 1.666 & 1.734 \\
\hline 10/5/10 9:12 & 71.7 & 1.553 & 1.621 & 10/5/10 9:33 & 93.0 & 1.619 & 1.687 & 10/5/10 9:55 & 114 & 1.663 & 1.731 \\
\hline 10/5/10 9:12 & 72.0 & 1.556 & 1.624 & 10/5/10 9:34 & 93.3 & 1.626 & 1.694 & 10/5/10 9:55 & 115 & 1.669 & 1.737 \\
\hline 10/5/10 9:13 & 72.3 & 1.560 & 1.628 & 10/5/10 9:34 & 93.7 & 1.625 & 1.693 & 10/5/10 9:55 & 115 & 1.669 & 1.737 \\
\hline 10/5/10 9:13 & 72.7 & 1.558 & 1.626 & 10/5/10 9:34 & 94.0 & 1.625 & 1.693 & 10/5/10 9:56 & 115 & 1.668 & 1.736 \\
\hline 10/5/10 9:13 & 73.0 & 1.555 & 1.623 & 10/5/10 9:35 & 94.3 & 1.621 & 1.689 & 10/5/10 9:56 & 116 & 1.666 & 1.734 \\
\hline 10/5/10 9:14 & 73.3 & 1.560 & 1.628 & 10/5/10 9:35 & 94.7 & 1.621 & 1.689 & 10/5/10 9:56 & 116 & 1.668 & 1.736 \\
\hline 10/5/10 9:14 & 73.7 & 1.562 & 1.63 & 10/5/10 9:35 & 95.0 & 1.630 & 1.698 & 10/5/10 9:57 & 116 & 1.671 & 1.739 \\
\hline 10/5/10 9:14 & 74.0 & 1.564 & 1.632 & 10/5/10 9:36 & 95.3 & 1.630 & 1.698 & 10/5/10 9:57 & 117 & 1.671 & 1.739 \\
\hline 10/5/10 9:15 & 74.3 & 1.562 & 1.63 & 10/5/10 9:36 & 95.7 & 1.603 & 1.671 & 10/5/10 9:57 & 117 & 1.676 & 1.744 \\
\hline 10/5/10 9:15 & 74.7 & 1.566 & 1.634 & 10/5/10 9:36 & 96.0 & 1.614 & 1.682 & 10/5/10 9:58 & 117 & 1.674 & 1.742 \\
\hline 10/5/10 9:15 & 75.0 & 1.565 & 1.633 & 10/5/10 9:37 & 96.3 & 1.623 & 1.691 & 10/5/10 9:58 & 118 & 1.672 & 1.74 \\
\hline 10/5/10 9:16 & 75.3 & 1.573 & 1.641 & 10/5/10 9:37 & 96.7 & 1.612 & 1.68 & 10/5/10 9:58 & 118 & 1.676 & 1.744 \\
\hline 10/5/10 9:16 & 75.7 & 1.573 & 1.641 & 10/5/10 9:37 & 97.0 & 1.620 & 1.688 & 10/5/10 9:59 & 118 & 1.681 & 1.749 \\
\hline 10/5/10 9:16 & 76.0 & 1.577 & 1.645 & 10/5/10 9:38 & 97.3 & 1.622 & 1.69 & 10/5/10 9:59 & 119 & 1.681 & 1.749 \\
\hline 10/5/10 9:17 & 76.3 & 1.576 & 1.644 & 10/5/10 9:38 & 97.7 & 1.621 & 1.689 & 10/5/10 9:59 & 119 & 1.677 & 1.745 \\
\hline 10/5/10 9:17 & 76.7 & 1.574 & 1.642 & 10/5/10 9:38 & 98.0 & 1.622 & 1.69 & 10/5/10 10:00 & 119 & 1.677 & 1.745 \\
\hline 10/5/10 9:17 & 77.0 & 1.575 & 1.643 & 10/5/10 9:39 & 98.3 & 1.613 & 1.681 & 10/5/10 10:00 & 120 & 1.679 & 1.747 \\
\hline 10/5/10 9:18 & 77.3 & 1.574 & 1.642 & 10/5/10 9:39 & 98.7 & 1.619 & 1.687 & 10/5/10 10:00 & 120 & 1.677 & 1.745 \\
\hline 10/5/10 9:18 & 77.7 & 1.574 & 1.642 & 10/5/10 9:39 & 99.0 & 1.620 & 1.688 & 10/5/10 10:01 & 120 & 1.682 & 1.75 \\
\hline 10/5/10 9:18 & 78.0 & 1.578 & 1.646 & 10/5/10 9:40 & 99.3 & 1.623 & 1.691 & 10/5/10 10:01 & 121 & 1.681 & 1.749 \\
\hline 10/5/10 9:19 & 78.3 & 1.576 & 1.644 & 10/5/10 9:40 & 100 & 1.626 & 1.694 & 10/5/10 10:01 & 121 & 1.689 & 1.757 \\
\hline 10/5/10 9:19 & 78.7 & 1.575 & 1.643 & 10/5/10 9:40 & 100 & 1.628 & 1.696 & 10/5/10 10:02 & 121 & 1.683 & 1.751 \\
\hline 10/5/10 9:19 & 79.0 & 1.572 & 1.64 & 10/5/10 9:41 & 100 & 1.631 & 1.699 & 10/5/10 10:02 & 122 & 1.685 & 1.753 \\
\hline 10/5/10 9:20 & 79.3 & 1.575 & 1.643 & 10/5/10 9:41 & 101 & 1.631 & 1.699 & 10/5/10 10:02 & 122 & 1.688 & 1.756 \\
\hline 10/5/10 9:20 & 79.7 & 1.575 & 1.643 & 10/5/10 9:41 & 101 & 1.633 & 1.701 & 10/5/10 10:03 & 122 & 1.686 & 1.754 \\
\hline 10/5/10 9:20 & 80.0 & 1.575 & 1.643 & 10/5/10 9:42 & 101 & 1.632 & 1.7 & 10/5/10 10:03 & 123 & 1.690 & 1.758 \\
\hline 10/5/10 9:21 & 80.3 & 1.579 & 1.647 & 10/5/10 9:42 & 102 & 1.631 & 1.699 & 10/5/10 10:03 & 123 & 1.692 & 1.76 \\
\hline 10/5/10 9:21 & 80.7 & 1.584 & 1.652 & 10/5/10 9:42 & 102 & 1.621 & 1.689 & 10/5/10 10:04 & 123 & 1.690 & 1.758 \\
\hline 10/5/10 9:21 & 81.0 & 1.582 & 1.65 & 10/5/10 9:43 & 102 & 1.616 & 1.684 & 10/5/10 10:04 & 124 & 1.692 & 1.76 \\
\hline 10/5/10 9:22 & 81.3 & 1.583 & 1.651 & 10/5/10 9:43 & 103 & 1.623 & 1.691 & 10/5/10 10:04 & 124 & 1.696 & 1.764 \\
\hline 10/5/10 9:22 & 81.7 & 1.583 & 1.651 & 10/5/10 9:43 & 103 & 1.625 & 1.693 & 10/5/10 10:05 & 124 & 1.694 & 1.762 \\
\hline 10/5/10 9:22 & 82.0 & 1.583 & 1.651 & 10/5/10 9:44 & 103 & 1.627 & 1.695 & 10/5/10 10:05 & 125 & 1.694 & 1.762 \\
\hline 10/5/10 9:23 & 82.3 & 1.592 & 1.66 & 10/5/10 9:44 & 104 & 1.629 & 1.697 & 10/5/10 10:05 & 125 & 1.694 & 1.762 \\
\hline 10/5/10 9:23 & 82.7 & 1.592 & 1.66 & 10/5/10 9:44 & 104 & 1.630 & 1.698 & 10/5/10 10:06 & 125 & 1.679 & 1.747 \\
\hline 10/5/10 9:23 & 83.0 & 1.594 & 1.662 & 10/5/10 9:45 & 104 & 1.631 & 1.699 & 10/5/10 10:06 & 126 & 1.681 & 1.749 \\
\hline 10/5/10 9:24 & 83.3 & 1.589 & 1.657 & 10/5/10 9:45 & 105 & 1.629 & 1.697 & 10/5/10 10:06 & 126 & 1.684 & 1.752 \\
\hline 10/5/10 9:24 & 83.7 & 1.593 & 1.661 & 10/5/10 9:45 & 105 & 1.634 & 1.702 & 10/5/10 10:07 & 126 & 1.686 & 1.754 \\
\hline 10/5/10 9:24 & 84.0 & 1.595 & 1.663 & 10/5/10 9:46 & 105 & 1.639 & 1.707 & 10/5/10 10:07 & 127 & 1.684 & 1.752 \\
\hline 10/5/10 9:25 & 84.3 & 1.594 & 1.662 & 10/5/10 9:46 & 106 & 1.636 & 1.704 & 10/5/10 10:07 & 127 & 1.686 & 1.754 \\
\hline 10/5/10 9:25 & 84.7 & 1.598 & 1.666 & 10/5/10 9:46 & 106 & 1.635 & 1.703 & 10/5/10 10:08 & 127 & 1.685 & 1.753 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 10/5/10 10:08 & 128 & 1.691 & 1.759 & 10/5/10 10:29 & 149 & 1.725 & 1.793 & 10/5/10 10:51 & 170 & 1.811 & 1.879 \\
\hline 10/5/10 10:08 & 128 & 1.692 & 1.76 & 10/5/10 10:30 & 149 & 1.727 & 1.795 & 10/5/10 10:51 & 171 & 1.798 & 1.866 \\
\hline 10/5/10 10:09 & 128 & 1.692 & 1.76 & 10/5/10 10:30 & 150 & 1.742 & 1.81 & 10/5/10 10:51 & 171 & 1.797 & 1.865 \\
\hline 10/5/10 10:09 & 129 & 1.693 & 1.761 & 10/5/10 10:30 & 150 & 1.759 & 1.827 & 10/5/10 10:52 & 171 & 1.813 & 1.881 \\
\hline 10/5/10 10:09 & 129 & 1.688 & 1.756 & 10/5/10 10:31 & 150 & 1.774 & 1.842 & 10/5/10 10:52 & 172 & 1.802 & 1.87 \\
\hline 10/5/10 10:10 & 129 & 1.692 & 1.76 & 10/5/10 10:31 & 151 & 1.746 & 1.814 & 10/5/10 10:52 & 172 & 1.800 & 1.868 \\
\hline 10/5/10 10:10 & 130 & 1.689 & 1.757 & 10/5/10 10:31 & 151 & 1.749 & 1.817 & 10/5/10 10:53 & 172 & 1.802 & 1.87 \\
\hline 10/5/10 10:10 & 130 & 1.692 & 1.76 & 10/5/10 10:32 & 151 & 1.748 & 1.816 & 10/5/10 10:53 & 173 & 1.802 & 1.87 \\
\hline 10/5/10 10:11 & 130 & 1.704 & 1.772 & 10/5/10 10:32 & 152 & 1.753 & 1.821 & 10/5/10 10:53 & 173 & 1.805 & 1.873 \\
\hline 10/5/10 10:11 & 131 & 1.703 & 1.771 & 10/5/10 10:32 & 152 & 1.753 & 1.821 & 10/5/10 10:54 & 173 & 1.807 & 1.875 \\
\hline 10/5/10 10:11 & 131 & 1.699 & 1.767 & 10/5/10 10:33 & 152 & 1.756 & 1.824 & 10/5/10 10:54 & 174 & 1.807 & 1.875 \\
\hline 10/5/10 10:12 & 131 & 1.700 & 1.768 & 10/5/10 10:33 & 153 & 1.758 & 1.826 & 10/5/10 10:54 & 174 & 1.805 & 1.873 \\
\hline 10/5/10 10:12 & 132 & 1.706 & 1.774 & 10/5/10 10:33 & 153 & 1.757 & 1.825 & 10/5/10 10:55 & 174 & 1.803 & 1.871 \\
\hline 10/5/10 10:12 & 132 & 1.703 & 1.771 & 10/5/10 10:34 & 153 & 1.757 & 1.825 & 10/5/10 10:55 & 175 & 1.808 & 1.876 \\
\hline 10/5/10 10:13 & 132 & 1.706 & 1.774 & 10/5/10 10:34 & 154 & 1.758 & 1.826 & 10/5/10 10:55 & 175 & 1.813 & 1.881 \\
\hline 10/5/10 10:13 & 133 & 1.702 & 1.77 & 10/5/10 10:34 & 154 & 1.763 & 1.831 & 10/5/10 10:56 & 175 & 1.811 & 1.879 \\
\hline 10/5/10 10:13 & 133 & 1.701 & 1.769 & 10/5/10 10:35 & 154 & 1.766 & 1.834 & 10/5/10 10:56 & 176 & 1.813 & 1.881 \\
\hline 10/5/10 10:14 & 133 & 1.704 & 1.772 & 10/5/10 10:35 & 155 & 1.767 & 1.835 & 10/5/10 10:56 & 176 & 1.809 & 1.877 \\
\hline 10/5/10 10:14 & 134 & 1.706 & 1.774 & 10/5/10 10:35 & 155 & 1.763 & 1.831 & 10/5/10 10:57 & 176 & 1.812 & 1.88 \\
\hline 10/5/10 10:14 & 134 & 1.709 & 1.777 & 10/5/10 10:36 & 155 & 1.763 & 1.831 & 10/5/10 10:57 & 177 & 1.823 & 1.891 \\
\hline 10/5/10 10:15 & 134 & 1.705 & 1.773 & 10/5/10 10:36 & 156 & 1.769 & 1.837 & 10/5/10 10:57 & 177 & 1.812 & 1.88 \\
\hline 10/5/10 10:15 & 135 & 1.708 & 1.776 & 10/5/10 10:36 & 156 & 1.764 & 1.832 & 10/5/10 10:58 & 177 & 1.814 & 1.882 \\
\hline 10/5/10 10:15 & 135 & 1.710 & 1.778 & 10/5/10 10:37 & 156 & 1.767 & 1.835 & 10/5/10 10:58 & 178 & 1.816 & 1.884 \\
\hline 10/5/10 10:16 & 135 & 1.708 & 1.776 & 10/5/10 10:37 & 157 & 1.770 & 1.838 & 10/5/10 10:58 & 178 & 1.816 & 1.884 \\
\hline 10/5/10 10:16 & 136 & 1.704 & 1.772 & 10/5/10 10:37 & 157 & 1.770 & 1.838 & 10/5/10 10:59 & 178 & 1.831 & 1.899 \\
\hline 10/5/10 10:16 & 136 & 1.706 & 1.774 & 10/5/10 10:38 & 157 & 1.769 & 1.837 & 10/5/10 10:59 & 179 & 1.826 & 1.894 \\
\hline 10/5/10 10:17 & 136 & 1.707 & 1.775 & 10/5/10 10:38 & 158 & 1.772 & 1.84 & 10/5/10 10:59 & 179 & 1.816 & 1.884 \\
\hline 10/5/10 10:17 & 137 & 1.709 & 1.777 & 10/5/10 10:38 & 158 & 1.771 & 1.839 & 10/5/10 11:00 & 179 & 1.821 & 1.889 \\
\hline 10/5/10 10:17 & 137 & 1.707 & 1.775 & 10/5/10 10:39 & 158 & 1.768 & 1.836 & 10/5/10 11:00 & 180 & 1.815 & 1.883 \\
\hline 10/5/10 10:18 & 137 & 1.711 & 1.779 & 10/5/10 10:39 & 159 & 1.776 & 1.844 & 10/5/10 11:00 & 180 & 1.816 & 1.884 \\
\hline 10/5/10 10:18 & 138 & 1.709 & 1.777 & 10/5/10 10:39 & 159 & 1.777 & 1.845 & 10/5/10 11:01 & 180 & 1.814 & 1.882 \\
\hline 10/5/10 10:18 & 138 & 1.712 & 1.78 & 10/5/10 10:40 & 159 & 1.775 & 1.843 & 10/5/10 11:01 & 181 & 1.819 & 1.887 \\
\hline 10/5/10 10:19 & 138 & 1.710 & 1.778 & 10/5/10 10:40 & 160 & 1.774 & 1.842 & 10/5/10 11:01 & 181 & 1.820 & 1.888 \\
\hline 10/5/10 10:19 & 139 & 1.715 & 1.783 & 10/5/10 10:40 & 160 & 1.777 & 1.845 & 10/5/10 11:02 & 181 & 1.810 & 1.878 \\
\hline 10/5/10 10:19 & 139 & 1.718 & 1.786 & 10/5/10 10:41 & 160 & 1.773 & 1.841 & 10/5/10 11:02 & 182 & 1.830 & 1.898 \\
\hline 10/5/10 10:20 & 139 & 1.722 & 1.79 & 10/5/10 10:41 & 161 & 1.775 & 1.843 & 10/5/10 11:02 & 182 & 1.819 & 1.887 \\
\hline 10/5/10 10:20 & 140 & 1.718 & 1.786 & 10/5/10 10:41 & 161 & 1.777 & 1.845 & 10/5/10 11:03 & 182 & 1.829 & 1.897 \\
\hline 10/5/10 10:20 & 140 & 1.719 & 1.787 & 10/5/10 10:42 & 161 & 1.778 & 1.846 & 10/5/10 11:03 & 183 & 1.823 & 1.891 \\
\hline 10/5/10 10:21 & 140 & 1.720 & 1.788 & 10/5/10 10:42 & 162 & 1.779 & 1.847 & 10/5/10 11:03 & 183 & 1.822 & 1.89 \\
\hline 10/5/10 10:21 & 141 & 1.724 & 1.792 & 10/5/10 10:42 & 162 & 1.778 & 1.846 & 10/5/10 11:04 & 183 & 1.816 & 1.884 \\
\hline 10/5/10 10:21 & 141 & 1.721 & 1.789 & 10/5/10 10:43 & 162 & 1.780 & 1.848 & 10/5/10 11:04 & 184 & 1.819 & 1.887 \\
\hline 10/5/10 10:22 & 141 & 1.723 & 1.791 & 10/5/10 10:43 & 163 & 1.781 & 1.849 & 10/5/10 11:04 & 184 & 1.823 & 1.891 \\
\hline 10/5/10 10:22 & 142 & 1.725 & 1.793 & 10/5/10 10:43 & 163 & 1.782 & 1.85 & 10/5/10 11:05 & 184 & 1.822 & 1.89 \\
\hline 10/5/10 10:22 & 142 & 1.722 & 1.79 & 10/5/10 10:44 & 163 & 1.784 & 1.852 & 10/5/10 11:05 & 185 & 1.823 & 1.891 \\
\hline 10/5/10 10:23 & 142 & 1.720 & 1.788 & 10/5/10 10:44 & 164 & 1.785 & 1.853 & 10/5/10 11:05 & 185 & 1.822 & 1.89 \\
\hline 10/5/10 10:23 & 143 & 1.720 & 1.788 & 10/5/10 10:44 & 164 & 1.785 & 1.853 & 10/5/10 11:06 & 185 & 1.819 & 1.887 \\
\hline 10/5/10 10:23 & 143 & 1.723 & 1.791 & 10/5/10 10:45 & 164 & 1.787 & 1.855 & 10/5/10 11:06 & 186 & 1.816 & 1.884 \\
\hline 10/5/10 10:24 & 143 & 1.720 & 1.788 & 10/5/10 10:45 & 165 & 1.792 & 1.86 & 10/5/10 11:06 & 186 & 1.814 & 1.882 \\
\hline 10/5/10 10:24 & 144 & 1.723 & 1.791 & 10/5/10 10:45 & 165 & 1.789 & 1.857 & 10/5/10 11:07 & 186 & 1.815 & 1.883 \\
\hline 10/5/10 10:24 & 144 & 1.721 & 1.789 & 10/5/10 10:46 & 165 & 1.793 & 1.861 & 10/5/10 11:07 & 187 & 1.812 & 1.88 \\
\hline 10/5/10 10:25 & 144 & 1.724 & 1.792 & 10/5/10 10:46 & 166 & 1.785 & 1.853 & 10/5/10 11:07 & 187 & 1.818 & 1.886 \\
\hline 10/5/10 10:25 & 145 & 1.721 & 1.789 & 10/5/10 10:46 & 166 & 1.788 & 1.856 & 10/5/10 11:08 & 187 & 1.812 & 1.88 \\
\hline 10/5/10 10:25 & 145 & 1.736 & 1.804 & 10/5/10 10:47 & 166 & 1.789 & 1.857 & 10/5/10 11:08 & 188 & 1.814 & 1.882 \\
\hline 10/5/10 10:26 & 145 & 1.724 & 1.792 & 10/5/10 10:47 & 167 & 1.789 & 1.857 & 10/5/10 11:08 & 188 & 1.817 & 1.885 \\
\hline 10/5/10 10:26 & 146 & 1.728 & 1.796 & 10/5/10 10:47 & 167 & 1.793 & 1.861 & 10/5/10 11:09 & 188 & 1.813 & 1.881 \\
\hline 10/5/10 10:26 & 146 & 1.729 & 1.797 & 10/5/10 10:48 & 167 & 1.792 & 1.86 & 10/5/10 11:09 & 189 & 1.815 & 1.883 \\
\hline 10/5/10 10:27 & 146 & 1.736 & 1.804 & 10/5/10 10:48 & 168 & 1.789 & 1.857 & 10/5/10 11:09 & 189 & 1.819 & 1.887 \\
\hline 10/5/10 10:27 & 147 & 1.724 & 1.792 & 10/5/10 10:48 & 168 & 1.791 & 1.859 & 10/5/10 11:10 & 189 & 1.820 & 1.888 \\
\hline 10/5/10 10:27 & 147 & 1.714 & 1.782 & 10/5/10 10:49 & 168 & 1.793 & 1.861 & 10/5/10 11:10 & 190 & 1.816 & 1.884 \\
\hline 10/5/10 10:28 & 147 & 1.718 & 1.786 & 10/5/10 10:49 & 169 & 1.796 & 1.864 & 10/5/10 11:10 & 190 & 1.817 & 1.885 \\
\hline 10/5/10 10:28 & 148 & 1.727 & 1.795 & 10/5/10 10:49 & 169 & 1.808 & 1.876 & 10/5/10 11:11 & 190 & 1.816 & 1.884 \\
\hline 10/5/10 10:28 & 148 & 1.724 & 1.792 & 10/5/10 10:50 & 169 & 1.794 & 1.862 & 10/5/10 11:11 & 191 & 1.822 & 1.89 \\
\hline 10/5/10 10:29 & 148 & 1.723 & 1.791 & 10/5/10 10:50 & 170 & 1.798 & 1.866 & 10/5/10 11:11 & 191 & 1.827 & 1.895 \\
\hline 10/5/10 10:29 & 149 & 1.727 & 1.795 & 10/5/10 10:50 & 170 & 1.800 & 1.868 & 10/5/10 11:12 & 191 & 1.824 & 1.892 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 10/5/10 11:12 & 192 & 1.824 & 1.892 & 10/5/10 11:33 & 213 & 1.820 & 1.888 & 10/5/10 11:55 & 234 & 1.863 & 1.931 \\
\hline 10/5/10 11:12 & 192 & 1.822 & 1.89 & 10/5/10 11:34 & 213 & 1.825 & 1.893 & 10/5/10 11:55 & 235 & 1.864 & 1.932 \\
\hline 10/5/10 11:13 & 192 & 1.826 & 1.894 & 10/5/10 11:34 & 214 & 1.824 & 1.892 & 10/5/10 11:55 & 235 & 1.864 & 1.932 \\
\hline 10/5/10 11:13 & 193 & 1.827 & 1.895 & 10/5/10 11:34 & 214 & 1.820 & 1.888 & 10/5/10 11:56 & 235 & 1.866 & 1.934 \\
\hline 10/5/10 11:13 & 193 & 1.832 & 1.9 & 10/5/10 11:35 & 214 & 1.826 & 1.894 & 10/5/10 11:56 & 236 & 1.866 & 1.934 \\
\hline 10/5/10 11:14 & 193 & 1.832 & 1.9 & 10/5/10 11:35 & 215 & 1.823 & 1.891 & 10/5/10 11:56 & 236 & 1.865 & 1.933 \\
\hline 10/5/10 11:14 & 194 & 1.825 & 1.893 & 10/5/10 11:35 & 215 & 1.820 & 1.888 & 10/5/10 11:57 & 236 & 1.871 & 1.939 \\
\hline 10/5/10 11:14 & 194 & 1.828 & 1.896 & 10/5/10 11:36 & 215 & 1.822 & 1.89 & 10/5/10 11:57 & 237 & 1.870 & 1.938 \\
\hline 10/5/10 11:15 & 194 & 1.831 & 1.899 & 10/5/10 11:36 & 216 & 1.823 & 1.891 & 10/5/10 11:57 & 237 & 1.872 & 1.94 \\
\hline 10/5/10 11:15 & 195 & 1.798 & 1.866 & 10/5/10 11:36 & 216 & 1.835 & 1.903 & 10/5/10 11:58 & 237 & 1.873 & 1.941 \\
\hline 10/5/10 11:15 & 195 & 1.810 & 1.878 & 10/5/10 11:37 & 216 & 1.823 & 1.891 & 10/5/10 11:58 & 238 & 1.872 & 1.94 \\
\hline 10/5/10 11:16 & 195 & 1.820 & 1.888 & 10/5/10 11:37 & 217 & 1.824 & 1.892 & 10/5/10 11:58 & 238 & 1.875 & 1.943 \\
\hline 10/5/10 11:16 & 196 & 1.814 & 1.882 & 10/5/10 11:37 & 217 & 1.824 & 1.892 & 10/5/10 11:59 & 238 & 1.876 & 1.944 \\
\hline 10/5/10 11:16 & 196 & 1.805 & 1.873 & 10/5/10 11:38 & 217 & 1.825 & 1.893 & 10/5/10 11:59 & 239 & 1.877 & 1.945 \\
\hline 10/5/10 11:17 & 196 & 1.806 & 1.874 & 10/5/10 11:38 & 218 & 1.826 & 1.894 & 10/5/10 11:59 & 239 & 1.872 & 1.94 \\
\hline 10/5/10 11:17 & 197 & 1.806 & 1.874 & 10/5/10 11:38 & 218 & 1.828 & 1.896 & 10/5/10 12:00 & 239 & 1.874 & 1.942 \\
\hline 10/5/10 11:17 & 197 & 1.807 & 1.875 & 10/5/10 11:39 & 218 & 1.830 & 1.898 & 10/5/10 12:00 & 240 & 1.872 & 1.94 \\
\hline 10/5/10 11:18 & 197 & 1.817 & 1.885 & 10/5/10 11:39 & 219 & 1.830 & 1.898 & 10/5/10 12:00 & 240 & 1.869 & 1.937 \\
\hline 10/5/10 11:18 & 198 & 1.803 & 1.871 & 10/5/10 11:39 & 219 & 1.829 & 1.897 & 10/5/10 12:01 & 240 & 1.874 & 1.942 \\
\hline 10/5/10 11:18 & 198 & 1.806 & 1.874 & 10/5/10 11:40 & 219 & 1.830 & 1.898 & 10/5/10 12:01 & 241 & 1.873 & 1.941 \\
\hline 10/5/10 11:19 & 198 & 1.803 & 1.871 & 10/5/10 11:40 & 220 & 1.841 & 1.909 & 10/5/10 12:01 & 241 & 1.870 & 1.938 \\
\hline 10/5/10 11:19 & 199 & 1.805 & 1.873 & 10/5/10 11:40 & 220 & 1.829 & 1.897 & 10/5/10 12:02 & 241 & 1.870 & 1.938 \\
\hline 10/5/10 11:19 & 199 & 1.807 & 1.875 & 10/5/10 11:41 & 220 & 1.829 & 1.897 & 10/5/10 12:02 & 242 & 1.872 & 1.94 \\
\hline 10/5/10 11:20 & 199 & 1.808 & 1.876 & 10/5/10 11:41 & 221 & 1.828 & 1.896 & 10/5/10 12:02 & 242 & 1.869 & 1.937 \\
\hline 10/5/10 11:20 & 200 & 1.811 & 1.879 & 10/5/10 11:41 & 221 & 1.834 & 1.902 & 10/5/10 12:03 & 242 & 1.870 & 1.938 \\
\hline 10/5/10 11:20 & 200 & 1.815 & 1.883 & 10/5/10 11:42 & 221 & 1.833 & 1.901 & 10/5/10 12:03 & 243 & 1.875 & 1.943 \\
\hline 10/5/10 11:21 & 200 & 1.810 & 1.878 & 10/5/10 11:42 & 222 & 1.833 & 1.901 & 10/5/10 12:03 & 243 & 1.873 & 1.941 \\
\hline 10/5/10 11:21 & 201 & 1.810 & 1.878 & 10/5/10 11:42 & 222 & 1.833 & 1.901 & 10/5/10 12:04 & 243 & 1.869 & 1.937 \\
\hline 10/5/10 11:21 & 201 & 1.805 & 1.873 & 10/5/10 11:43 & 222 & 1.835 & 1.903 & 10/5/10 12:04 & 244 & 1.872 & 1.94 \\
\hline 10/5/10 11:22 & 201 & 1.797 & 1.865 & 10/5/10 11:43 & 223 & 1.833 & 1.901 & 10/5/10 12:04 & 244 & 1.872 & 1.94 \\
\hline 10/5/10 11:22 & 202 & 1.810 & 1.878 & 10/5/10 11:43 & 223 & 1.824 & 1.892 & 10/5/10 12:05 & 244 & 1.872 & 1.94 \\
\hline 10/5/10 11:22 & 202 & 1.799 & 1.867 & 10/5/10 11:44 & 223 & 1.816 & 1.884 & 10/5/10 12:05 & 245 & 1.872 & 1.94 \\
\hline 10/5/10 11:23 & 202 & 1.801 & 1.869 & 10/5/10 11:44 & 224 & 1.822 & 1.89 & 10/5/10 12:05 & 245 & 1.876 & 1.944 \\
\hline 10/5/10 11:23 & 203 & 1.799 & 1.867 & 10/5/10 11:44 & 224 & 1.824 & 1.892 & 10/5/10 12:06 & 245 & 1.875 & 1.943 \\
\hline 10/5/10 11:23 & 203 & 1.802 & 1.87 & 10/5/10 11:45 & 224 & 1.820 & 1.888 & 10/5/10 12:06 & 246 & 1.877 & 1.945 \\
\hline 10/5/10 11:24 & 203 & 1.804 & 1.872 & 10/5/10 11:45 & 225 & 1.822 & 1.89 & 10/5/10 12:06 & 246 & 1.881 & 1.949 \\
\hline 10/5/10 11:24 & 204 & 1.806 & 1.874 & 10/5/10 11:45 & 225 & 1.832 & 1.9 & 10/5/10 12:07 & 246 & 1.878 & 1.946 \\
\hline 10/5/10 11:24 & 204 & 1.804 & 1.872 & 10/5/10 11:46 & 225 & 1.824 & 1.892 & 10/5/10 12:07 & 247 & 1.877 & 1.945 \\
\hline 10/5/10 11:25 & 204 & 1.808 & 1.876 & 10/5/10 11:46 & 226 & 1.822 & 1.89 & 10/5/10 12:07 & 247 & 1.879 & 1.947 \\
\hline 10/5/10 11:25 & 205 & 1.804 & 1.872 & 10/5/10 11:46 & 226 & 1.820 & 1.888 & 10/5/10 12:08 & 247 & 1.883 & 1.951 \\
\hline 10/5/10 11:25 & 205 & 1.805 & 1.873 & 10/5/10 11:47 & 226 & 1.818 & 1.886 & 10/5/10 12:08 & 248 & 1.888 & 1.956 \\
\hline 10/5/10 11:26 & 205 & 1.807 & 1.875 & 10/5/10 11:47 & 227 & 1.818 & 1.886 & 10/5/10 12:08 & 248 & 1.892 & 1.96 \\
\hline 10/5/10 11:26 & 206 & 1.807 & 1.875 & 10/5/10 11:47 & 227 & 1.817 & 1.885 & 10/5/10 12:09 & 248 & 1.889 & 1.957 \\
\hline 10/5/10 11:26 & 206 & 1.806 & 1.874 & 10/5/10 11:48 & 227 & 1.820 & 1.888 & 10/5/10 12:09 & 249 & 1.886 & 1.954 \\
\hline 10/5/10 11:27 & 206 & 1.808 & 1.876 & 10/5/10 11:48 & 228 & 1.837 & 1.905 & 10/5/10 12:09 & 249 & 1.884 & 1.952 \\
\hline 10/5/10 11:27 & 207 & 1.810 & 1.878 & 10/5/10 11:48 & 228 & 1.861 & 1.929 & 10/5/10 12:10 & 249 & 1.884 & 1.952 \\
\hline 10/5/10 11:27 & 207 & 1.816 & 1.884 & 10/5/10 11:49 & 228 & 1.877 & 1.945 & 10/5/10 12:10 & 250 & 1.887 & 1.955 \\
\hline 10/5/10 11:28 & 207 & 1.819 & 1.887 & 10/5/10 11:49 & 229 & 1.856 & 1.924 & 10/5/10 12:10 & 250 & 1.881 & 1.949 \\
\hline 10/5/10 11:28 & 208 & 1.815 & 1.883 & 10/5/10 11:49 & 229 & 1.852 & 1.92 & 10/5/10 12:11 & 250 & 1.880 & 1.948 \\
\hline 10/5/10 11:28 & 208 & 1.813 & 1.881 & 10/5/10 11:50 & 229 & 1.851 & 1.919 & 10/5/10 12:11 & 251 & 1.879 & 1.947 \\
\hline 10/5/10 11:29 & 208 & 1.812 & 1.88 & 10/5/10 11:50 & 230 & 1.859 & 1.927 & 10/5/10 12:11 & 251 & 1.877 & 1.945 \\
\hline 10/5/10 11:29 & 209 & 1.811 & 1.879 & 10/5/10 11:50 & 230 & 1.861 & 1.929 & 10/5/10 12:12 & 251 & 1.882 & 1.95 \\
\hline 10/5/10 11:29 & 209 & 1.817 & 1.885 & 10/5/10 11:51 & 230 & 1.857 & 1.925 & 10/5/10 12:12 & 252 & 1.887 & 1.955 \\
\hline 10/5/10 11:30 & 209 & 1.826 & 1.894 & 10/5/10 11:51 & 231 & 1.855 & 1.923 & 10/5/10 12:12 & 252 & 1.886 & 1.954 \\
\hline 10/5/10 11:30 & 210 & 1.815 & 1.883 & 10/5/10 11:51 & 231 & 1.858 & 1.926 & 10/5/10 12:13 & 252 & 1.888 & 1.956 \\
\hline 10/5/10 11:30 & 210 & 1.818 & 1.886 & 10/5/10 11:52 & 231 & 1.860 & 1.928 & 10/5/10 12:13 & 253 & 1.886 & 1.954 \\
\hline 10/5/10 11:31 & 210 & 1.819 & 1.887 & 10/5/10 11:52 & 232 & 1.862 & 1.93 & 10/5/10 12:13 & 253 & 1.889 & 1.957 \\
\hline 10/5/10 11:31 & 211 & 1.826 & 1.894 & 10/5/10 11:52 & 232 & 1.861 & 1.929 & 10/5/10 12:14 & 253 & 1.889 & 1.957 \\
\hline 10/5/10 11:31 & 211 & 1.814 & 1.882 & 10/5/10 11:53 & 232 & 1.860 & 1.928 & 10/5/10 12:14 & 254 & 1.888 & 1.956 \\
\hline 10/5/10 11:32 & 211 & 1.812 & 1.88 & 10/5/10 11:53 & 233 & 1.862 & 1.93 & 10/5/10 12:14 & 254 & 1.886 & 1.954 \\
\hline 10/5/10 11:32 & 212 & 1.815 & 1.883 & 10/5/10 11:53 & 233 & 1.866 & 1.934 & 10/5/10 12:15 & 254 & 1.887 & 1.955 \\
\hline 10/5/10 11:32 & 212 & 1.817 & 1.885 & 10/5/10 11:54 & 233 & 1.861 & 1.929 & 10/5/10 12:15 & 255 & 1.892 & 1.96 \\
\hline 10/5/10 11:33 & 212 & 1.832 & 1.9 & 10/5/10 11:54 & 234 & 1.867 & 1.935 & 10/5/10 12:15 & 255 & 1.892 & 1.96 \\
\hline 10/5/10 11:33 & 213 & 1.821 & 1.889 & 10/5/10 11:54 & 234 & 1.867 & 1.935 & 10/5/10 12:16 & 255 & 1.894 & 1.962 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 10/5/10 12:16 & 256 & 1.889 & 1.957 & 10/5/10 12:37 & 277 & 1.913 & 1.981 & 10/5/10 12:59 & 298 & 1.933 & 2.001 \\
\hline 10/5/10 12:16 & 256 & 1.890 & 1.958 & 10/5/10 12:38 & 277 & 1.918 & 1.986 & 10/5/10 12:59 & 299 & 1.933 & 2.001 \\
\hline 10/5/10 12:17 & 256 & 1.888 & 1.956 & 10/5/10 12:38 & 278 & 1.915 & 1.983 & 10/5/10 12:59 & 299 & 1.936 & 2.004 \\
\hline 10/5/10 12:17 & 257 & 1.890 & 1.958 & 10/5/10 12:38 & 278 & 1.913 & 1.981 & 10/5/10 13:00 & 299 & 1.936 & 2.004 \\
\hline 10/5/10 12:17 & 257 & 1.895 & 1.963 & 10/5/10 12:39 & 278 & 1.909 & 1.977 & 10/5/10 13:00 & 300 & 1.933 & 2.001 \\
\hline 10/5/10 12:18 & 257 & 1.895 & 1.963 & 10/5/10 12:39 & 279 & 1.914 & 1.982 & 10/5/10 13:00 & 300 & 1.935 & 2.003 \\
\hline 10/5/10 12:18 & 258 & 1.896 & 1.964 & 10/5/10 12:39 & 279 & 1.917 & 1.985 & 10/5/10 13:01 & 300 & 1.936 & 2.004 \\
\hline 10/5/10 12:18 & 258 & 1.896 & 1.964 & 10/5/10 12:40 & 279 & 1.918 & 1.986 & 10/5/10 13:01 & 301 & 1.937 & 2.005 \\
\hline 10/5/10 12:19 & 258 & 1.892 & 1.96 & 10/5/10 12:40 & 280 & 1.916 & 1.984 & 10/5/10 13:01 & 301 & 1.936 & 2.004 \\
\hline 10/5/10 12:19 & 259 & 1.892 & 1.96 & 10/5/10 12:40 & 280 & 1.921 & 1.989 & 10/5/10 13:02 & 301 & 1.936 & 2.004 \\
\hline 10/5/10 12:19 & 259 & 1.890 & 1.958 & 10/5/10 12:41 & 280 & 1.916 & 1.984 & 10/5/10 13:02 & 302 & 1.938 & 2.006 \\
\hline 10/5/10 12:20 & 259 & 1.895 & 1.963 & 10/5/10 12:41 & 281 & 1.917 & 1.985 & 10/5/10 13:02 & 302 & 1.939 & 2.007 \\
\hline 10/5/10 12:20 & 260 & 1.902 & 1.97 & 10/5/10 12:41 & 281 & 1.916 & 1.984 & 10/5/10 13:03 & 302 & 1.937 & 2.005 \\
\hline 10/5/10 12:20 & 260 & 1.894 & 1.962 & 10/5/10 12:42 & 281 & 1.917 & 1.985 & 10/5/10 13:03 & 303 & 1.936 & 2.004 \\
\hline 10/5/10 12:21 & 260 & 1.897 & 1.965 & 10/5/10 12:42 & 282 & 1.918 & 1.986 & 10/5/10 13:03 & 303 & 1.936 & 2.004 \\
\hline 10/5/10 12:21 & 261 & 1.898 & 1.966 & 10/5/10 12:42 & 282 & 1.919 & 1.987 & 10/5/10 13:04 & 303 & 1.939 & 2.007 \\
\hline 10/5/10 12:21 & 261 & 1.893 & 1.961 & 10/5/10 12:43 & 282 & 1.917 & 1.985 & 10/5/10 13:04 & 304 & 1.941 & 2.009 \\
\hline 10/5/10 12:22 & 261 & 1.888 & 1.956 & 10/5/10 12:43 & 283 & 1.918 & 1.986 & 10/5/10 13:04 & 304 & 1.937 & 2.005 \\
\hline 10/5/10 12:22 & 262 & 1.890 & 1.958 & 10/5/10 12:43 & 283 & 1.929 & 1.997 & 10/5/10 13:05 & 304 & 1.937 & 2.005 \\
\hline 10/5/10 12:22 & 262 & 1.893 & 1.961 & 10/5/10 12:44 & 283 & 1.923 & 1.991 & 10/5/10 13:05 & 305 & 1.941 & 2.009 \\
\hline 10/5/10 12:23 & 262 & 1.895 & 1.963 & 10/5/10 12:44 & 284 & 1.921 & 1.989 & 10/5/10 13:05 & 305 & 1.939 & 2.007 \\
\hline 10/5/10 12:23 & 263 & 1.894 & 1.962 & 10/5/10 12:44 & 284 & 1.923 & 1.991 & 10/5/10 13:06 & 305 & 1.938 & 2.006 \\
\hline 10/5/10 12:23 & 263 & 1.897 & 1.965 & 10/5/10 12:45 & 284 & 1.917 & 1.985 & 10/5/10 13:06 & 306 & 1.937 & 2.005 \\
\hline 10/5/10 12:24 & 263 & 1.895 & 1.963 & 10/5/10 12:45 & 285 & 1.918 & 1.986 & 10/5/10 13:06 & 306 & 1.935 & 2.003 \\
\hline 10/5/10 12:24 & 264 & 1.894 & 1.962 & 10/5/10 12:45 & 285 & 1.919 & 1.987 & 10/5/10 13:07 & 306 & 1.933 & 2.001 \\
\hline 10/5/10 12:24 & 264 & 1.903 & 1.971 & 10/5/10 12:46 & 285 & 1.919 & 1.987 & 10/5/10 13:07 & 307 & 1.942 & 2.01 \\
\hline 10/5/10 12:25 & 264 & 1.895 & 1.963 & 10/5/10 12:46 & 286 & 1.920 & 1.988 & 10/5/10 13:07 & 307 & 1.945 & 2.013 \\
\hline 10/5/10 12:25 & 265 & 1.896 & 1.964 & 10/5/10 12:46 & 286 & 1.918 & 1.986 & 10/5/10 13:08 & 307 & 1.942 & 2.01 \\
\hline 10/5/10 12:25 & 265 & 1.899 & 1.967 & 10/5/10 12:47 & 286 & 1.916 & 1.984 & 10/5/10 13:08 & 308 & 1.940 & 2.008 \\
\hline 10/5/10 12:26 & 265 & 1.905 & 1.973 & 10/5/10 12:47 & 287 & 1.922 & 1.99 & 10/5/10 13:08 & 308 & 1.942 & 2.01 \\
\hline 10/5/10 12:26 & 266 & 1.903 & 1.971 & 10/5/10 12:47 & 287 & 1.922 & 1.99 & 10/5/10 13:09 & 308 & 1.952 & 2.02 \\
\hline 10/5/10 12:26 & 266 & 1.904 & 1.972 & 10/5/10 12:48 & 287 & 1.924 & 1.992 & 10/5/10 13:09 & 309 & 1.942 & 2.01 \\
\hline 10/5/10 12:27 & 266 & 1.897 & 1.965 & 10/5/10 12:48 & 288 & 1.922 & 1.99 & 10/5/10 13:09 & 309 & 1.945 & 2.013 \\
\hline 10/5/10 12:27 & 267 & 1.897 & 1.965 & 10/5/10 12:48 & 288 & 1.925 & 1.993 & 10/5/10 13:10 & 309 & 1.947 & 2.015 \\
\hline 10/5/10 12:27 & 267 & 1.901 & 1.969 & 10/5/10 12:49 & 288 & 1.920 & 1.988 & 10/5/10 13:10 & 310 & 1.942 & 2.01 \\
\hline 10/5/10 12:28 & 267 & 1.904 & 1.972 & 10/5/10 12:49 & 289 & 1.922 & 1.99 & 10/5/10 13:10 & 310 & 1.936 & 2.004 \\
\hline 10/5/10 12:28 & 268 & 1.903 & 1.971 & 10/5/10 12:49 & 289 & 1.923 & 1.991 & 10/5/10 13:11 & 310 & 1.944 & 2.012 \\
\hline 10/5/10 12:28 & 268 & 1.906 & 1.974 & 10/5/10 12:50 & 289 & 1.925 & 1.993 & 10/5/10 13:11 & 311 & 1.940 & 2.008 \\
\hline 10/5/10 12:29 & 268 & 1.907 & 1.975 & 10/5/10 12:50 & 290 & 1.924 & 1.992 & 10/5/10 13:11 & 311 & 1.946 & 2.014 \\
\hline 10/5/10 12:29 & 269 & 1.916 & 1.984 & 10/5/10 12:50 & 290 & 1.923 & 1.991 & 10/5/10 13:12 & 311 & 1.944 & 2.012 \\
\hline 10/5/10 12:29 & 269 & 1.909 & 1.977 & 10/5/10 12:51 & 290 & 1.924 & 1.992 & 10/5/10 13:12 & 312 & 1.941 & 2.009 \\
\hline 10/5/10 12:30 & 269 & 1.901 & 1.969 & 10/5/10 12:51 & 291 & 1.926 & 1.994 & 10/5/10 13:12 & 312 & 1.941 & 2.009 \\
\hline 10/5/10 12:30 & 270 & 1.905 & 1.973 & 10/5/10 12:51 & 291 & 1.929 & 1.997 & 10/5/10 13:13 & 312 & 1.938 & 2.006 \\
\hline 10/5/10 12:30 & 270 & 1.904 & 1.972 & 10/5/10 12:52 & 291 & 1.929 & 1.997 & 10/5/10 13:13 & 313 & 1.938 & 2.006 \\
\hline 10/5/10 12:31 & 270 & 1.909 & 1.977 & 10/5/10 12:52 & 292 & 1.928 & 1.996 & 10/5/10 13:13 & 313 & 1.941 & 2.009 \\
\hline 10/5/10 12:31 & 271 & 1.908 & 1.976 & 10/5/10 12:52 & 292 & 1.936 & 2.004 & 10/5/10 13:14 & 313 & 1.947 & 2.015 \\
\hline 10/5/10 12:31 & 271 & 1.907 & 1.975 & 10/5/10 12:53 & 292 & 1.931 & 1.999 & 10/5/10 13:14 & 314 & 1.945 & 2.013 \\
\hline 10/5/10 12:32 & 271 & 1.909 & 1.977 & 10/5/10 12:53 & 293 & 1.932 & 2 & 10/5/10 13:14 & 314 & 1.942 & 2.01 \\
\hline 10/5/10 12:32 & 272 & 1.911 & 1.979 & 10/5/10 12:53 & 293 & 1.931 & 1.999 & 10/5/10 13:15 & 314 & 1.947 & 2.015 \\
\hline 10/5/10 12:32 & 272 & 1.909 & 1.977 & 10/5/10 12:54 & 293 & 1.943 & 2.011 & 10/5/10 13:15 & 315 & 1.950 & 2.018 \\
\hline 10/5/10 12:33 & 272 & 1.910 & 1.978 & 10/5/10 12:54 & 294 & 1.928 & 1.996 & 10/5/10 13:15 & 315 & 1.944 & 2.012 \\
\hline 10/5/10 12:33 & 273 & 1.912 & 1.98 & 10/5/10 12:54 & 294 & 1.929 & 1.997 & 10/5/10 13:16 & 315 & 1.940 & 2.008 \\
\hline 10/5/10 12:33 & 273 & 1.911 & 1.979 & 10/5/10 12:55 & 294 & 1.935 & 2.003 & 10/5/10 13:16 & 316 & 1.945 & 2.013 \\
\hline 10/5/10 12:34 & 273 & 1.910 & 1.978 & 10/5/10 12:55 & 295 & 1.932 & 2 & 10/5/10 13:16 & 316 & 1.953 & 2.021 \\
\hline 10/5/10 12:34 & 274 & 1.913 & 1.981 & 10/5/10 12:55 & 295 & 1.936 & 2.004 & 10/5/10 13:17 & 316 & 1.961 & 2.029 \\
\hline 10/5/10 12:34 & 274 & 1.910 & 1.978 & 10/5/10 12:56 & 295 & 1.933 & 2.001 & 10/5/10 13:17 & 317 & 1.948 & 2.016 \\
\hline 10/5/10 12:35 & 274 & 1.911 & 1.979 & 10/5/10 12:56 & 296 & 1.931 & 1.999 & 10/5/10 13:17 & 317 & 1.947 & 2.015 \\
\hline 10/5/10 12:35 & 275 & 1.912 & 1.98 & 10/5/10 12:56 & 296 & 1.935 & 2.003 & 10/5/10 13:18 & 317 & 1.944 & 2.012 \\
\hline 10/5/10 12:35 & 275 & 1.913 & 1.981 & 10/5/10 12:57 & 296 & 1.933 & 2.001 & 10/5/10 13:18 & 318 & 1.948 & 2.016 \\
\hline 10/5/10 12:36 & 275 & 1.909 & 1.977 & 10/5/10 12:57 & 297 & 1.934 & 2.002 & 10/5/10 13:18 & 318 & 1.953 & 2.021 \\
\hline 10/5/10 12:36 & 276 & 1.916 & 1.984 & 10/5/10 12:57 & 297 & 1.932 & 2 & 10/5/10 13:19 & 318 & 1.953 & 2.021 \\
\hline 10/5/10 12:36 & 276 & 1.914 & 1.982 & 10/5/10 12:58 & 297 & 1.943 & 2.011 & 10/5/10 13:19 & 319 & 1.951 & 2.019 \\
\hline 10/5/10 12:37 & 276 & 1.915 & 1.983 & 10/5/10 12:58 & 298 & 1.934 & 2.002 & 10/5/10 13:19 & 319 & 1.950 & 2.018 \\
\hline 10/5/10 12:37 & 277 & 1.914 & 1.982 & 10/5/10 12:58 & 298 & 1.934 & 2.002 & 10/5/10 13:20 & 319 & 1.950 & 2.018 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 10/5/10 13:20 & 320 & 1.961 & 2.029 & 10/5/10 13:41 & 341 & 1.958 & 2.026 & 10/5/10 14:03 & 362 & 1.977 & 2.045 \\
\hline 10/5/10 13:20 & 320 & 1.948 & 2.016 & 10/5/10 13:42 & 341 & 1.955 & 2.023 & 10/5/10 14:03 & 363 & 1.979 & 2.047 \\
\hline 10/5/10 13:21 & 320 & 1.951 & 2.019 & 10/5/10 13:42 & 342 & 1.956 & 2.024 & 10/5/10 14:03 & 363 & 1.981 & 2.049 \\
\hline 10/5/10 13:21 & 321 & 1.952 & 2.02 & 10/5/10 13:42 & 342 & 1.965 & 2.033 & 10/5/10 14:04 & 363 & 1.975 & 2.043 \\
\hline 10/5/10 13:21 & 321 & 1.949 & 2.017 & 10/5/10 13:43 & 342 & 1.956 & 2.024 & 10/5/10 14:04 & 364 & 1.982 & 2.05 \\
\hline 10/5/10 13:22 & 321 & 1.953 & 2.021 & 10/5/10 13:43 & 343 & 1.970 & 2.038 & 10/5/10 14:04 & 364 & 1.976 & 2.044 \\
\hline 10/5/10 13:22 & 322 & 1.955 & 2.023 & 10/5/10 13:43 & 343 & 1.959 & 2.027 & 10/5/10 14:05 & 364 & 1.979 & 2.047 \\
\hline 10/5/10 13:22 & 322 & 1.960 & 2.028 & 10/5/10 13:44 & 343 & 1.958 & 2.026 & 10/5/10 14:05 & 365 & 1.988 & 2.056 \\
\hline 10/5/10 13:23 & 322 & 1.961 & 2.029 & 10/5/10 13:44 & 344 & 1.962 & 2.03 & 10/5/10 14:05 & 365 & 1.986 & 2.054 \\
\hline 10/5/10 13:23 & 323 & 1.960 & 2.028 & 10/5/10 13:44 & 344 & 1.957 & 2.025 & 10/5/10 14:06 & 365 & 1.982 & 2.05 \\
\hline 10/5/10 13:23 & 323 & 1.965 & 2.033 & 10/5/10 13:45 & 344 & 1.958 & 2.026 & 10/5/10 14:06 & 366 & 1.976 & 2.044 \\
\hline 10/5/10 13:24 & 323 & 1.966 & 2.034 & 10/5/10 13:45 & 345 & 1.959 & 2.027 & 10/5/10 14:06 & 366 & 1.979 & 2.047 \\
\hline 10/5/10 13:24 & 324 & 1.962 & 2.03 & 10/5/10 13:45 & 345 & 1.953 & 2.021 & 10/5/10 14:07 & 366 & 1.977 & 2.045 \\
\hline 10/5/10 13:24 & 324 & 1.962 & 2.03 & 10/5/10 13:46 & 345 & 1.947 & 2.015 & 10/5/10 14:07 & 367 & 1.979 & 2.047 \\
\hline 10/5/10 13:25 & 324 & 1.964 & 2.032 & 10/5/10 13:46 & 346 & 1.945 & 2.013 & 10/5/10 14:07 & 367 & 1.980 & 2.048 \\
\hline 10/5/10 13:25 & 325 & 1.964 & 2.032 & 10/5/10 13:46 & 346 & 1.949 & 2.017 & 10/5/10 14:08 & 367 & 1.988 & 2.056 \\
\hline 10/5/10 13:25 & 325 & 1.962 & 2.03 & 10/5/10 13:47 & 346 & 1.952 & 2.02 & 10/5/10 14:08 & 368 & 1.984 & 2.052 \\
\hline 10/5/10 13:26 & 325 & 1.961 & 2.029 & 10/5/10 13:47 & 347 & 1.948 & 2.016 & 10/5/10 14:08 & 368 & 1.983 & 2.051 \\
\hline 10/5/10 13:26 & 326 & 1.969 & 2.037 & 10/5/10 13:47 & 347 & 1.947 & 2.015 & 10/5/10 14:09 & 368 & 1.981 & 2.049 \\
\hline 10/5/10 13:26 & 326 & 1.960 & 2.028 & 10/5/10 13:48 & 347 & 1.952 & 2.02 & 10/5/10 14:09 & 369 & 1.982 & 2.05 \\
\hline 10/5/10 13:27 & 326 & 1.965 & 2.033 & 10/5/10 13:48 & 348 & 1.949 & 2.017 & 10/5/10 14:09 & 369 & 1.979 & 2.047 \\
\hline 10/5/10 13:27 & 327 & 1.963 & 2.031 & 10/5/10 13:48 & 348 & 1.948 & 2.016 & 10/5/10 14:10 & 369 & 1.981 & 2.049 \\
\hline 10/5/10 13:27 & 327 & 1.963 & 2.031 & 10/5/10 13:49 & 348 & 1.952 & 2.02 & 10/5/10 14:10 & 370 & 1.984 & 2.052 \\
\hline 10/5/10 13:28 & 327 & 1.965 & 2.033 & 10/5/10 13:49 & 349 & 1.959 & 2.027 & 10/5/10 14:10 & 370 & 1.982 & 2.05 \\
\hline 10/5/10 13:28 & 328 & 1.959 & 2.027 & 10/5/10 13:49 & 349 & 1.953 & 2.021 & 10/5/10 14:11 & 370 & 1.980 & 2.048 \\
\hline 10/5/10 13:28 & 328 & 1.963 & 2.031 & 10/5/10 13:50 & 349 & 1.953 & 2.021 & 10/5/10 14:11 & 371 & 1.980 & 2.048 \\
\hline 10/5/10 13:29 & 328 & 1.961 & 2.029 & 10/5/10 13:50 & 350 & 1.946 & 2.014 & 10/5/10 14:11 & 371 & 1.993 & 2.061 \\
\hline 10/5/10 13:29 & 329 & 1.972 & 2.04 & 10/5/10 13:50 & 350 & 1.959 & 2.027 & 10/5/10 14:12 & 371 & 1.981 & 2.049 \\
\hline 10/5/10 13:29 & 329 & 1.958 & 2.026 & 10/5/10 13:51 & 350 & 1.951 & 2.019 & 10/5/10 14:12 & 372 & 1.985 & 2.053 \\
\hline 10/5/10 13:30 & 329 & 1.963 & 2.031 & 10/5/10 13:51 & 351 & 1.951 & 2.019 & 10/5/10 14:12 & 372 & 1.981 & 2.049 \\
\hline 10/5/10 13:30 & 330 & 1.962 & 2.03 & 10/5/10 13:51 & 351 & 1.953 & 2.021 & 10/5/10 14:13 & 372 & 1.981 & 2.049 \\
\hline 10/5/10 13:30 & 330 & 1.965 & 2.033 & 10/5/10 13:52 & 351 & 1.955 & 2.023 & 10/5/10 14:13 & 373 & 1.991 & 2.059 \\
\hline 10/5/10 13:31 & 330 & 1.971 & 2.039 & 10/5/10 13:52 & 352 & 1.955 & 2.023 & 10/5/10 14:13 & 373 & 1.988 & 2.056 \\
\hline 10/5/10 13:31 & 331 & 1.967 & 2.035 & 10/5/10 13:52 & 352 & 1.959 & 2.027 & 10/5/10 14:14 & 373 & 1.996 & 2.064 \\
\hline 10/5/10 13:31 & 331 & 1.962 & 2.03 & 10/5/10 13:53 & 352 & 1.958 & 2.026 & 10/5/10 14:14 & 374 & 1.982 & 2.05 \\
\hline 10/5/10 13:32 & 331 & 1.963 & 2.031 & 10/5/10 13:53 & 353 & 1.958 & 2.026 & 10/5/10 14:14 & 374 & 1.982 & 2.05 \\
\hline 10/5/10 13:32 & 332 & 1.967 & 2.035 & 10/5/10 13:53 & 353 & 1.958 & 2.026 & 10/5/10 14:15 & 374 & 1.982 & 2.05 \\
\hline 10/5/10 13:32 & 332 & 1.969 & 2.037 & 10/5/10 13:54 & 353 & 1.957 & 2.025 & 10/5/10 14:15 & 375 & 1.984 & 2.052 \\
\hline 10/5/10 13:33 & 332 & 1.964 & 2.032 & 10/5/10 13:54 & 354 & 1.961 & 2.029 & 10/5/10 14:15 & 375 & 1.990 & 2.058 \\
\hline 10/5/10 13:33 & 333 & 1.978 & 2.046 & 10/5/10 13:54 & 354 & 1.957 & 2.025 & 10/5/10 14:16 & 375 & 1.989 & 2.057 \\
\hline 10/5/10 13:33 & 333 & 1.966 & 2.034 & 10/5/10 13:55 & 354 & 1.959 & 2.027 & 10/5/10 14:16 & 376 & 1.988 & 2.056 \\
\hline 10/5/10 13:34 & 333 & 1.964 & 2.032 & 10/5/10 13:55 & 355 & 1.960 & 2.028 & 10/5/10 14:16 & 376 & 1.989 & 2.057 \\
\hline 10/5/10 13:34 & 334 & 1.967 & 2.035 & 10/5/10 13:55 & 355 & 1.959 & 2.027 & 10/5/10 14:17 & 376 & 2.004 & 2.072 \\
\hline 10/5/10 13:34 & 334 & 1.963 & 2.031 & 10/5/10 13:56 & 355 & 1.960 & 2.028 & 10/5/10 14:17 & 377 & 2.000 & 2.068 \\
\hline 10/5/10 13:35 & 334 & 1.964 & 2.032 & 10/5/10 13:56 & 356 & 1.964 & 2.032 & 10/5/10 14:17 & 377 & 1.995 & 2.063 \\
\hline 10/5/10 13:35 & 335 & 1.967 & 2.035 & 10/5/10 13:56 & 356 & 1.960 & 2.028 & 10/5/10 14:18 & 377 & 1.986 & 2.054 \\
\hline 10/5/10 13:35 & 335 & 1.967 & 2.035 & 10/5/10 13:57 & 356 & 1.962 & 2.03 & 10/5/10 14:18 & 378 & 1.989 & 2.057 \\
\hline 10/5/10 13:36 & 335 & 1.967 & 2.035 & 10/5/10 13:57 & 357 & 1.961 & 2.029 & 10/5/10 14:18 & 378 & 2.004 & 2.072 \\
\hline 10/5/10 13:36 & 336 & 1.974 & 2.042 & 10/5/10 13:57 & 357 & 1.967 & 2.035 & 10/5/10 14:19 & 378 & 1.997 & 2.065 \\
\hline 10/5/10 13:36 & 336 & 1.966 & 2.034 & 10/5/10 13:58 & 357 & 1.962 & 2.03 & 10/5/10 14:19 & 379 & 1.993 & 2.061 \\
\hline 10/5/10 13:37 & 336 & 1.972 & 2.04 & 10/5/10 13:58 & 358 & 1.967 & 2.035 & 10/5/10 14:19 & 379 & 1.998 & 2.066 \\
\hline 10/5/10 13:37 & 337 & 1.969 & 2.037 & 10/5/10 13:58 & 358 & 1.966 & 2.034 & 10/5/10 14:20 & 379 & 1.995 & 2.063 \\
\hline 10/5/10 13:37 & 337 & 1.971 & 2.039 & 10/5/10 13:59 & 358 & 1.966 & 2.034 & 10/5/10 14:20 & 380 & 1.996 & 2.064 \\
\hline 10/5/10 13:38 & 337 & 1.975 & 2.043 & 10/5/10 13:59 & 359 & 1.964 & 2.032 & 10/5/10 14:20 & 380 & 1.992 & 2.06 \\
\hline 10/5/10 13:38 & 338 & 1.974 & 2.042 & 10/5/10 13:59 & 359 & 1.958 & 2.026 & 10/5/10 14:21 & 380 & 1.993 & 2.061 \\
\hline 10/5/10 13:38 & 338 & 1.974 & 2.042 & 10/5/10 14:00 & 359 & 1.961 & 2.029 & 10/5/10 14:21 & 381 & 1.996 & 2.064 \\
\hline 10/5/10 13:39 & 338 & 1.970 & 2.038 & 10/5/10 14:00 & 360 & 1.966 & 2.034 & 10/5/10 14:21 & 381 & 1.995 & 2.063 \\
\hline 10/5/10 13:39 & 339 & 1.950 & 2.018 & 10/5/10 14:00 & 360 & 1.971 & 2.039 & 10/5/10 14:22 & 381 & 1.995 & 2.063 \\
\hline 10/5/10 13:39 & 339 & 1.961 & 2.029 & 10/5/10 14:01 & 360 & 1.983 & 2.051 & 10/5/10 14:22 & 382 & 2.001 & 2.069 \\
\hline 10/5/10 13:40 & 339 & 1.966 & 2.034 & 10/5/10 14:01 & 361 & 1.980 & 2.048 & 10/5/10 14:22 & 382 & 1.999 & 2.067 \\
\hline 10/5/10 13:40 & 340 & 1.949 & 2.017 & 10/5/10 14:01 & 361 & 1.976 & 2.044 & 10/5/10 14:23 & 382 & 1.997 & 2.065 \\
\hline 10/5/10 13:40 & 340 & 1.955 & 2.023 & 10/5/10 14:02 & 361 & 1.975 & 2.043 & 10/5/10 14:23 & 383 & 1.998 & 2.066 \\
\hline 10/5/10 13:41 & 340 & 1.955 & 2.023 & 10/5/10 14:02 & 362 & 1.973 & 2.041 & 10/5/10 14:23 & 383 & 1.997 & 2.065 \\
\hline 10/5/10 13:41 & 341 & 1.960 & 2.028 & 10/5/10 14:02 & 362 & 1.977 & 2.045 & 10/5/10 14:24 & 383 & 2.001 & 2.069 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 10/5/10 14:24 & 384 & 2.013 & 2.081 & 10/5/10 14:45 & 405 & 2.039 & 2.107 & 10/5/10 15:07 & 426 & 2.074 & 2.142 \\
\hline 10/5/10 14:24 & 384 & 2.026 & 2.094 & 10/5/10 14:46 & 405 & 2.038 & 2.106 & 10/5/10 15:07 & 427 & 2.071 & 2.139 \\
\hline 10/5/10 14:25 & 384 & 2.019 & 2.087 & 10/5/10 14:46 & 406 & 2.042 & 2.11 & 10/5/10 15:07 & 427 & 2.073 & 2.141 \\
\hline 10/5/10 14:25 & 385 & 2.009 & 2.077 & 10/5/10 14:46 & 406 & 2.044 & 2.112 & 10/5/10 15:08 & 427 & 2.072 & 2.14 \\
\hline 10/5/10 14:25 & 385 & 2.012 & 2.08 & 10/5/10 14:47 & 406 & 2.042 & 2.11 & 10/5/10 15:08 & 428 & 2.082 & 2.15 \\
\hline 10/5/10 14:26 & 385 & 2.010 & 2.078 & 10/5/10 14:47 & 407 & 2.041 & 2.109 & 10/5/10 15:08 & 428 & 2.069 & 2.137 \\
\hline 10/5/10 14:26 & 386 & 2.016 & 2.084 & 10/5/10 14:47 & 407 & 2.042 & 2.11 & 10/5/10 15:09 & 428 & 2.069 & 2.137 \\
\hline 10/5/10 14:26 & 386 & 2.014 & 2.082 & 10/5/10 14:48 & 407 & 2.043 & 2.111 & 10/5/10 15:09 & 429 & 2.045 & 2.113 \\
\hline 10/5/10 14:27 & 386 & 2.015 & 2.083 & 10/5/10 14:48 & 408 & 2.046 & 2.114 & 10/5/10 15:09 & 429 & 2.053 & 2.121 \\
\hline 10/5/10 14:27 & 387 & 2.017 & 2.085 & 10/5/10 14:48 & 408 & 2.058 & 2.126 & 10/5/10 15:10 & 429 & 2.061 & 2.129 \\
\hline 10/5/10 14:27 & 387 & 2.019 & 2.087 & 10/5/10 14:49 & 408 & 2.049 & 2.117 & 10/5/10 15:10 & 430 & 2.050 & 2.118 \\
\hline 10/5/10 14:28 & 387 & 2.023 & 2.091 & 10/5/10 14:49 & 409 & 2.049 & 2.117 & 10/5/10 15:10 & 430 & 2.054 & 2.122 \\
\hline 10/5/10 14:28 & 388 & 2.018 & 2.086 & 10/5/10 14:49 & 409 & 2.059 & 2.127 & 10/5/10 15:11 & 430 & 2.067 & 2.135 \\
\hline 10/5/10 14:28 & 388 & 2.022 & 2.09 & 10/5/10 14:50 & 409 & 2.047 & 2.115 & 10/5/10 15:11 & 431 & 2.060 & 2.128 \\
\hline 10/5/10 14:29 & 388 & 2.020 & 2.088 & 10/5/10 14:50 & 410 & 2.044 & 2.112 & 10/5/10 15:11 & 431 & 2.043 & 2.111 \\
\hline 10/5/10 14:29 & 389 & 2.022 & 2.09 & 10/5/10 14:50 & 410 & 2.046 & 2.114 & 10/5/10 15:12 & 431 & 2.044 & 2.112 \\
\hline 10/5/10 14:29 & 389 & 2.020 & 2.088 & 10/5/10 14:51 & 410 & 2.048 & 2.116 & 10/5/10 15:12 & 432 & 2.048 & 2.116 \\
\hline 10/5/10 14:30 & 389 & 2.021 & 2.089 & 10/5/10 14:51 & 411 & 2.050 & 2.118 & 10/5/10 15:12 & 432 & 2.050 & 2.118 \\
\hline 10/5/10 14:30 & 390 & 2.033 & 2.101 & 10/5/10 14:51 & 411 & 2.051 & 2.119 & 10/5/10 15:13 & 432 & 2.049 & 2.117 \\
\hline 10/5/10 14:30 & 390 & 2.021 & 2.089 & 10/5/10 14:52 & 411 & 2.054 & 2.122 & 10/5/10 15:13 & 433 & 2.049 & 2.117 \\
\hline 10/5/10 14:31 & 390 & 2.023 & 2.091 & 10/5/10 14:52 & 412 & 2.053 & 2.121 & 10/5/10 15:13 & 433 & 2.055 & 2.123 \\
\hline 10/5/10 14:31 & 391 & 2.021 & 2.089 & 10/5/10 14:52 & 412 & 2.053 & 2.121 & 10/5/10 15:14 & 433 & 2.052 & 2.12 \\
\hline 10/5/10 14:31 & 391 & 2.024 & 2.092 & 10/5/10 14:53 & 412 & 2.054 & 2.122 & 10/5/10 15:14 & 434 & 2.051 & 2.119 \\
\hline 10/5/10 14:32 & 391 & 2.036 & 2.104 & 10/5/10 14:53 & 413 & 2.056 & 2.124 & 10/5/10 15:14 & 434 & 2.049 & 2.117 \\
\hline 10/5/10 14:32 & 392 & 2.027 & 2.095 & 10/5/10 14:53 & 413 & 2.057 & 2.125 & 10/5/10 15:15 & 434 & 2.046 & 2.114 \\
\hline 10/5/10 14:32 & 392 & 2.026 & 2.094 & 10/5/10 14:54 & 413 & 2.054 & 2.122 & 10/5/10 15:15 & 435 & 2.048 & 2.116 \\
\hline 10/5/10 14:33 & 392 & 2.025 & 2.093 & 10/5/10 14:54 & 414 & 2.064 & 2.132 & 10/5/10 15:15 & 435 & 2.043 & 2.111 \\
\hline 10/5/10 14:33 & 393 & 2.026 & 2.094 & 10/5/10 14:54 & 414 & 2.054 & 2.122 & 10/5/10 15:16 & 435 & 2.040 & 2.108 \\
\hline 10/5/10 14:33 & 393 & 2.027 & 2.095 & 10/5/10 14:55 & 414 & 2.054 & 2.122 & 10/5/10 15:16 & 436 & 2.045 & 2.113 \\
\hline 10/5/10 14:34 & 393 & 2.025 & 2.093 & 10/5/10 14:55 & 415 & 2.054 & 2.122 & 10/5/10 15:16 & 436 & 2.030 & 2.098 \\
\hline 10/5/10 14:34 & 394 & 2.030 & 2.098 & 10/5/10 14:55 & 415 & 2.055 & 2.123 & 10/5/10 15:17 & 436 & 2.005 & 2.073 \\
\hline 10/5/10 14:34 & 394 & 2.033 & 2.101 & 10/5/10 14:56 & 415 & 2.068 & 2.136 & 10/5/10 15:17 & 437 & 2.020 & 2.088 \\
\hline 10/5/10 14:35 & 394 & 2.027 & 2.095 & 10/5/10 14:56 & 416 & 2.060 & 2.128 & 10/5/10 15:17 & 437 & 2.043 & 2.111 \\
\hline 10/5/10 14:35 & 395 & 2.027 & 2.095 & 10/5/10 14:56 & 416 & 2.059 & 2.127 & 10/5/10 15:18 & 437 & 2.056 & 2.124 \\
\hline 10/5/10 14:35 & 395 & 2.026 & 2.094 & 10/5/10 14:57 & 416 & 2.055 & 2.123 & 10/5/10 15:18 & 438 & 2.042 & 2.11 \\
\hline 10/5/10 14:36 & 395 & 2.027 & 2.095 & 10/5/10 14:57 & 417 & 2.055 & 2.123 & 10/5/10 15:18 & 438 & 2.043 & 2.111 \\
\hline 10/5/10 14:36 & 396 & 2.029 & 2.097 & 10/5/10 14:57 & 417 & 2.061 & 2.129 & 10/5/10 15:19 & 438 & 2.041 & 2.109 \\
\hline 10/5/10 14:36 & 396 & 2.028 & 2.096 & 10/5/10 14:58 & 417 & 2.059 & 2.127 & 10/5/10 15:19 & 439 & 2.045 & 2.113 \\
\hline 10/5/10 14:37 & 396 & 2.040 & 2.108 & 10/5/10 14:58 & 418 & 2.054 & 2.122 & 10/5/10 15:19 & 439 & 2.044 & 2.112 \\
\hline 10/5/10 14:37 & 397 & 2.030 & 2.098 & 10/5/10 14:58 & 418 & 2.055 & 2.123 & 10/5/10 15:20 & 439 & 2.043 & 2.111 \\
\hline 10/5/10 14:37 & 397 & 2.027 & 2.095 & 10/5/10 14:59 & 418 & 2.056 & 2.124 & 10/5/10 15:20 & 440 & 2.044 & 2.112 \\
\hline 10/5/10 14:38 & 397 & 2.027 & 2.095 & 10/5/10 14:59 & 419 & 2.061 & 2.129 & 10/5/10 15:20 & 440 & 2.043 & 2.111 \\
\hline 10/5/10 14:38 & 398 & 2.028 & 2.096 & 10/5/10 14:59 & 419 & 2.059 & 2.127 & 10/5/10 15:21 & 440 & 2.041 & 2.109 \\
\hline 10/5/10 14:38 & 398 & 2.029 & 2.097 & 10/5/10 15:00 & 419 & 2.060 & 2.128 & 10/5/10 15:21 & 441 & 2.042 & 2.11 \\
\hline 10/5/10 14:39 & 398 & 2.028 & 2.096 & 10/5/10 15:00 & 420 & 2.061 & 2.129 & 10/5/10 15:21 & 441 & 2.041 & 2.109 \\
\hline 10/5/10 14:39 & 399 & 2.029 & 2.097 & 10/5/10 15:00 & 420 & 2.057 & 2.125 & 10/5/10 15:22 & 441 & 2.042 & 2.11 \\
\hline 10/5/10 14:39 & 399 & 2.032 & 2.1 & 10/5/10 15:01 & 420 & 2.056 & 2.124 & 10/5/10 15:22 & 442 & 2.044 & 2.112 \\
\hline 10/5/10 14:40 & 399 & 2.033 & 2.101 & 10/5/10 15:01 & 421 & 2.057 & 2.125 & 10/5/10 15:22 & 442 & 2.042 & 2.11 \\
\hline 10/5/10 14:40 & 400 & 2.035 & 2.103 & 10/5/10 15:01 & 421 & 2.059 & 2.127 & 10/5/10 15:23 & 442 & 2.050 & 2.118 \\
\hline 10/5/10 14:40 & 400 & 2.034 & 2.102 & 10/5/10 15:02 & 421 & 2.060 & 2.128 & 10/5/10 15:23 & 443 & 2.048 & 2.116 \\
\hline 10/5/10 14:41 & 400 & 2.051 & 2.119 & 10/5/10 15:02 & 422 & 2.074 & 2.142 & 10/5/10 15:23 & 443 & 2.045 & 2.113 \\
\hline 10/5/10 14:41 & 401 & 2.040 & 2.108 & 10/5/10 15:02 & 422 & 2.062 & 2.13 & 10/5/10 15:24 & 443 & 2.045 & 2.113 \\
\hline 10/5/10 14:41 & 401 & 2.035 & 2.103 & 10/5/10 15:03 & 422 & 2.059 & 2.127 & 10/5/10 15:24 & 444 & 2.049 & 2.117 \\
\hline 10/5/10 14:42 & 401 & 2.034 & 2.102 & 10/5/10 15:03 & 423 & 2.064 & 2.132 & 10/5/10 15:24 & 444 & 2.048 & 2.116 \\
\hline 10/5/10 14:42 & 402 & 2.035 & 2.103 & 10/5/10 15:03 & 423 & 2.060 & 2.128 & 10/5/10 15:25 & 444 & 2.052 & 2.12 \\
\hline 10/5/10 14:42 & 402 & 2.035 & 2.103 & 10/5/10 15:04 & 423 & 2.064 & 2.132 & 10/5/10 15:25 & 445 & 2.051 & 2.119 \\
\hline 10/5/10 14:43 & 402 & 2.037 & 2.105 & 10/5/10 15:04 & 424 & 2.062 & 2.13 & 10/5/10 15:25 & 445 & 2.049 & 2.117 \\
\hline 10/5/10 14:43 & 403 & 2.036 & 2.104 & 10/5/10 15:04 & 424 & 2.063 & 2.131 & 10/5/10 15:26 & 445 & 2.046 & 2.114 \\
\hline 10/5/10 14:43 & 403 & 2.046 & 2.114 & 10/5/10 15:05 & 424 & 2.063 & 2.131 & 10/5/10 15:26 & 446 & 2.041 & 2.109 \\
\hline 10/5/10 14:44 & 403 & 2.039 & 2.107 & 10/5/10 15:05 & 425 & 2.065 & 2.133 & 10/5/10 15:26 & 446 & 2.045 & 2.113 \\
\hline 10/5/10 14:44 & 404 & 2.038 & 2.106 & 10/5/10 15:05 & 425 & 2.062 & 2.13 & 10/5/10 15:27 & 446 & 2.045 & 2.113 \\
\hline 10/5/10 14:44 & 404 & 2.050 & 2.118 & 10/5/10 15:06 & 425 & 2.068 & 2.136 & 10/5/10 15:27 & 447 & 2.053 & 2.121 \\
\hline 10/5/10 14:45 & 404 & 2.037 & 2.105 & 10/5/10 15:06 & 426 & 2.071 & 2.139 & 10/5/10 15:27 & 447 & 2.049 & 2.117 \\
\hline 10/5/10 14:45 & 405 & 2.037 & 2.105 & 10/5/10 15:06 & 426 & 2.078 & 2.146 & 10/5/10 15:28 & 447 & 2.047 & 2.115 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 10/5/10 15:28 & 448 & 2.048 & 2.116 & 10/5/10 15:49 & 469 & 2.107 & 2.175 & 10/5/10 16:11 & 490 & 2.131 & 2.199 \\
\hline 10/5/10 15:28 & 448 & 2.046 & 2.114 & 10/5/10 15:50 & 469 & 2.110 & 2.178 & 10/5/10 16:11 & 491 & 2.134 & 2.202 \\
\hline 10/5/10 15:29 & 448 & 2.047 & 2.115 & 10/5/10 15:50 & 470 & 2.108 & 2.176 & 10/5/10 16:11 & 491 & 2.136 & 2.204 \\
\hline 10/5/10 15:29 & 449 & 2.046 & 2.114 & 10/5/10 15:50 & 470 & 2.112 & 2.18 & 10/5/10 16:12 & 491 & 2.136 & 2.204 \\
\hline 10/5/10 15:29 & 449 & 2.047 & 2.115 & 10/5/10 15:51 & 470 & 2.109 & 2.177 & 10/5/10 16:12 & 492 & 2.134 & 2.202 \\
\hline 10/5/10 15:30 & 449 & 2.046 & 2.114 & 10/5/10 15:51 & 471 & 2.109 & 2.177 & 10/5/10 16:12 & 492 & 2.130 & 2.198 \\
\hline 10/5/10 15:30 & 450 & 2.050 & 2.118 & 10/5/10 15:51 & 471 & 2.108 & 2.176 & 10/5/10 16:13 & 492 & 2.131 & 2.199 \\
\hline 10/5/10 15:30 & 450 & 2.048 & 2.116 & 10/5/10 15:52 & 471 & 2.110 & 2.178 & 10/5/10 16:13 & 493 & 2.133 & 2.201 \\
\hline 10/5/10 15:31 & 450 & 2.059 & 2.127 & 10/5/10 15:52 & 472 & 2.113 & 2.181 & 10/5/10 16:13 & 493 & 2.135 & 2.203 \\
\hline 10/5/10 15:31 & 451 & 2.049 & 2.117 & 10/5/10 15:52 & 472 & 2.112 & 2.18 & 10/5/10 16:14 & 493 & 2.137 & 2.205 \\
\hline 10/5/10 15:31 & 451 & 2.047 & 2.115 & 10/5/10 15:53 & 472 & 2.114 & 2.182 & 10/5/10 16:14 & 494 & 2.148 & 2.216 \\
\hline 10/5/10 15:32 & 451 & 2.044 & 2.112 & 10/5/10 15:53 & 473 & 2.111 & 2.179 & 10/5/10 16:14 & 494 & 2.136 & 2.204 \\
\hline 10/5/10 15:32 & 452 & 2.047 & 2.115 & 10/5/10 15:53 & 473 & 2.111 & 2.179 & 10/5/10 16:15 & 494 & 2.133 & 2.201 \\
\hline 10/5/10 15:32 & 452 & 2.050 & 2.118 & 10/5/10 15:54 & 473 & 2.112 & 2.18 & 10/5/10 16:15 & 495 & 2.133 & 2.201 \\
\hline 10/5/10 15:33 & 452 & 2.049 & 2.117 & 10/5/10 15:54 & 474 & 2.109 & 2.177 & 10/5/10 16:15 & 495 & 2.134 & 2.202 \\
\hline 10/5/10 15:33 & 453 & 2.053 & 2.121 & 10/5/10 15:54 & 474 & 2.109 & 2.177 & 10/5/10 16:16 & 495 & 2.138 & 2.206 \\
\hline 10/5/10 15:33 & 453 & 2.059 & 2.127 & 10/5/10 15:55 & 474 & 2.111 & 2.179 & 10/5/10 16:16 & 496 & 2.139 & 2.207 \\
\hline 10/5/10 15:34 & 453 & 2.065 & 2.133 & 10/5/10 15:55 & 475 & 2.111 & 2.179 & 10/5/10 16:16 & 496 & 2.151 & 2.219 \\
\hline 10/5/10 15:34 & 454 & 2.077 & 2.145 & 10/5/10 15:55 & 475 & 2.111 & 2.179 & 10/5/10 16:17 & 496 & 2.139 & 2.207 \\
\hline 10/5/10 15:34 & 454 & 2.065 & 2.133 & 10/5/10 15:56 & 475 & 2.114 & 2.182 & 10/5/10 16:17 & 497 & 2.139 & 2.207 \\
\hline 10/5/10 15:35 & 454 & 2.065 & 2.133 & 10/5/10 15:56 & 476 & 2.114 & 2.182 & 10/5/10 16:17 & 497 & 2.140 & 2.208 \\
\hline 10/5/10 15:35 & 455 & 2.062 & 2.13 & 10/5/10 15:56 & 476 & 2.115 & 2.183 & 10/5/10 16:18 & 497 & 2.138 & 2.206 \\
\hline 10/5/10 15:35 & 455 & 2.062 & 2.13 & 10/5/10 15:57 & 476 & 2.111 & 2.179 & 10/5/10 16:18 & 498 & 2.137 & 2.205 \\
\hline 10/5/10 15:36 & 455 & 2.066 & 2.134 & 10/5/10 15:57 & 477 & 2.117 & 2.185 & 10/5/10 16:18 & 498 & 2.139 & 2.207 \\
\hline 10/5/10 15:36 & 456 & 2.085 & 2.153 & 10/5/10 15:57 & 477 & 2.128 & 2.196 & 10/5/10 16:19 & 498 & 2.144 & 2.212 \\
\hline 10/5/10 15:36 & 456 & 2.111 & 2.179 & 10/5/10 15:58 & 477 & 2.117 & 2.185 & 10/5/10 16:19 & 499 & 2.144 & 2.212 \\
\hline 10/5/10 15:37 & 456 & 2.113 & 2.181 & 10/5/10 15:58 & 478 & 2.119 & 2.187 & 10/5/10 16:19 & 499 & 2.141 & 2.209 \\
\hline 10/5/10 15:37 & 457 & 2.092 & 2.16 & 10/5/10 15:58 & 478 & 2.104 & 2.172 & 10/5/10 16:20 & 499 & 2.148 & 2.216 \\
\hline 10/5/10 15:37 & 457 & 2.091 & 2.159 & 10/5/10 15:59 & 478 & 2.109 & 2.177 & 10/5/10 16:20 & 500 & 2.145 & 2.213 \\
\hline 10/5/10 15:38 & 457 & 2.098 & 2.166 & 10/5/10 15:59 & 479 & 2.120 & 2.188 & 10/5/10 16:20 & 500 & 2.141 & 2.209 \\
\hline 10/5/10 15:38 & 458 & 2.097 & 2.165 & 10/5/10 15:59 & 479 & 2.114 & 2.182 & 10/5/10 16:21 & 500 & 2.146 & 2.214 \\
\hline 10/5/10 15:38 & 458 & 2.101 & 2.169 & 10/5/10 16:00 & 479 & 2.114 & 2.182 & 10/5/10 16:21 & 501 & 2.144 & 2.212 \\
\hline 10/5/10 15:39 & 458 & 2.097 & 2.165 & 10/5/10 16:00 & 480 & 2.116 & 2.184 & 10/5/10 16:21 & 501 & 2.142 & 2.21 \\
\hline 10/5/10 15:39 & 459 & 2.097 & 2.165 & 10/5/10 16:00 & 480 & 2.121 & 2.189 & 10/5/10 16:22 & 501 & 2.139 & 2.207 \\
\hline 10/5/10 15:39 & 459 & 2.099 & 2.167 & 10/5/10 16:01 & 480 & 2.118 & 2.186 & 10/5/10 16:22 & 502 & 2.145 & 2.213 \\
\hline 10/5/10 15:40 & 459 & 2.100 & 2.168 & 10/5/10 16:01 & 481 & 2.120 & 2.188 & 10/5/10 16:22 & 502 & 2.142 & 2.21 \\
\hline 10/5/10 15:40 & 460 & 2.096 & 2.164 & 10/5/10 16:01 & 481 & 2.126 & 2.194 & 10/5/10 16:23 & 502 & 2.144 & 2.212 \\
\hline 10/5/10 15:40 & 460 & 2.104 & 2.172 & 10/5/10 16:02 & 481 & 2.136 & 2.204 & 10/5/10 16:23 & 503 & 2.144 & 2.212 \\
\hline 10/5/10 15:41 & 460 & 2.101 & 2.169 & 10/5/10 16:02 & 482 & 2.124 & 2.192 & 10/5/10 16:23 & 503 & 2.149 & 2.217 \\
\hline 10/5/10 15:41 & 461 & 2.100 & 2.168 & 10/5/10 16:02 & 482 & 2.121 & 2.189 & 10/5/10 16:24 & 503 & 2.149 & 2.217 \\
\hline 10/5/10 15:41 & 461 & 2.106 & 2.174 & 10/5/10 16:03 & 482 & 2.125 & 2.193 & 10/5/10 16:24 & 504 & 2.149 & 2.217 \\
\hline 10/5/10 15:42 & 461 & 2.100 & 2.168 & 10/5/10 16:03 & 483 & 2.120 & 2.188 & 10/5/10 16:24 & 504 & 2.149 & 2.217 \\
\hline 10/5/10 15:42 & 462 & 2.104 & 2.172 & 10/5/10 16:03 & 483 & 2.117 & 2.185 & 10/5/10 16:25 & 504 & 2.151 & 2.219 \\
\hline 10/5/10 15:42 & 462 & 2.102 & 2.17 & 10/5/10 16:04 & 483 & 2.114 & 2.182 & 10/5/10 16:25 & 505 & 2.148 & 2.216 \\
\hline 10/5/10 15:43 & 462 & 2.102 & 2.17 & 10/5/10 16:04 & 484 & 2.121 & 2.189 & 10/5/10 16:25 & 505 & 2.155 & 2.223 \\
\hline 10/5/10 15:43 & 463 & 2.106 & 2.174 & 10/5/10 16:04 & 484 & 2.123 & 2.191 & 10/5/10 16:26 & 505 & 2.149 & 2.217 \\
\hline 10/5/10 15:43 & 463 & 2.107 & 2.175 & 10/5/10 16:05 & 484 & 2.120 & 2.188 & 10/5/10 16:26 & 506 & 2.146 & 2.214 \\
\hline 10/5/10 15:44 & 463 & 2.104 & 2.172 & 10/5/10 16:05 & 485 & 2.123 & 2.191 & 10/5/10 16:26 & 506 & 2.146 & 2.214 \\
\hline 10/5/10 15:44 & 464 & 2.102 & 2.17 & 10/5/10 16:05 & 485 & 2.123 & 2.191 & 10/5/10 16:27 & 506 & 2.149 & 2.217 \\
\hline 10/5/10 15:44 & 464 & 2.103 & 2.171 & 10/5/10 16:06 & 485 & 2.123 & 2.191 & 10/5/10 16:27 & 507 & 2.147 & 2.215 \\
\hline 10/5/10 15:45 & 464 & 2.104 & 2.172 & 10/5/10 16:06 & 486 & 2.137 & 2.205 & 10/5/10 16:27 & 507 & 2.151 & 2.219 \\
\hline 10/5/10 15:45 & 465 & 2.104 & 2.172 & 10/5/10 16:06 & 486 & 2.122 & 2.19 & 10/5/10 16:28 & 507 & 2.144 & 2.212 \\
\hline 10/5/10 15:45 & 465 & 2.104 & 2.172 & 10/5/10 16:07 & 486 & 2.127 & 2.195 & 10/5/10 16:28 & 508 & 2.146 & 2.214 \\
\hline 10/5/10 15:46 & 465 & 2.103 & 2.171 & 10/5/10 16:07 & 487 & 2.121 & 2.189 & 10/5/10 16:28 & 508 & 2.148 & 2.216 \\
\hline 10/5/10 15:46 & 466 & 2.104 & 2.172 & 10/5/10 16:07 & 487 & 2.127 & 2.195 & 10/5/10 16:29 & 508 & 2.147 & 2.215 \\
\hline 10/5/10 15:46 & 466 & 2.110 & 2.178 & 10/5/10 16:08 & 487 & 2.128 & 2.196 & 10/5/10 16:29 & 509 & 2.151 & 2.219 \\
\hline 10/5/10 15:47 & 466 & 2.108 & 2.176 & 10/5/10 16:08 & 488 & 2.125 & 2.193 & 10/5/10 16:29 & 509 & 2.148 & 2.216 \\
\hline 10/5/10 15:47 & 467 & 2.104 & 2.172 & 10/5/10 16:08 & 488 & 2.126 & 2.194 & 10/5/10 16:30 & 509 & 2.147 & 2.215 \\
\hline 10/5/10 15:47 & 467 & 2.112 & 2.18 & 10/5/10 16:09 & 488 & 2.121 & 2.189 & 10/5/10 16:30 & 510 & 2.151 & 2.219 \\
\hline 10/5/10 15:48 & 467 & 2.110 & 2.178 & 10/5/10 16:09 & 489 & 2.130 & 2.198 & 10/5/10 16:30 & 510 & 2.151 & 2.219 \\
\hline 10/5/10 15:48 & 468 & 2.110 & 2.178 & 10/5/10 16:09 & 489 & 2.130 & 2.198 & 10/5/10 16:31 & 510 & 2.152 & 2.22 \\
\hline 10/5/10 15:48 & 468 & 2.108 & 2.176 & 10/5/10 16:10 & 489 & 2.132 & 2.2 & 10/5/10 16:31 & 511 & 2.155 & 2.223 \\
\hline 10/5/10 15:49 & 468 & 2.107 & 2.175 & 10/5/10 16:10 & 490 & 2.134 & 2.202 & 10/5/10 16:31 & 511 & 2.154 & 2.222 \\
\hline 10/5/10 15:49 & 469 & 2.107 & 2.175 & 10/5/10 16:10 & 490 & 2.130 & 2.198 & 10/5/10 16:32 & 511 & 2.154 & 2.222 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 10/5/10 16:32 & 512 & 2.156 & 2.224 & 10/5/10 16:53 & 533 & 2.176 & 2.244 & 10/5/10 17:15 & 554 & 2.205 & 2.273 \\
\hline 10/5/10 16:32 & 512 & 2.156 & 2.224 & 10/5/10 16:54 & 533 & 2.178 & 2.246 & 10/5/10 17:15 & 555 & 2.216 & 2.284 \\
\hline 10/5/10 16:33 & 512 & 2.156 & 2.224 & 10/5/10 16:54 & 534 & 2.177 & 2.245 & 10/5/10 17:15 & 555 & 2.214 & 2.282 \\
\hline 10/5/10 16:33 & 513 & 2.155 & 2.223 & 10/5/10 16:54 & 534 & 2.179 & 2.247 & 10/5/10 17:16 & 555 & 2.206 & 2.274 \\
\hline 10/5/10 16:33 & 513 & 2.163 & 2.231 & 10/5/10 16:55 & 534 & 2.181 & 2.249 & 10/5/10 17:16 & 556 & 2.207 & 2.275 \\
\hline 10/5/10 16:34 & 513 & 2.167 & 2.235 & 10/5/10 16:55 & 535 & 2.177 & 2.245 & 10/5/10 17:16 & 556 & 2.207 & 2.275 \\
\hline 10/5/10 16:34 & 514 & 2.161 & 2.229 & 10/5/10 16:55 & 535 & 2.178 & 2.246 & 10/5/10 17:17 & 556 & 2.209 & 2.277 \\
\hline 10/5/10 16:34 & 514 & 2.162 & 2.23 & 10/5/10 16:56 & 535 & 2.192 & 2.26 & 10/5/10 17:17 & 557 & 2.211 & 2.279 \\
\hline 10/5/10 16:35 & 514 & 2.162 & 2.23 & 10/5/10 16:56 & 536 & 2.180 & 2.248 & 10/5/10 17:17 & 557 & 2.213 & 2.281 \\
\hline 10/5/10 16:35 & 515 & 2.161 & 2.229 & 10/5/10 16:56 & 536 & 2.183 & 2.251 & 10/5/10 17:18 & 557 & 2.212 & 2.28 \\
\hline 10/5/10 16:35 & 515 & 2.160 & 2.228 & 10/5/10 16:57 & 536 & 2.183 & 2.251 & 10/5/10 17:18 & 558 & 2.211 & 2.279 \\
\hline 10/5/10 16:36 & 515 & 2.161 & 2.229 & 10/5/10 16:57 & 537 & 2.184 & 2.252 & 10/5/10 17:18 & 558 & 2.208 & 2.276 \\
\hline 10/5/10 16:36 & 516 & 2.168 & 2.236 & 10/5/10 16:57 & 537 & 2.185 & 2.253 & 10/5/10 17:19 & 558 & 2.220 & 2.288 \\
\hline 10/5/10 16:36 & 516 & 2.163 & 2.231 & 10/5/10 16:58 & 537 & 2.186 & 2.254 & 10/5/10 17:19 & 559 & 2.216 & 2.284 \\
\hline 10/5/10 16:37 & 516 & 2.159 & 2.227 & 10/5/10 16:58 & 538 & 2.186 & 2.254 & 10/5/10 17:19 & 559 & 2.213 & 2.281 \\
\hline 10/5/10 16:37 & 517 & 2.158 & 2.226 & 10/5/10 16:58 & 538 & 2.183 & 2.251 & 10/5/10 17:20 & 559 & 2.218 & 2.286 \\
\hline 10/5/10 16:37 & 517 & 2.165 & 2.233 & 10/5/10 16:59 & 538 & 2.183 & 2.251 & 10/5/10 17:20 & 560 & 2.214 & 2.282 \\
\hline 10/5/10 16:38 & 517 & 2.166 & 2.234 & 10/5/10 16:59 & 539 & 2.180 & 2.248 & 10/5/10 17:20 & 560 & 2.206 & 2.274 \\
\hline 10/5/10 16:38 & 518 & 2.158 & 2.226 & 10/5/10 16:59 & 539 & 2.184 & 2.252 & 10/5/10 17:21 & 560 & 2.207 & 2.275 \\
\hline 10/5/10 16:38 & 518 & 2.162 & 2.23 & 10/5/10 17:00 & 539 & 2.187 & 2.255 & 10/5/10 17:21 & 561 & 2.212 & 2.28 \\
\hline 10/5/10 16:39 & 518 & 2.159 & 2.227 & 10/5/10 17:00 & 540 & 2.186 & 2.254 & 10/5/10 17:21 & 561 & 2.216 & 2.284 \\
\hline 10/5/10 16:39 & 519 & 2.163 & 2.231 & 10/5/10 17:00 & 540 & 2.185 & 2.253 & 10/5/10 17:22 & 561 & 2.218 & 2.286 \\
\hline 10/5/10 16:39 & 519 & 2.168 & 2.236 & 10/5/10 17:01 & 540 & 2.182 & 2.25 & 10/5/10 17:22 & 562 & 2.215 & 2.283 \\
\hline 10/5/10 16:40 & 519 & 2.163 & 2.231 & 10/5/10 17:01 & 541 & 2.189 & 2.257 & 10/5/10 17:22 & 562 & 2.215 & 2.283 \\
\hline 10/5/10 16:40 & 520 & 2.159 & 2.227 & 10/5/10 17:01 & 541 & 2.190 & 2.258 & 10/5/10 17:23 & 562 & 2.218 & 2.286 \\
\hline 10/5/10 16:40 & 520 & 2.164 & 2.232 & 10/5/10 17:02 & 541 & 2.187 & 2.255 & 10/5/10 17:23 & 563 & 2.232 & 2.3 \\
\hline 10/5/10 16:41 & 520 & 2.161 & 2.229 & 10/5/10 17:02 & 542 & 2.185 & 2.253 & 10/5/10 17:23 & 563 & 2.212 & 2.28 \\
\hline 10/5/10 16:41 & 521 & 2.161 & 2.229 & 10/5/10 17:02 & 542 & 2.187 & 2.255 & 10/5/10 17:24 & 563 & 2.213 & 2.281 \\
\hline 10/5/10 16:41 & 521 & 2.159 & 2.227 & 10/5/10 17:03 & 542 & 2.199 & 2.267 & 10/5/10 17:24 & 564 & 2.217 & 2.285 \\
\hline 10/5/10 16:42 & 521 & 2.157 & 2.225 & 10/5/10 17:03 & 543 & 2.197 & 2.265 & 10/5/10 17:24 & 564 & 2.226 & 2.294 \\
\hline 10/5/10 16:42 & 522 & 2.159 & 2.227 & 10/5/10 17:03 & 543 & 2.186 & 2.254 & 10/5/10 17:25 & 564 & 2.215 & 2.283 \\
\hline 10/5/10 16:42 & 522 & 2.165 & 2.233 & 10/5/10 17:04 & 543 & 2.183 & 2.251 & 10/5/10 17:25 & 565 & 2.220 & 2.288 \\
\hline 10/5/10 16:43 & 522 & 2.163 & 2.231 & 10/5/10 17:04 & 544 & 2.184 & 2.252 & 10/5/10 17:25 & 565 & 2.219 & 2.287 \\
\hline 10/5/10 16:43 & 523 & 2.163 & 2.231 & 10/5/10 17:04 & 544 & 2.183 & 2.251 & 10/5/10 17:26 & 565 & 2.222 & 2.29 \\
\hline 10/5/10 16:43 & 523 & 2.165 & 2.233 & 10/5/10 17:05 & 544 & 2.187 & 2.255 & 10/5/10 17:26 & 566 & 2.219 & 2.287 \\
\hline 10/5/10 16:44 & 523 & 2.159 & 2.227 & 10/5/10 17:05 & 545 & 2.187 & 2.255 & 10/5/10 17:26 & 566 & 2.219 & 2.287 \\
\hline 10/5/10 16:44 & 524 & 2.165 & 2.233 & 10/5/10 17:05 & 545 & 2.188 & 2.256 & 10/5/10 17:27 & 566 & 2.222 & 2.29 \\
\hline 10/5/10 16:44 & 524 & 2.164 & 2.232 & 10/5/10 17:06 & 545 & 2.202 & 2.27 & 10/5/10 17:27 & 567 & 2.221 & 2.289 \\
\hline 10/5/10 16:45 & 524 & 2.163 & 2.231 & 10/5/10 17:06 & 546 & 2.188 & 2.256 & 10/5/10 17:27 & 567 & 2.220 & 2.288 \\
\hline 10/5/10 16:45 & 525 & 2.165 & 2.233 & 10/5/10 17:06 & 546 & 2.187 & 2.255 & 10/5/10 17:28 & 567 & 2.221 & 2.289 \\
\hline 10/5/10 16:45 & 525 & 2.165 & 2.233 & 10/5/10 17:07 & 546 & 2.188 & 2.256 & 10/5/10 17:28 & 568 & 2.221 & 2.289 \\
\hline 10/5/10 16:46 & 525 & 2.164 & 2.232 & 10/5/10 17:07 & 547 & 2.193 & 2.261 & 10/5/10 17:28 & 568 & 2.222 & 2.29 \\
\hline 10/5/10 16:46 & 526 & 2.166 & 2.234 & 10/5/10 17:07 & 547 & 2.199 & 2.267 & 10/5/10 17:29 & 568 & 2.221 & 2.289 \\
\hline 10/5/10 16:46 & 526 & 2.165 & 2.233 & 10/5/10 17:08 & 547 & 2.189 & 2.257 & 10/5/10 17:29 & 569 & 2.222 & 2.29 \\
\hline 10/5/10 16:47 & 526 & 2.166 & 2.234 & 10/5/10 17:08 & 548 & 2.192 & 2.26 & 10/5/10 17:29 & 569 & 2.214 & 2.282 \\
\hline 10/5/10 16:47 & 527 & 2.166 & 2.234 & 10/5/10 17:08 & 548 & 2.190 & 2.258 & 10/5/10 17:30 & 569 & 2.221 & 2.289 \\
\hline 10/5/10 16:47 & 527 & 2.163 & 2.231 & 10/5/10 17:09 & 548 & 2.191 & 2.259 & 10/5/10 17:30 & 570 & 2.220 & 2.288 \\
\hline 10/5/10 16:48 & 527 & 2.165 & 2.233 & 10/5/10 17:09 & 549 & 2.193 & 2.261 & 10/5/10 17:30 & 570 & 2.219 & 2.287 \\
\hline 10/5/10 16:48 & 528 & 2.167 & 2.235 & 10/5/10 17:09 & 549 & 2.189 & 2.257 & 10/5/10 17:31 & 570 & 2.215 & 2.283 \\
\hline 10/5/10 16:48 & 528 & 2.165 & 2.233 & 10/5/10 17:10 & 549 & 2.190 & 2.258 & 10/5/10 17:31 & 571 & 2.213 & 2.281 \\
\hline 10/5/10 16:49 & 528 & 2.167 & 2.235 & 10/5/10 17:10 & 550 & 2.192 & 2.26 & 10/5/10 17:31 & 571 & 2.216 & 2.284 \\
\hline 10/5/10 16:49 & 529 & 2.166 & 2.234 & 10/5/10 17:10 & 550 & 2.191 & 2.259 & 10/5/10 17:32 & 571 & 2.219 & 2.287 \\
\hline 10/5/10 16:49 & 529 & 2.167 & 2.235 & 10/5/10 17:11 & 550 & 2.191 & 2.259 & 10/5/10 17:32 & 572 & 2.215 & 2.283 \\
\hline 10/5/10 16:50 & 529 & 2.181 & 2.249 & 10/5/10 17:11 & 551 & 2.190 & 2.258 & 10/5/10 17:32 & 572 & 2.217 & 2.285 \\
\hline 10/5/10 16:50 & 530 & 2.169 & 2.237 & 10/5/10 17:11 & 551 & 2.203 & 2.271 & 10/5/10 17:33 & 572 & 2.218 & 2.286 \\
\hline 10/5/10 16:50 & 530 & 2.171 & 2.239 & 10/5/10 17:12 & 551 & 2.195 & 2.263 & 10/5/10 17:33 & 573 & 2.225 & 2.293 \\
\hline 10/5/10 16:51 & 530 & 2.170 & 2.238 & 10/5/10 17:12 & 552 & 2.197 & 2.265 & 10/5/10 17:33 & 573 & 2.221 & 2.289 \\
\hline 10/5/10 16:51 & 531 & 2.169 & 2.237 & 10/5/10 17:12 & 552 & 2.199 & 2.267 & 10/5/10 17:34 & 573 & 2.220 & 2.288 \\
\hline 10/5/10 16:51 & 531 & 2.176 & 2.244 & 10/5/10 17:13 & 552 & 2.201 & 2.269 & 10/5/10 17:34 & 574 & 2.221 & 2.289 \\
\hline 10/5/10 16:52 & 531 & 2.176 & 2.244 & 10/5/10 17:13 & 553 & 2.200 & 2.268 & 10/5/10 17:34 & 574 & 2.221 & 2.289 \\
\hline 10/5/10 16:52 & 532 & 2.176 & 2.244 & 10/5/10 17:13 & 553 & 2.198 & 2.266 & 10/5/10 17:35 & 574 & 2.224 & 2.292 \\
\hline 10/5/10 16:52 & 532 & 2.179 & 2.247 & 10/5/10 17:14 & 553 & 2.203 & 2.271 & 10/5/10 17:35 & 575 & 2.223 & 2.291 \\
\hline 10/5/10 16:53 & 532 & 2.177 & 2.245 & 10/5/10 17:14 & 554 & 2.204 & 2.272 & 10/5/10 17:35 & 575 & 2.235 & 2.303 \\
\hline 10/5/10 16:53 & 533 & 2.187 & 2.255 & 10/5/10 17:14 & 554 & 2.203 & 2.271 & 10/5/10 17:36 & 575 & 2.225 & 2.293 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 10/5/10 17:36 & 576 & 2.228 & 2.296 & 10/5/10 17:57 & 597 & 2.259 & 2.327 & 10/5/10 18:19 & 618 & 2.265 & 2.333 \\
\hline 10/5/10 17:36 & 576 & 2.230 & 2.298 & 10/5/10 17:58 & 597 & 2.246 & 2.314 & 10/5/10 18:19 & 619 & 2.262 & 2.33 \\
\hline 10/5/10 17:37 & 576 & 2.229 & 2.297 & 10/5/10 17:58 & 598 & 2.249 & 2.317 & 10/5/10 18:19 & 619 & 2.249 & 2.317 \\
\hline 10/5/10 17:37 & 577 & 2.225 & 2.293 & 10/5/10 17:58 & 598 & 2.246 & 2.314 & 10/5/10 18:20 & 619 & 2.251 & 2.319 \\
\hline 10/5/10 17:37 & 577 & 2.226 & 2.294 & 10/5/10 17:59 & 598 & 2.246 & 2.314 & 10/5/10 18:20 & 620 & 2.262 & 2.33 \\
\hline 10/5/10 17:38 & 577 & 2.223 & 2.291 & 10/5/10 17:59 & 599 & 2.245 & 2.313 & 10/5/10 18:20 & 620 & 2.261 & 2.329 \\
\hline 10/5/10 17:38 & 578 & 2.228 & 2.296 & 10/5/10 17:59 & 599 & 2.248 & 2.316 & 10/5/10 18:21 & 620 & 2.258 & 2.326 \\
\hline 10/5/10 17:38 & 578 & 2.227 & 2.295 & 10/5/10 18:00 & 599 & 2.251 & 2.319 & 10/5/10 18:21 & 621 & 2.259 & 2.327 \\
\hline 10/5/10 17:39 & 578 & 2.228 & 2.296 & 10/5/10 18:00 & 600 & 2.254 & 2.322 & 10/5/10 18:21 & 621 & 2.256 & 2.324 \\
\hline 10/5/10 17:39 & 579 & 2.233 & 2.301 & 10/5/10 18:00 & 600 & 2.256 & 2.324 & 10/5/10 18:22 & 621 & 2.258 & 2.326 \\
\hline 10/5/10 17:39 & 579 & 2.237 & 2.305 & 10/5/10 18:01 & 600 & 2.251 & 2.319 & 10/5/10 18:22 & 622 & 2.257 & 2.325 \\
\hline 10/5/10 17:40 & 579 & 2.231 & 2.299 & 10/5/10 18:01 & 601 & 2.252 & 2.32 & 10/5/10 18:22 & 622 & 2.264 & 2.332 \\
\hline 10/5/10 17:40 & 580 & 2.231 & 2.299 & 10/5/10 18:01 & 601 & 2.253 & 2.321 & 10/5/10 18:23 & 622 & 2.258 & 2.326 \\
\hline 10/5/10 17:40 & 580 & 2.231 & 2.299 & 10/5/10 18:02 & 601 & 2.257 & 2.325 & 10/5/10 18:23 & 623 & 2.262 & 2.33 \\
\hline 10/5/10 17:41 & 580 & 2.240 & 2.308 & 10/5/10 18:02 & 602 & 2.253 & 2.321 & 10/5/10 18:23 & 623 & 2.264 & 2.332 \\
\hline 10/5/10 17:41 & 581 & 2.232 & 2.3 & 10/5/10 18:02 & 602 & 2.254 & 2.322 & 10/5/10 18:24 & 623 & 2.264 & 2.332 \\
\hline 10/5/10 17:41 & 581 & 2.233 & 2.301 & 10/5/10 18:03 & 602 & 2.260 & 2.328 & 10/5/10 18:24 & 624 & 2.258 & 2.326 \\
\hline 10/5/10 17:42 & 581 & 2.236 & 2.304 & 10/5/10 18:03 & 603 & 2.272 & 2.34 & 10/5/10 18:24 & 624 & 2.258 & 2.326 \\
\hline 10/5/10 17:42 & 582 & 2.233 & 2.301 & 10/5/10 18:03 & 603 & 2.270 & 2.338 & 10/5/10 18:25 & 624 & 2.258 & 2.326 \\
\hline 10/5/10 17:42 & 582 & 2.237 & 2.305 & 10/5/10 18:04 & 603 & 2.262 & 2.33 & 10/5/10 18:25 & 625 & 2.261 & 2.329 \\
\hline 10/5/10 17:43 & 582 & 2.237 & 2.305 & 10/5/10 18:04 & 604 & 2.259 & 2.327 & 10/5/10 18:25 & 625 & 2.261 & 2.329 \\
\hline 10/5/10 17:43 & 583 & 2.249 & 2.317 & 10/5/10 18:04 & 604 & 2.271 & 2.339 & 10/5/10 18:26 & 625 & 2.259 & 2.327 \\
\hline 10/5/10 17:43 & 583 & 2.247 & 2.315 & 10/5/10 18:05 & 604 & 2.262 & 2.33 & 10/5/10 18:26 & 626 & 2.266 & 2.334 \\
\hline 10/5/10 17:44 & 583 & 2.238 & 2.306 & 10/5/10 18:05 & 605 & 2.259 & 2.327 & 10/5/10 18:26 & 626 & 2.266 & 2.334 \\
\hline 10/5/10 17:44 & 584 & 2.240 & 2.308 & 10/5/10 18:05 & 605 & 2.258 & 2.326 & 10/5/10 18:27 & 626 & 2.268 & 2.336 \\
\hline 10/5/10 17:44 & 584 & 2.240 & 2.308 & 10/5/10 18:06 & 605 & 2.255 & 2.323 & 10/5/10 18:27 & 627 & 2.270 & 2.338 \\
\hline 10/5/10 17:45 & 584 & 2.237 & 2.305 & 10/5/10 18:06 & 606 & 2.259 & 2.327 & 10/5/10 18:27 & 627 & 2.264 & 2.332 \\
\hline 10/5/10 17:45 & 585 & 2.242 & 2.31 & 10/5/10 18:06 & 606 & 2.268 & 2.336 & 10/5/10 18:28 & 627 & 2.267 & 2.335 \\
\hline 10/5/10 17:45 & 585 & 2.246 & 2.314 & 10/5/10 18:07 & 606 & 2.260 & 2.328 & 10/5/10 18:28 & 628 & 2.266 & 2.334 \\
\hline 10/5/10 17:46 & 585 & 2.243 & 2.311 & 10/5/10 18:07 & 607 & 2.263 & 2.331 & 10/5/10 18:28 & 628 & 2.273 & 2.341 \\
\hline 10/5/10 17:46 & 586 & 2.239 & 2.307 & 10/5/10 18:07 & 607 & 2.278 & 2.346 & 10/5/10 18:29 & 628 & 2.261 & 2.329 \\
\hline 10/5/10 17:46 & 586 & 2.240 & 2.308 & 10/5/10 18:08 & 607 & 2.265 & 2.333 & 10/5/10 18:29 & 629 & 2.272 & 2.34 \\
\hline 10/5/10 17:47 & 586 & 2.239 & 2.307 & 10/5/10 18:08 & 608 & 2.272 & 2.34 & 10/5/10 18:29 & 629 & 2.267 & 2.335 \\
\hline 10/5/10 17:47 & 587 & 2.236 & 2.304 & 10/5/10 18:08 & 608 & 2.262 & 2.33 & 10/5/10 18:30 & 629 & 2.267 & 2.335 \\
\hline 10/5/10 17:47 & 587 & 2.234 & 2.302 & 10/5/10 18:09 & 608 & 2.272 & 2.34 & 10/5/10 18:30 & 630 & 2.266 & 2.334 \\
\hline 10/5/10 17:48 & 587 & 2.249 & 2.317 & 10/5/10 18:09 & 609 & 2.264 & 2.332 & 10/5/10 18:30 & 630 & 2.268 & 2.336 \\
\hline 10/5/10 17:48 & 588 & 2.251 & 2.319 & 10/5/10 18:09 & 609 & 2.264 & 2.332 & 10/5/10 18:31 & 630 & 2.267 & 2.335 \\
\hline 10/5/10 17:48 & 588 & 2.243 & 2.311 & 10/5/10 18:10 & 609 & 2.261 & 2.329 & 10/5/10 18:31 & 631 & 2.267 & 2.335 \\
\hline 10/5/10 17:49 & 588 & 2.242 & 2.31 & 10/5/10 18:10 & 610 & 2.258 & 2.326 & 10/5/10 18:31 & 631 & 2.269 & 2.337 \\
\hline 10/5/10 17:49 & 589 & 2.243 & 2.311 & 10/5/10 18:10 & 610 & 2.263 & 2.331 & 10/5/10 18:32 & 631 & 2.265 & 2.333 \\
\hline 10/5/10 17:49 & 589 & 2.244 & 2.312 & 10/5/10 18:11 & 610 & 2.272 & 2.34 & 10/5/10 18:32 & 632 & 2.264 & 2.332 \\
\hline 10/5/10 17:50 & 589 & 2.245 & 2.313 & 10/5/10 18:11 & 611 & 2.267 & 2.335 & 10/5/10 18:32 & 632 & 2.267 & 2.335 \\
\hline 10/5/10 17:50 & 590 & 2.237 & 2.305 & 10/5/10 18:11 & 611 & 2.268 & 2.336 & 10/5/10 18:33 & 632 & 2.272 & 2.34 \\
\hline 10/5/10 17:50 & 590 & 2.240 & 2.308 & 10/5/10 18:12 & 611 & 2.265 & 2.333 & 10/5/10 18:33 & 633 & 2.273 & 2.341 \\
\hline 10/5/10 17:51 & 590 & 2.237 & 2.305 & 10/5/10 18:12 & 612 & 2.265 & 2.333 & 10/5/10 18:33 & 633 & 2.270 & 2.338 \\
\hline 10/5/10 17:51 & 591 & 2.244 & 2.312 & 10/5/10 18:12 & 612 & 2.269 & 2.337 & 10/5/10 18:34 & 633 & 2.273 & 2.341 \\
\hline 10/5/10 17:51 & 591 & 2.241 & 2.309 & 10/5/10 18:13 & 612 & 2.268 & 2.336 & 10/5/10 18:34 & 634 & 2.270 & 2.338 \\
\hline 10/5/10 17:52 & 591 & 2.240 & 2.308 & 10/5/10 18:13 & 613 & 2.272 & 2.34 & 10/5/10 18:34 & 634 & 2.277 & 2.345 \\
\hline 10/5/10 17:52 & 592 & 2.246 & 2.314 & 10/5/10 18:13 & 613 & 2.273 & 2.341 & 10/5/10 18:35 & 634 & 2.287 & 2.355 \\
\hline 10/5/10 17:52 & 592 & 2.246 & 2.314 & 10/5/10 18:14 & 613 & 2.275 & 2.343 & 10/5/10 18:35 & 635 & 2.270 & 2.338 \\
\hline 10/5/10 17:53 & 592 & 2.249 & 2.317 & 10/5/10 18:14 & 614 & 2.285 & 2.353 & 10/5/10 18:35 & 635 & 2.276 & 2.344 \\
\hline 10/5/10 17:53 & 593 & 2.245 & 2.313 & 10/5/10 18:14 & 614 & 2.268 & 2.336 & 10/5/10 18:36 & 635 & 2.273 & 2.341 \\
\hline 10/5/10 17:53 & 593 & 2.245 & 2.313 & 10/5/10 18:15 & 614 & 2.273 & 2.341 & 10/5/10 18:36 & 636 & 2.272 & 2.34 \\
\hline 10/5/10 17:54 & 593 & 2.245 & 2.313 & 10/5/10 18:15 & 615 & 2.275 & 2.343 & 10/5/10 18:36 & 636 & 2.289 & 2.357 \\
\hline 10/5/10 17:54 & 594 & 2.249 & 2.317 & 10/5/10 18:15 & 615 & 2.273 & 2.341 & 10/5/10 18:37 & 636 & 2.276 & 2.344 \\
\hline 10/5/10 17:54 & 594 & 2.244 & 2.312 & 10/5/10 18:16 & 615 & 2.275 & 2.343 & 10/5/10 18:37 & 637 & 2.278 & 2.346 \\
\hline 10/5/10 17:55 & 594 & 2.246 & 2.314 & 10/5/10 18:16 & 616 & 2.276 & 2.344 & 10/5/10 18:37 & 637 & 2.273 & 2.341 \\
\hline 10/5/10 17:55 & 595 & 2.249 & 2.317 & 10/5/10 18:16 & 616 & 2.275 & 2.343 & 10/5/10 18:38 & 637 & 2.276 & 2.344 \\
\hline 10/5/10 17:55 & 595 & 2.258 & 2.326 & 10/5/10 18:17 & 616 & 2.276 & 2.344 & 10/5/10 18:38 & 638 & 2.275 & 2.343 \\
\hline 10/5/10 17:56 & 595 & 2.245 & 2.313 & 10/5/10 18:17 & 617 & 2.271 & 2.339 & 10/5/10 18:38 & 638 & 2.275 & 2.343 \\
\hline 10/5/10 17:56 & 596 & 2.246 & 2.314 & 10/5/10 18:17 & 617 & 2.269 & 2.337 & 10/5/10 18:39 & 638 & 2.289 & 2.357 \\
\hline 10/5/10 17:56 & 596 & 2.246 & 2.314 & 10/5/10 18:18 & 617 & 2.269 & 2.337 & 10/5/10 18:39 & 639 & 2.298 & 2.366 \\
\hline 10/5/10 17:57 & 596 & 2.251 & 2.319 & 10/5/10 18:18 & 618 & 2.248 & 2.316 & 10/5/10 18:39 & 639 & 2.296 & 2.364 \\
\hline 10/5/10 17:57 & 597 & 2.248 & 2.316 & 10/5/10 18:18 & 618 & 2.269 & 2.337 & 10/5/10 18:40 & 639 & 2.275 & 2.343 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 10/5/10 18:40 & 640 & 2.282 & 2.35 & 10/5/10 19:01 & 661 & 2.302 & 2.37 & 10/5/10 19:23 & 682 & 2.319 & 2.387 \\
\hline 10/5/10 18:40 & 640 & 2.282 & 2.35 & 10/5/10 19:02 & 661 & 2.303 & 2.371 & 10/5/10 19:23 & 683 & 2.319 & 2.387 \\
\hline 10/5/10 18:41 & 640 & 2.282 & 2.35 & 10/5/10 19:02 & 662 & 2.306 & 2.374 & 10/5/10 19:23 & 683 & 2.321 & 2.389 \\
\hline 10/5/10 18:41 & 641 & 2.286 & 2.354 & 10/5/10 19:02 & 662 & 2.307 & 2.375 & 10/5/10 19:24 & 683 & 2.321 & 2.389 \\
\hline 10/5/10 18:41 & 641 & 2.285 & 2.353 & 10/5/10 19:03 & 662 & 2.306 & 2.374 & 10/5/10 19:24 & 684 & 2.323 & 2.391 \\
\hline 10/5/10 18:42 & 641 & 2.281 & 2.349 & 10/5/10 19:03 & 663 & 2.305 & 2.373 & 10/5/10 19:24 & 684 & 2.322 & 2.39 \\
\hline 10/5/10 18:42 & 642 & 2.276 & 2.344 & 10/5/10 19:03 & 663 & 2.305 & 2.373 & 10/5/10 19:25 & 684 & 2.324 & 2.392 \\
\hline 10/5/10 18:42 & 642 & 2.282 & 2.35 & 10/5/10 19:04 & 663 & 2.307 & 2.375 & 10/5/10 19:25 & 685 & 2.328 & 2.396 \\
\hline 10/5/10 18:43 & 642 & 2.281 & 2.349 & 10/5/10 19:04 & 664 & 2.304 & 2.372 & 10/5/10 19:25 & 685 & 2.328 & 2.396 \\
\hline 10/5/10 18:43 & 643 & 2.284 & 2.352 & 10/5/10 19:04 & 664 & 2.306 & 2.374 & 10/5/10 19:26 & 685 & 2.324 & 2.392 \\
\hline 10/5/10 18:43 & 643 & 2.281 & 2.349 & 10/5/10 19:05 & 664 & 2.307 & 2.375 & 10/5/10 19:26 & 686 & 2.325 & 2.393 \\
\hline 10/5/10 18:44 & 643 & 2.277 & 2.345 & 10/5/10 19:05 & 665 & 2.308 & 2.376 & 10/5/10 19:26 & 686 & 2.328 & 2.396 \\
\hline 10/5/10 18:44 & 644 & 2.281 & 2.349 & 10/5/10 19:05 & 665 & 2.310 & 2.378 & 10/5/10 19:27 & 686 & 2.325 & 2.393 \\
\hline 10/5/10 18:44 & 644 & 2.293 & 2.361 & 10/5/10 19:06 & 665 & 2.309 & 2.377 & 10/5/10 19:27 & 687 & 2.329 & 2.397 \\
\hline 10/5/10 18:45 & 644 & 2.282 & 2.35 & 10/5/10 19:06 & 666 & 2.312 & 2.38 & 10/5/10 19:27 & 687 & 2.326 & 2.394 \\
\hline 10/5/10 18:45 & 645 & 2.283 & 2.351 & 10/5/10 19:06 & 666 & 2.314 & 2.382 & 10/5/10 19:28 & 687 & 2.327 & 2.395 \\
\hline 10/5/10 18:45 & 645 & 2.281 & 2.349 & 10/5/10 19:07 & 666 & 2.310 & 2.378 & 10/5/10 19:28 & 688 & 2.327 & 2.395 \\
\hline 10/5/10 18:46 & 645 & 2.280 & 2.348 & 10/5/10 19:07 & 667 & 2.312 & 2.38 & 10/5/10 19:28 & 688 & 2.326 & 2.394 \\
\hline 10/5/10 18:46 & 646 & 2.280 & 2.348 & 10/5/10 19:07 & 667 & 2.312 & 2.38 & 10/5/10 19:29 & 688 & 2.329 & 2.397 \\
\hline 10/5/10 18:46 & 646 & 2.281 & 2.349 & 10/5/10 19:08 & 667 & 2.308 & 2.376 & 10/5/10 19:29 & 689 & 2.331 & 2.399 \\
\hline 10/5/10 18:47 & 646 & 2.284 & 2.352 & 10/5/10 19:08 & 668 & 2.312 & 2.38 & 10/5/10 19:29 & 689 & 2.335 & 2.403 \\
\hline 10/5/10 18:47 & 647 & 2.285 & 2.353 & 10/5/10 19:08 & 668 & 2.315 & 2.383 & 10/5/10 19:30 & 689 & 2.333 & 2.401 \\
\hline 10/5/10 18:47 & 647 & 2.282 & 2.35 & 10/5/10 19:09 & 668 & 2.312 & 2.38 & 10/5/10 19:30 & 690 & 2.330 & 2.398 \\
\hline 10/5/10 18:48 & 647 & 2.297 & 2.365 & 10/5/10 19:09 & 669 & 2.311 & 2.379 & 10/5/10 19:30 & 690 & 2.336 & 2.404 \\
\hline 10/5/10 18:48 & 648 & 2.284 & 2.352 & 10/5/10 19:09 & 669 & 2.309 & 2.377 & 10/5/10 19:31 & 690 & 2.338 & 2.406 \\
\hline 10/5/10 18:48 & 648 & 2.283 & 2.351 & 10/5/10 19:10 & 669 & 2.313 & 2.381 & 10/5/10 19:31 & 691 & 2.336 & 2.404 \\
\hline 10/5/10 18:49 & 648 & 2.290 & 2.358 & 10/5/10 19:10 & 670 & 2.311 & 2.379 & 10/5/10 19:31 & 691 & 2.334 & 2.402 \\
\hline 10/5/10 18:49 & 649 & 2.303 & 2.371 & 10/5/10 19:10 & 670 & 2.312 & 2.38 & 10/5/10 19:32 & 691 & 2.331 & 2.399 \\
\hline 10/5/10 18:49 & 649 & 2.298 & 2.366 & 10/5/10 19:11 & 670 & 2.316 & 2.384 & 10/5/10 19:32 & 692 & 2.334 & 2.402 \\
\hline 10/5/10 18:50 & 649 & 2.291 & 2.359 & 10/5/10 19:11 & 671 & 2.315 & 2.383 & 10/5/10 19:32 & 692 & 2.338 & 2.406 \\
\hline 10/5/10 18:50 & 650 & 2.290 & 2.358 & 10/5/10 19:11 & 671 & 2.317 & 2.385 & 10/5/10 19:33 & 692 & 2.343 & 2.411 \\
\hline 10/5/10 18:50 & 650 & 2.288 & 2.356 & 10/5/10 19:12 & 671 & 2.316 & 2.384 & 10/5/10 19:33 & 693 & 2.335 & 2.403 \\
\hline 10/5/10 18:51 & 650 & 2.297 & 2.365 & 10/5/10 19:12 & 672 & 2.314 & 2.382 & 10/5/10 19:33 & 693 & 2.344 & 2.412 \\
\hline 10/5/10 18:51 & 651 & 2.289 & 2.357 & 10/5/10 19:12 & 672 & 2.312 & 2.38 & 10/5/10 19:34 & 693 & 2.349 & 2.417 \\
\hline 10/5/10 18:51 & 651 & 2.297 & 2.365 & 10/5/10 19:13 & 672 & 2.317 & 2.385 & 10/5/10 19:34 & 694 & 2.345 & 2.413 \\
\hline 10/5/10 18:52 & 651 & 2.294 & 2.362 & 10/5/10 19:13 & 673 & 2.317 & 2.385 & 10/5/10 19:34 & 694 & 2.342 & 2.41 \\
\hline 10/5/10 18:52 & 652 & 2.297 & 2.365 & 10/5/10 19:13 & 673 & 2.326 & 2.394 & 10/5/10 19:35 & 694 & 2.356 & 2.424 \\
\hline 10/5/10 18:52 & 652 & 2.298 & 2.366 & 10/5/10 19:14 & 673 & 2.325 & 2.393 & 10/5/10 19:35 & 695 & 2.344 & 2.412 \\
\hline 10/5/10 18:53 & 652 & 2.298 & 2.366 & 10/5/10 19:14 & 674 & 2.318 & 2.386 & 10/5/10 19:35 & 695 & 2.343 & 2.411 \\
\hline 10/5/10 18:53 & 653 & 2.302 & 2.37 & 10/5/10 19:14 & 674 & 2.315 & 2.383 & 10/5/10 19:36 & 695 & 2.343 & 2.411 \\
\hline 10/5/10 18:53 & 653 & 2.308 & 2.376 & 10/5/10 19:15 & 674 & 2.317 & 2.385 & 10/5/10 19:36 & 696 & 2.344 & 2.412 \\
\hline 10/5/10 18:54 & 653 & 2.310 & 2.378 & 10/5/10 19:15 & 675 & 2.317 & 2.385 & 10/5/10 19:36 & 696 & 2.342 & 2.41 \\
\hline 10/5/10 18:54 & 654 & 2.303 & 2.371 & 10/5/10 19:15 & 675 & 2.317 & 2.385 & 10/5/10 19:37 & 696 & 2.345 & 2.413 \\
\hline 10/5/10 18:54 & 654 & 2.301 & 2.369 & 10/5/10 19:16 & 675 & 2.315 & 2.383 & 10/5/10 19:37 & 697 & 2.341 & 2.409 \\
\hline 10/5/10 18:55 & 654 & 2.293 & 2.361 & 10/5/10 19:16 & 676 & 2.318 & 2.386 & 10/5/10 19:37 & 697 & 2.335 & 2.403 \\
\hline 10/5/10 18:55 & 655 & 2.298 & 2.366 & 10/5/10 19:16 & 676 & 2.314 & 2.382 & 10/5/10 19:38 & 697 & 2.339 & 2.407 \\
\hline 10/5/10 18:55 & 655 & 2.300 & 2.368 & 10/5/10 19:17 & 676 & 2.318 & 2.386 & 10/5/10 19:38 & 698 & 2.341 & 2.409 \\
\hline 10/5/10 18:56 & 655 & 2.291 & 2.359 & 10/5/10 19:17 & 677 & 2.316 & 2.384 & 10/5/10 19:38 & 698 & 2.348 & 2.416 \\
\hline 10/5/10 18:56 & 656 & 2.290 & 2.358 & 10/5/10 19:17 & 677 & 2.313 & 2.381 & 10/5/10 19:39 & 698 & 2.344 & 2.412 \\
\hline 10/5/10 18:56 & 656 & 2.296 & 2.364 & 10/5/10 19:18 & 677 & 2.318 & 2.386 & 10/5/10 19:39 & 699 & 2.344 & 2.412 \\
\hline 10/5/10 18:57 & 656 & 2.296 & 2.364 & 10/5/10 19:18 & 678 & 2.318 & 2.386 & 10/5/10 19:39 & 699 & 2.339 & 2.407 \\
\hline 10/5/10 18:57 & 657 & 2.293 & 2.361 & 10/5/10 19:18 & 678 & 2.319 & 2.387 & 10/5/10 19:40 & 699 & 2.339 & 2.407 \\
\hline 10/5/10 18:57 & 657 & 2.292 & 2.36 & 10/5/10 19:19 & 678 & 2.320 & 2.388 & 10/5/10 19:40 & 700 & 2.342 & 2.41 \\
\hline 10/5/10 18:58 & 657 & 2.293 & 2.361 & 10/5/10 19:19 & 679 & 2.323 & 2.391 & 10/5/10 19:40 & 700 & 2.345 & 2.413 \\
\hline 10/5/10 18:58 & 658 & 2.298 & 2.366 & 10/5/10 19:19 & 679 & 2.324 & 2.392 & 10/5/10 19:41 & 700 & 2.341 & 2.409 \\
\hline 10/5/10 18:58 & 658 & 2.299 & 2.367 & 10/5/10 19:20 & 679 & 2.321 & 2.389 & 10/5/10 19:41 & 701 & 2.339 & 2.407 \\
\hline 10/5/10 18:59 & 658 & 2.299 & 2.367 & 10/5/10 19:20 & 680 & 2.319 & 2.387 & 10/5/10 19:41 & 701 & 2.343 & 2.411 \\
\hline 10/5/10 18:59 & 659 & 2.298 & 2.366 & 10/5/10 19:20 & 680 & 2.322 & 2.39 & 10/5/10 19:42 & 701 & 2.341 & 2.409 \\
\hline 10/5/10 18:59 & 659 & 2.300 & 2.368 & 10/5/10 19:21 & 680 & 2.326 & 2.394 & 10/5/10 19:42 & 702 & 2.341 & 2.409 \\
\hline 10/5/10 19:00 & 659 & 2.299 & 2.367 & 10/5/10 19:21 & 681 & 2.321 & 2.389 & 10/5/10 19:42 & 702 & 2.342 & 2.41 \\
\hline 10/5/10 19:00 & 660 & 2.301 & 2.369 & 10/5/10 19:21 & 681 & 2.322 & 2.39 & 10/5/10 19:43 & 702 & 2.340 & 2.408 \\
\hline 10/5/10 19:00 & 660 & 2.300 & 2.368 & 10/5/10 19:22 & 681 & 2.322 & 2.39 & 10/5/10 19:43 & 703 & 2.345 & 2.413 \\
\hline 10/5/10 19:01 & 660 & 2.297 & 2.365 & 10/5/10 19:22 & 682 & 2.324 & 2.392 & 10/5/10 19:43 & 703 & 2.348 & 2.416 \\
\hline 10/5/10 19:01 & 661 & 2.302 & 2.37 & 10/5/10 19:22 & 682 & 2.328 & 2.396 & 10/5/10 19:44 & 703 & 2.350 & 2.418 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 10/5/10 19:44 & 704 & 2.348 & 2.416 & 10/5/10 20:05 & 725 & 2.353 & 2.421 & 10/5/10 20:27 & 746 & 2.377 & 2.445 \\
\hline 10/5/10 19:44 & 704 & 2.346 & 2.414 & 10/5/10 20:06 & 725 & 2.351 & 2.419 & 10/5/10 20:27 & 747 & 2.374 & 2.442 \\
\hline 10/5/10 19:45 & 704 & 2.346 & 2.414 & 10/5/10 20:06 & 726 & 2.354 & 2.422 & 10/5/10 20:27 & 747 & 2.377 & 2.445 \\
\hline 10/5/10 19:45 & 705 & 2.343 & 2.411 & 10/5/10 20:06 & 726 & 2.355 & 2.423 & 10/5/10 20:28 & 747 & 2.376 & 2.444 \\
\hline 10/5/10 19:45 & 705 & 2.344 & 2.412 & 10/5/10 20:07 & 726 & 2.352 & 2.42 & 10/5/10 20:28 & 748 & 2.379 & 2.447 \\
\hline 10/5/10 19:46 & 705 & 2.342 & 2.41 & 10/5/10 20:07 & 727 & 2.352 & 2.42 & 10/5/10 20:28 & 748 & 2.379 & 2.447 \\
\hline 10/5/10 19:46 & 706 & 2.343 & 2.411 & 10/5/10 20:07 & 727 & 2.358 & 2.426 & 10/5/10 20:29 & 748 & 2.382 & 2.45 \\
\hline 10/5/10 19:46 & 706 & 2.343 & 2.411 & 10/5/10 20:08 & 727 & 2.356 & 2.424 & 10/5/10 20:29 & 749 & 2.379 & 2.447 \\
\hline 10/5/10 19:47 & 706 & 2.341 & 2.409 & 10/5/10 20:08 & 728 & 2.357 & 2.425 & 10/5/10 20:29 & 749 & 2.379 & 2.447 \\
\hline 10/5/10 19:47 & 707 & 2.342 & 2.41 & 10/5/10 20:08 & 728 & 2.360 & 2.428 & 10/5/10 20:30 & 749 & 2.379 & 2.447 \\
\hline 10/5/10 19:47 & 707 & 2.346 & 2.414 & 10/5/10 20:09 & 728 & 2.362 & 2.43 & 10/5/10 20:30 & 750 & 2.379 & 2.447 \\
\hline 10/5/10 19:48 & 707 & 2.345 & 2.413 & 10/5/10 20:09 & 729 & 2.355 & 2.423 & 10/5/10 20:30 & 750 & 2.383 & 2.451 \\
\hline 10/5/10 19:48 & 708 & 2.346 & 2.414 & 10/5/10 20:09 & 729 & 2.358 & 2.426 & 10/5/10 20:31 & 750 & 2.385 & 2.453 \\
\hline 10/5/10 19:48 & 708 & 2.341 & 2.409 & 10/5/10 20:10 & 729 & 2.356 & 2.424 & 10/5/10 20:31 & 751 & 2.384 & 2.452 \\
\hline 10/5/10 19:49 & 708 & 2.344 & 2.412 & 10/5/10 20:10 & 730 & 2.355 & 2.423 & 10/5/10 20:31 & 751 & 2.383 & 2.451 \\
\hline 10/5/10 19:49 & 709 & 2.348 & 2.416 & 10/5/10 20:10 & 730 & 2.356 & 2.424 & 10/5/10 20:32 & 751 & 2.382 & 2.45 \\
\hline 10/5/10 19:49 & 709 & 2.342 & 2.41 & 10/5/10 20:11 & 730 & 2.358 & 2.426 & 10/5/10 20:32 & 752 & 2.383 & 2.451 \\
\hline 10/5/10 19:50 & 709 & 2.350 & 2.418 & 10/5/10 20:11 & 731 & 2.361 & 2.429 & 10/5/10 20:32 & 752 & 2.385 & 2.453 \\
\hline 10/5/10 19:50 & 710 & 2.349 & 2.417 & 10/5/10 20:11 & 731 & 2.360 & 2.428 & 10/5/10 20:33 & 752 & 2.387 & 2.455 \\
\hline 10/5/10 19:50 & 710 & 2.348 & 2.416 & 10/5/10 20:12 & 731 & 2.362 & 2.43 & 10/5/10 20:33 & 753 & 2.385 & 2.453 \\
\hline 10/5/10 19:51 & 710 & 2.345 & 2.413 & 10/5/10 20:12 & 732 & 2.364 & 2.432 & 10/5/10 20:33 & 753 & 2.395 & 2.463 \\
\hline 10/5/10 19:51 & 711 & 2.338 & 2.406 & 10/5/10 20:12 & 732 & 2.364 & 2.432 & 10/5/10 20:34 & 753 & 2.384 & 2.452 \\
\hline 10/5/10 19:51 & 711 & 2.345 & 2.413 & 10/5/10 20:13 & 732 & 2.363 & 2.431 & 10/5/10 20:34 & 754 & 2.382 & 2.45 \\
\hline 10/5/10 19:52 & 711 & 2.345 & 2.413 & 10/5/10 20:13 & 733 & 2.364 & 2.432 & 10/5/10 20:34 & 754 & 2.378 & 2.446 \\
\hline 10/5/10 19:52 & 712 & 2.349 & 2.417 & 10/5/10 20:13 & 733 & 2.367 & 2.435 & 10/5/10 20:35 & 754 & 2.386 & 2.454 \\
\hline 10/5/10 19:52 & 712 & 2.353 & 2.421 & 10/5/10 20:14 & 733 & 2.364 & 2.432 & 10/5/10 20:35 & 755 & 2.383 & 2.451 \\
\hline 10/5/10 19:53 & 712 & 2.347 & 2.415 & 10/5/10 20:14 & 734 & 2.361 & 2.429 & 10/5/10 20:35 & 755 & 2.390 & 2.458 \\
\hline 10/5/10 19:53 & 713 & 2.347 & 2.415 & 10/5/10 20:14 & 734 & 2.367 & 2.435 & 10/5/10 20:36 & 755 & 2.389 & 2.457 \\
\hline 10/5/10 19:53 & 713 & 2.359 & 2.427 & 10/5/10 20:15 & 734 & 2.372 & 2.44 & 10/5/10 20:36 & 756 & 2.389 & 2.457 \\
\hline 10/5/10 19:54 & 713 & 2.348 & 2.416 & 10/5/10 20:15 & 735 & 2.372 & 2.44 & 10/5/10 20:36 & 756 & 2.388 & 2.456 \\
\hline 10/5/10 19:54 & 714 & 2.346 & 2.414 & 10/5/10 20:15 & 735 & 2.368 & 2.436 & 10/5/10 20:37 & 756 & 2.385 & 2.453 \\
\hline 10/5/10 19:54 & 714 & 2.345 & 2.413 & 10/5/10 20:16 & 735 & 2.373 & 2.441 & 10/5/10 20:37 & 757 & 2.386 & 2.454 \\
\hline 10/5/10 19:55 & 714 & 2.348 & 2.416 & 10/5/10 20:16 & 736 & 2.368 & 2.436 & 10/5/10 20:37 & 757 & 2.387 & 2.455 \\
\hline 10/5/10 19:55 & 715 & 2.350 & 2.418 & 10/5/10 20:16 & 736 & 2.370 & 2.438 & 10/5/10 20:38 & 757 & 2.385 & 2.453 \\
\hline 10/5/10 19:55 & 715 & 2.353 & 2.421 & 10/5/10 20:17 & 736 & 2.372 & 2.44 & 10/5/10 20:38 & 758 & 2.387 & 2.455 \\
\hline 10/5/10 19:56 & 715 & 2.351 & 2.419 & 10/5/10 20:17 & 737 & 2.374 & 2.442 & 10/5/10 20:38 & 758 & 2.387 & 2.455 \\
\hline 10/5/10 19:56 & 716 & 2.350 & 2.418 & 10/5/10 20:17 & 737 & 2.376 & 2.444 & 10/5/10 20:39 & 758 & 2.386 & 2.454 \\
\hline 10/5/10 19:56 & 716 & 2.349 & 2.417 & 10/5/10 20:18 & 737 & 2.377 & 2.445 & 10/5/10 20:39 & 759 & 2.387 & 2.455 \\
\hline 10/5/10 19:57 & 716 & 2.349 & 2.417 & 10/5/10 20:18 & 738 & 2.379 & 2.447 & 10/5/10 20:39 & 759 & 2.387 & 2.455 \\
\hline 10/5/10 19:57 & 717 & 2.350 & 2.418 & 10/5/10 20:18 & 738 & 2.388 & 2.456 & 10/5/10 20:40 & 759 & 2.387 & 2.455 \\
\hline 10/5/10 19:57 & 717 & 2.351 & 2.419 & 10/5/10 20:19 & 738 & 2.379 & 2.447 & 10/5/10 20:40 & 760 & 2.389 & 2.457 \\
\hline 10/5/10 19:58 & 717 & 2.349 & 2.417 & 10/5/10 20:19 & 739 & 2.378 & 2.446 & 10/5/10 20:40 & 760 & 2.389 & 2.457 \\
\hline 10/5/10 19:58 & 718 & 2.349 & 2.417 & 10/5/10 20:19 & 739 & 2.375 & 2.443 & 10/5/10 20:41 & 760 & 2.384 & 2.452 \\
\hline 10/5/10 19:58 & 718 & 2.348 & 2.416 & 10/5/10 20:20 & 739 & 2.377 & 2.445 & 10/5/10 20:41 & 761 & 2.388 & 2.456 \\
\hline 10/5/10 19:59 & 718 & 2.351 & 2.419 & 10/5/10 20:20 & 740 & 2.378 & 2.446 & 10/5/10 20:41 & 761 & 2.391 & 2.459 \\
\hline 10/5/10 19:59 & 719 & 2.347 & 2.415 & 10/5/10 20:20 & 740 & 2.376 & 2.444 & 10/5/10 20:42 & 761 & 2.391 & 2.459 \\
\hline 10/5/10 19:59 & 719 & 2.346 & 2.414 & 10/5/10 20:21 & 740 & 2.376 & 2.444 & 10/5/10 20:42 & 762 & 2.394 & 2.462 \\
\hline 10/5/10 20:00 & 719 & 2.343 & 2.411 & 10/5/10 20:21 & 741 & 2.376 & 2.444 & 10/5/10 20:42 & 762 & 2.390 & 2.458 \\
\hline 10/5/10 20:00 & 720 & 2.340 & 2.408 & 10/5/10 20:21 & 741 & 2.376 & 2.444 & 10/5/10 20:43 & 762 & 2.387 & 2.455 \\
\hline 10/5/10 20:00 & 720 & 2.344 & 2.412 & 10/5/10 20:22 & 741 & 2.378 & 2.446 & 10/5/10 20:43 & 763 & 2.389 & 2.457 \\
\hline 10/5/10 20:01 & 720 & 2.346 & 2.414 & 10/5/10 20:22 & 742 & 2.380 & 2.448 & 10/5/10 20:43 & 763 & 2.388 & 2.456 \\
\hline 10/5/10 20:01 & 721 & 2.344 & 2.412 & 10/5/10 20:22 & 742 & 2.379 & 2.447 & 10/5/10 20:44 & 763 & 2.392 & 2.46 \\
\hline 10/5/10 20:01 & 721 & 2.355 & 2.423 & 10/5/10 20:23 & 742 & 2.378 & 2.446 & 10/5/10 20:44 & 764 & 2.392 & 2.46 \\
\hline 10/5/10 20:02 & 721 & 2.355 & 2.423 & 10/5/10 20:23 & 743 & 2.378 & 2.446 & 10/5/10 20:44 & 764 & 2.391 & 2.459 \\
\hline 10/5/10 20:02 & 722 & 2.346 & 2.414 & 10/5/10 20:23 & 743 & 2.378 & 2.446 & 10/5/10 20:45 & 764 & 2.390 & 2.458 \\
\hline 10/5/10 20:02 & 722 & 2.345 & 2.413 & 10/5/10 20:24 & 743 & 2.374 & 2.442 & 10/5/10 20:45 & 765 & 2.389 & 2.457 \\
\hline 10/5/10 20:03 & 722 & 2.346 & 2.414 & 10/5/10 20:24 & 744 & 2.379 & 2.447 & 10/5/10 20:45 & 765 & 2.387 & 2.455 \\
\hline 10/5/10 20:03 & 723 & 2.347 & 2.415 & 10/5/10 20:24 & 744 & 2.379 & 2.447 & 10/5/10 20:46 & 765 & 2.388 & 2.456 \\
\hline 10/5/10 20:03 & 723 & 2.361 & 2.429 & 10/5/10 20:25 & 744 & 2.379 & 2.447 & 10/5/10 20:46 & 766 & 2.391 & 2.459 \\
\hline 10/5/10 20:04 & 723 & 2.363 & 2.431 & 10/5/10 20:25 & 745 & 2.373 & 2.441 & 10/5/10 20:46 & 766 & 2.389 & 2.457 \\
\hline 10/5/10 20:04 & 724 & 2.352 & 2.42 & 10/5/10 20:25 & 745 & 2.376 & 2.444 & 10/5/10 20:47 & 766 & 2.391 & 2.459 \\
\hline 10/5/10 20:04 & 724 & 2.354 & 2.422 & 10/5/10 20:26 & 745 & 2.375 & 2.443 & 10/5/10 20:47 & 767 & 2.388 & 2.456 \\
\hline 10/5/10 20:05 & 724 & 2.351 & 2.419 & 10/5/10 20:26 & 746 & 2.373 & 2.441 & 10/5/10 20:47 & 767 & 2.389 & 2.457 \\
\hline 10/5/10 20:05 & 725 & 2.356 & 2.424 & 10/5/10 20:26 & 746 & 2.376 & 2.444 & 10/5/10 20:48 & 767 & 2.389 & 2.457 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 10/5/10 20:48 & 768 & 2.392 & 2.46 & 10/5/10 21:09 & 789 & 2.398 & 2.466 & 10/5/10 21:31 & 810 & 2.410 & 2.478 \\
\hline 10/5/10 20:48 & 768 & 2.387 & 2.455 & 10/5/10 21:10 & 789 & 2.401 & 2.469 & 10/5/10 21:31 & 811 & 2.413 & 2.481 \\
\hline 10/5/10 20:49 & 768 & 2.387 & 2.455 & 10/5/10 21:10 & 790 & 2.399 & 2.467 & 10/5/10 21:31 & 811 & 2.410 & 2.478 \\
\hline 10/5/10 20:49 & 769 & 2.388 & 2.456 & 10/5/10 21:10 & 790 & 2.394 & 2.462 & 10/5/10 21:32 & 811 & 2.413 & 2.481 \\
\hline 10/5/10 20:49 & 769 & 2.387 & 2.455 & 10/5/10 21:11 & 790 & 2.397 & 2.465 & 10/5/10 21:32 & 812 & 2.409 & 2.477 \\
\hline 10/5/10 20:50 & 769 & 2.387 & 2.455 & 10/5/10 21:11 & 791 & 2.399 & 2.467 & 10/5/10 21:32 & 812 & 2.413 & 2.481 \\
\hline 10/5/10 20:50 & 770 & 2.391 & 2.459 & 10/5/10 21:11 & 791 & 2.410 & 2.478 & 10/5/10 21:33 & 812 & 2.416 & 2.484 \\
\hline 10/5/10 20:50 & 770 & 2.388 & 2.456 & 10/5/10 21:12 & 791 & 2.399 & 2.467 & 10/5/10 21:33 & 813 & 2.419 & 2.487 \\
\hline 10/5/10 20:51 & 770 & 2.392 & 2.46 & 10/5/10 21:12 & 792 & 2.402 & 2.47 & 10/5/10 21:33 & 813 & 2.419 & 2.487 \\
\hline 10/5/10 20:51 & 771 & 2.388 & 2.456 & 10/5/10 21:12 & 792 & 2.401 & 2.469 & 10/5/10 21:34 & 813 & 2.418 & 2.486 \\
\hline 10/5/10 20:51 & 771 & 2.388 & 2.456 & 10/5/10 21:13 & 792 & 2.403 & 2.471 & 10/5/10 21:34 & 814 & 2.417 & 2.485 \\
\hline 10/5/10 20:52 & 771 & 2.388 & 2.456 & 10/5/10 21:13 & 793 & 2.402 & 2.47 & 10/5/10 21:34 & 814 & 2.412 & 2.48 \\
\hline 10/5/10 20:52 & 772 & 2.388 & 2.456 & 10/5/10 21:13 & 793 & 2.401 & 2.469 & 10/5/10 21:35 & 814 & 2.417 & 2.485 \\
\hline 10/5/10 20:52 & 772 & 2.401 & 2.469 & 10/5/10 21:14 & 793 & 2.401 & 2.469 & 10/5/10 21:35 & 815 & 2.414 & 2.482 \\
\hline 10/5/10 20:53 & 772 & 2.389 & 2.457 & 10/5/10 21:14 & 794 & 2.401 & 2.469 & 10/5/10 21:35 & 815 & 2.416 & 2.484 \\
\hline 10/5/10 20:53 & 773 & 2.391 & 2.459 & 10/5/10 21:14 & 794 & 2.403 & 2.471 & 10/5/10 21:36 & 815 & 2.417 & 2.485 \\
\hline 10/5/10 20:53 & 773 & 2.388 & 2.456 & 10/5/10 21:15 & 794 & 2.398 & 2.466 & 10/5/10 21:36 & 816 & 2.414 & 2.482 \\
\hline 10/5/10 20:54 & 773 & 2.391 & 2.459 & 10/5/10 21:15 & 795 & 2.403 & 2.471 & 10/5/10 21:36 & 816 & 2.416 & 2.484 \\
\hline 10/5/10 20:54 & 774 & 2.394 & 2.462 & 10/5/10 21:15 & 795 & 2.402 & 2.47 & 10/5/10 21:37 & 816 & 2.413 & 2.481 \\
\hline 10/5/10 20:54 & 774 & 2.388 & 2.456 & 10/5/10 21:16 & 795 & 2.401 & 2.469 & 10/5/10 21:37 & 817 & 2.415 & 2.483 \\
\hline 10/5/10 20:55 & 774 & 2.386 & 2.454 & 10/5/10 21:16 & 796 & 2.406 & 2.474 & 10/5/10 21:37 & 817 & 2.419 & 2.487 \\
\hline 10/5/10 20:55 & 775 & 2.390 & 2.458 & 10/5/10 21:16 & 796 & 2.403 & 2.471 & 10/5/10 21:38 & 817 & 2.419 & 2.487 \\
\hline 10/5/10 20:55 & 775 & 2.388 & 2.456 & 10/5/10 21:17 & 796 & 2.406 & 2.474 & 10/5/10 21:38 & 818 & 2.415 & 2.483 \\
\hline 10/5/10 20:56 & 775 & 2.389 & 2.457 & 10/5/10 21:17 & 797 & 2.405 & 2.473 & 10/5/10 21:38 & 818 & 2.417 & 2.485 \\
\hline 10/5/10 20:56 & 776 & 2.400 & 2.468 & 10/5/10 21:17 & 797 & 2.404 & 2.472 & 10/5/10 21:39 & 818 & 2.417 & 2.485 \\
\hline 10/5/10 20:56 & 776 & 2.393 & 2.461 & 10/5/10 21:18 & 797 & 2.403 & 2.471 & 10/5/10 21:39 & 819 & 2.419 & 2.487 \\
\hline 10/5/10 20:57 & 776 & 2.390 & 2.458 & 10/5/10 21:18 & 798 & 2.409 & 2.477 & 10/5/10 21:39 & 819 & 2.421 & 2.489 \\
\hline 10/5/10 20:57 & 777 & 2.390 & 2.458 & 10/5/10 21:18 & 798 & 2.406 & 2.474 & 10/5/10 21:40 & 819 & 2.418 & 2.486 \\
\hline 10/5/10 20:57 & 777 & 2.391 & 2.459 & 10/5/10 21:19 & 798 & 2.404 & 2.472 & 10/5/10 21:40 & 820 & 2.417 & 2.485 \\
\hline 10/5/10 20:58 & 777 & 2.389 & 2.457 & 10/5/10 21:19 & 799 & 2.403 & 2.471 & 10/5/10 21:40 & 820 & 2.424 & 2.492 \\
\hline 10/5/10 20:58 & 778 & 2.394 & 2.462 & 10/5/10 21:19 & 799 & 2.401 & 2.469 & 10/5/10 21:41 & 820 & 2.421 & 2.489 \\
\hline 10/5/10 20:58 & 778 & 2.395 & 2.463 & 10/5/10 21:20 & 799 & 2.412 & 2.48 & 10/5/10 21:41 & 821 & 2.420 & 2.488 \\
\hline 10/5/10 20:59 & 778 & 2.394 & 2.462 & 10/5/10 21:20 & 800 & 2.404 & 2.472 & 10/5/10 21:41 & 821 & 2.430 & 2.498 \\
\hline 10/5/10 20:59 & 779 & 2.392 & 2.46 & 10/5/10 21:20 & 800 & 2.405 & 2.473 & 10/5/10 21:42 & 821 & 2.422 & 2.49 \\
\hline 10/5/10 20:59 & 779 & 2.392 & 2.46 & 10/5/10 21:21 & 800 & 2.405 & 2.473 & 10/5/10 21:42 & 822 & 2.422 & 2.49 \\
\hline 10/5/10 21:00 & 779 & 2.392 & 2.46 & 10/5/10 21:21 & 801 & 2.403 & 2.471 & 10/5/10 21:42 & 822 & 2.423 & 2.491 \\
\hline 10/5/10 21:00 & 780 & 2.393 & 2.461 & 10/5/10 21:21 & 801 & 2.404 & 2.472 & 10/5/10 21:43 & 822 & 2.421 & 2.489 \\
\hline 10/5/10 21:00 & 780 & 2.394 & 2.462 & 10/5/10 21:22 & 801 & 2.405 & 2.473 & 10/5/10 21:43 & 823 & 2.423 & 2.491 \\
\hline 10/5/10 21:01 & 780 & 2.389 & 2.457 & 10/5/10 21:22 & 802 & 2.409 & 2.477 & 10/5/10 21:43 & 823 & 2.420 & 2.488 \\
\hline 10/5/10 21:01 & 781 & 2.389 & 2.457 & 10/5/10 21:22 & 802 & 2.406 & 2.474 & 10/5/10 21:44 & 823 & 2.422 & 2.49 \\
\hline 10/5/10 21:01 & 781 & 2.392 & 2.46 & 10/5/10 21:23 & 802 & 2.406 & 2.474 & 10/5/10 21:44 & 824 & 2.432 & 2.5 \\
\hline 10/5/10 21:02 & 781 & 2.392 & 2.46 & 10/5/10 21:23 & 803 & 2.411 & 2.479 & 10/5/10 21:44 & 824 & 2.434 & 2.502 \\
\hline 10/5/10 21:02 & 782 & 2.392 & 2.46 & 10/5/10 21:23 & 803 & 2.406 & 2.474 & 10/5/10 21:45 & 824 & 2.423 & 2.491 \\
\hline 10/5/10 21:02 & 782 & 2.394 & 2.462 & 10/5/10 21:24 & 803 & 2.407 & 2.475 & 10/5/10 21:45 & 825 & 2.421 & 2.489 \\
\hline 10/5/10 21:03 & 782 & 2.395 & 2.463 & 10/5/10 21:24 & 804 & 2.407 & 2.475 & 10/5/10 21:45 & 825 & 2.416 & 2.484 \\
\hline 10/5/10 21:03 & 783 & 2.392 & 2.46 & 10/5/10 21:24 & 804 & 2.410 & 2.478 & 10/5/10 21:46 & 825 & 2.424 & 2.492 \\
\hline 10/5/10 21:03 & 783 & 2.397 & 2.465 & 10/5/10 21:25 & 804 & 2.407 & 2.475 & 10/5/10 21:46 & 826 & 2.422 & 2.49 \\
\hline 10/5/10 21:04 & 783 & 2.391 & 2.459 & 10/5/10 21:25 & 805 & 2.411 & 2.479 & 10/5/10 21:46 & 826 & 2.420 & 2.488 \\
\hline 10/5/10 21:04 & 784 & 2.390 & 2.458 & 10/5/10 21:25 & 805 & 2.409 & 2.477 & 10/5/10 21:47 & 826 & 2.420 & 2.488 \\
\hline 10/5/10 21:04 & 784 & 2.394 & 2.462 & 10/5/10 21:26 & 805 & 2.417 & 2.485 & 10/5/10 21:47 & 827 & 2.418 & 2.486 \\
\hline 10/5/10 21:05 & 784 & 2.393 & 2.461 & 10/5/10 21:26 & 806 & 2.405 & 2.473 & 10/5/10 21:47 & 827 & 2.422 & 2.49 \\
\hline 10/5/10 21:05 & 785 & 2.395 & 2.463 & 10/5/10 21:26 & 806 & 2.406 & 2.474 & 10/5/10 21:48 & 827 & 2.421 & 2.489 \\
\hline 10/5/10 21:05 & 785 & 2.394 & 2.462 & 10/5/10 21:27 & 806 & 2.405 & 2.473 & 10/5/10 21:48 & 828 & 2.433 & 2.501 \\
\hline 10/5/10 21:06 & 785 & 2.395 & 2.463 & 10/5/10 21:27 & 807 & 2.408 & 2.476 & 10/5/10 21:48 & 828 & 2.418 & 2.486 \\
\hline 10/5/10 21:06 & 786 & 2.394 & 2.462 & 10/5/10 21:27 & 807 & 2.404 & 2.472 & 10/5/10 21:49 & 828 & 2.422 & 2.49 \\
\hline 10/5/10 21:06 & 786 & 2.394 & 2.462 & 10/5/10 21:28 & 807 & 2.407 & 2.475 & 10/5/10 21:49 & 829 & 2.424 & 2.492 \\
\hline 10/5/10 21:07 & 786 & 2.400 & 2.468 & 10/5/10 21:28 & 808 & 2.407 & 2.475 & 10/5/10 21:49 & 829 & 2.427 & 2.495 \\
\hline 10/5/10 21:07 & 787 & 2.405 & 2.473 & 10/5/10 21:28 & 808 & 2.411 & 2.479 & 10/5/10 21:50 & 829 & 2.425 & 2.493 \\
\hline 10/5/10 21:07 & 787 & 2.395 & 2.463 & 10/5/10 21:29 & 808 & 2.407 & 2.475 & 10/5/10 21:50 & 830 & 2.420 & 2.488 \\
\hline 10/5/10 21:08 & 787 & 2.392 & 2.46 & 10/5/10 21:29 & 809 & 2.408 & 2.476 & 10/5/10 21:50 & 830 & 2.423 & 2.491 \\
\hline 10/5/10 21:08 & 788 & 2.401 & 2.469 & 10/5/10 21:29 & 809 & 2.406 & 2.474 & 10/5/10 21:51 & 830 & 2.423 & 2.491 \\
\hline 10/5/10 21:08 & 788 & 2.396 & 2.464 & 10/5/10 21:30 & 809 & 2.410 & 2.478 & 10/5/10 21:51 & 831 & 2.421 & 2.489 \\
\hline 10/5/10 21:09 & 788 & 2.394 & 2.462 & 10/5/10 21:30 & 810 & 2.407 & 2.475 & 10/5/10 21:51 & 831 & 2.424 & 2.492 \\
\hline 10/5/10 21:09 & 789 & 2.406 & 2.474 & 10/5/10 21:30 & 810 & 2.413 & 2.481 & 10/5/10 21:52 & 831 & 2.422 & 2.49 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 10/5/10 21:52 & 832 & 2.429 & 2.497 & 10/5/10 22:13 & 853 & 2.436 & 2.504 & 10/5/10 22:35 & 874 & 2.447 & 2.515 \\
\hline 10/5/10 21:52 & 832 & 2.427 & 2.495 & 10/5/10 22:14 & 853 & 2.436 & 2.504 & 10/5/10 22:35 & 875 & 2.443 & 2.511 \\
\hline 10/5/10 21:53 & 832 & 2.428 & 2.496 & 10/5/10 22:14 & 854 & 2.436 & 2.504 & 10/5/10 22:35 & 875 & 2.445 & 2.513 \\
\hline 10/5/10 21:53 & 833 & 2.427 & 2.495 & 10/5/10 22:14 & 854 & 2.439 & 2.507 & 10/5/10 22:36 & 875 & 2.443 & 2.511 \\
\hline 10/5/10 21:53 & 833 & 2.425 & 2.493 & 10/5/10 22:15 & 854 & 2.436 & 2.504 & 10/5/10 22:36 & 876 & 2.445 & 2.513 \\
\hline 10/5/10 21:54 & 833 & 2.426 & 2.494 & 10/5/10 22:15 & 855 & 2.442 & 2.51 & 10/5/10 22:36 & 876 & 2.443 & 2.511 \\
\hline 10/5/10 21:54 & 834 & 2.433 & 2.501 & 10/5/10 22:15 & 855 & 2.444 & 2.512 & 10/5/10 22:37 & 876 & 2.447 & 2.515 \\
\hline 10/5/10 21:54 & 834 & 2.430 & 2.498 & 10/5/10 22:16 & 855 & 2.438 & 2.506 & 10/5/10 22:37 & 877 & 2.448 & 2.516 \\
\hline 10/5/10 21:55 & 834 & 2.429 & 2.497 & 10/5/10 22:16 & 856 & 2.441 & 2.509 & 10/5/10 22:37 & 877 & 2.449 & 2.517 \\
\hline 10/5/10 21:55 & 835 & 2.442 & 2.51 & 10/5/10 22:16 & 856 & 2.441 & 2.509 & 10/5/10 22:38 & 877 & 2.446 & 2.514 \\
\hline 10/5/10 21:55 & 835 & 2.430 & 2.498 & 10/5/10 22:17 & 856 & 2.439 & 2.507 & 10/5/10 22:38 & 878 & 2.456 & 2.524 \\
\hline 10/5/10 21:56 & 835 & 2.429 & 2.497 & 10/5/10 22:17 & 857 & 2.447 & 2.515 & 10/5/10 22:38 & 878 & 2.443 & 2.511 \\
\hline 10/5/10 21:56 & 836 & 2.436 & 2.504 & 10/5/10 22:17 & 857 & 2.437 & 2.505 & 10/5/10 22:39 & 878 & 2.448 & 2.516 \\
\hline 10/5/10 21:56 & 836 & 2.430 & 2.498 & 10/5/10 22:18 & 857 & 2.446 & 2.514 & 10/5/10 22:39 & 879 & 2.444 & 2.512 \\
\hline 10/5/10 21:57 & 836 & 2.430 & 2.498 & 10/5/10 22:18 & 858 & 2.436 & 2.504 & 10/5/10 22:39 & 879 & 2.446 & 2.514 \\
\hline 10/5/10 21:57 & 837 & 2.441 & 2.509 & 10/5/10 22:18 & 858 & 2.443 & 2.511 & 10/5/10 22:40 & 879 & 2.446 & 2.514 \\
\hline 10/5/10 21:57 & 837 & 2.432 & 2.5 & 10/5/10 22:19 & 858 & 2.440 & 2.508 & 10/5/10 22:40 & 880 & 2.442 & 2.51 \\
\hline 10/5/10 21:58 & 837 & 2.440 & 2.508 & 10/5/10 22:19 & 859 & 2.432 & 2.5 & 10/5/10 22:40 & 880 & 2.448 & 2.516 \\
\hline 10/5/10 21:58 & 838 & 2.432 & 2.5 & 10/5/10 22:19 & 859 & 2.437 & 2.505 & 10/5/10 22:41 & 880 & 2.449 & 2.517 \\
\hline 10/5/10 21:58 & 838 & 2.429 & 2.497 & 10/5/10 22:20 & 859 & 2.437 & 2.505 & 10/5/10 22:41 & 881 & 2.450 & 2.518 \\
\hline 10/5/10 21:59 & 838 & 2.430 & 2.498 & 10/5/10 22:20 & 860 & 2.437 & 2.505 & 10/5/10 22:41 & 881 & 2.443 & 2.511 \\
\hline 10/5/10 21:59 & 839 & 2.426 & 2.494 & 10/5/10 22:20 & 860 & 2.437 & 2.505 & 10/5/10 22:42 & 881 & 2.443 & 2.511 \\
\hline 10/5/10 21:59 & 839 & 2.429 & 2.497 & 10/5/10 22:21 & 860 & 2.436 & 2.504 & 10/5/10 22:42 & 882 & 2.445 & 2.513 \\
\hline 10/5/10 22:00 & 839 & 2.430 & 2.498 & 10/5/10 22:21 & 861 & 2.434 & 2.502 & 10/5/10 22:42 & 882 & 2.448 & 2.516 \\
\hline 10/5/10 22:00 & 840 & 2.427 & 2.495 & 10/5/10 22:21 & 861 & 2.437 & 2.505 & 10/5/10 22:43 & 882 & 2.444 & 2.512 \\
\hline 10/5/10 22:00 & 840 & 2.427 & 2.495 & 10/5/10 22:22 & 861 & 2.439 & 2.507 & 10/5/10 22:43 & 883 & 2.443 & 2.511 \\
\hline 10/5/10 22:01 & 840 & 2.431 & 2.499 & 10/5/10 22:22 & 862 & 2.446 & 2.514 & 10/5/10 22:43 & 883 & 2.446 & 2.514 \\
\hline 10/5/10 22:01 & 841 & 2.428 & 2.496 & 10/5/10 22:22 & 862 & 2.437 & 2.505 & 10/5/10 22:44 & 883 & 2.447 & 2.515 \\
\hline 10/5/10 22:01 & 841 & 2.431 & 2.499 & 10/5/10 22:23 & 862 & 2.439 & 2.507 & 10/5/10 22:44 & 884 & 2.445 & 2.513 \\
\hline 10/5/10 22:02 & 841 & 2.440 & 2.508 & 10/5/10 22:23 & 863 & 2.437 & 2.505 & 10/5/10 22:44 & 884 & 2.446 & 2.514 \\
\hline 10/5/10 22:02 & 842 & 2.434 & 2.502 & 10/5/10 22:23 & 863 & 2.436 & 2.504 & 10/5/10 22:45 & 884 & 2.444 & 2.512 \\
\hline 10/5/10 22:02 & 842 & 2.431 & 2.499 & 10/5/10 22:24 & 863 & 2.454 & 2.522 & 10/5/10 22:45 & 885 & 2.447 & 2.515 \\
\hline 10/5/10 22:03 & 842 & 2.433 & 2.501 & 10/5/10 22:24 & 864 & 2.437 & 2.505 & 10/5/10 22:45 & 885 & 2.446 & 2.514 \\
\hline 10/5/10 22:03 & 843 & 2.431 & 2.499 & 10/5/10 22:24 & 864 & 2.451 & 2.519 & 10/5/10 22:46 & 885 & 2.456 & 2.524 \\
\hline 10/5/10 22:03 & 843 & 2.431 & 2.499 & 10/5/10 22:25 & 864 & 2.438 & 2.506 & 10/5/10 22:46 & 886 & 2.446 & 2.514 \\
\hline 10/5/10 22:04 & 843 & 2.430 & 2.498 & 10/5/10 22:25 & 865 & 2.437 & 2.505 & 10/5/10 22:46 & 886 & 2.450 & 2.518 \\
\hline 10/5/10 22:04 & 844 & 2.429 & 2.497 & 10/5/10 22:25 & 865 & 2.439 & 2.507 & 10/5/10 22:47 & 886 & 2.455 & 2.523 \\
\hline 10/5/10 22:04 & 844 & 2.429 & 2.497 & 10/5/10 22:26 & 865 & 2.454 & 2.522 & 10/5/10 22:47 & 887 & 2.449 & 2.517 \\
\hline 10/5/10 22:05 & 844 & 2.431 & 2.499 & 10/5/10 22:26 & 866 & 2.436 & 2.504 & 10/5/10 22:47 & 887 & 2.445 & 2.513 \\
\hline 10/5/10 22:05 & 845 & 2.431 & 2.499 & 10/5/10 22:26 & 866 & 2.443 & 2.511 & 10/5/10 22:48 & 887 & 2.449 & 2.517 \\
\hline 10/5/10 22:05 & 845 & 2.428 & 2.496 & 10/5/10 22:27 & 866 & 2.440 & 2.508 & 10/5/10 22:48 & 888 & 2.448 & 2.516 \\
\hline 10/5/10 22:06 & 845 & 2.428 & 2.496 & 10/5/10 22:27 & 867 & 2.444 & 2.512 & 10/5/10 22:48 & 888 & 2.456 & 2.524 \\
\hline 10/5/10 22:06 & 846 & 2.434 & 2.502 & 10/5/10 22:27 & 867 & 2.451 & 2.519 & 10/5/10 22:49 & 888 & 2.447 & 2.515 \\
\hline 10/5/10 22:06 & 846 & 2.431 & 2.499 & 10/5/10 22:28 & 867 & 2.443 & 2.511 & 10/5/10 22:49 & 889 & 2.446 & 2.514 \\
\hline 10/5/10 22:07 & 846 & 2.432 & 2.5 & 10/5/10 22:28 & 868 & 2.442 & 2.51 & 10/5/10 22:49 & 889 & 2.451 & 2.519 \\
\hline 10/5/10 22:07 & 847 & 2.434 & 2.502 & 10/5/10 22:28 & 868 & 2.443 & 2.511 & 10/5/10 22:50 & 889 & 2.448 & 2.516 \\
\hline 10/5/10 22:07 & 847 & 2.432 & 2.5 & 10/5/10 22:29 & 868 & 2.452 & 2.52 & 10/5/10 22:50 & 890 & 2.446 & 2.514 \\
\hline 10/5/10 22:08 & 847 & 2.430 & 2.498 & 10/5/10 22:29 & 869 & 2.445 & 2.513 & 10/5/10 22:50 & 890 & 2.451 & 2.519 \\
\hline 10/5/10 22:08 & 848 & 2.432 & 2.5 & 10/5/10 22:29 & 869 & 2.444 & 2.512 & 10/5/10 22:51 & 890 & 2.446 & 2.514 \\
\hline 10/5/10 22:08 & 848 & 2.433 & 2.501 & 10/5/10 22:30 & 869 & 2.446 & 2.514 & 10/5/10 22:51 & 891 & 2.447 & 2.515 \\
\hline 10/5/10 22:09 & 848 & 2.433 & 2.501 & 10/5/10 22:30 & 870 & 2.445 & 2.513 & 10/5/10 22:51 & 891 & 2.447 & 2.515 \\
\hline 10/5/10 22:09 & 849 & 2.443 & 2.511 & 10/5/10 22:30 & 870 & 2.445 & 2.513 & 10/5/10 22:52 & 891 & 2.447 & 2.515 \\
\hline 10/5/10 22:09 & 849 & 2.431 & 2.499 & 10/5/10 22:31 & 870 & 2.443 & 2.511 & 10/5/10 22:52 & 892 & 2.446 & 2.514 \\
\hline 10/5/10 22:10 & 849 & 2.441 & 2.509 & 10/5/10 22:31 & 871 & 2.453 & 2.521 & 10/5/10 22:52 & 892 & 2.448 & 2.516 \\
\hline 10/5/10 22:10 & 850 & 2.431 & 2.499 & 10/5/10 22:31 & 871 & 2.442 & 2.51 & 10/5/10 22:53 & 892 & 2.446 & 2.514 \\
\hline 10/5/10 22:10 & 850 & 2.442 & 2.51 & 10/5/10 22:32 & 871 & 2.445 & 2.513 & 10/5/10 22:53 & 893 & 2.449 & 2.517 \\
\hline 10/5/10 22:11 & 850 & 2.433 & 2.501 & 10/5/10 22:32 & 872 & 2.445 & 2.513 & 10/5/10 22:53 & 893 & 2.448 & 2.516 \\
\hline 10/5/10 22:11 & 851 & 2.435 & 2.503 & 10/5/10 22:32 & 872 & 2.445 & 2.513 & 10/5/10 22:54 & 893 & 2.449 & 2.517 \\
\hline 10/5/10 22:11 & 851 & 2.434 & 2.502 & 10/5/10 22:33 & 872 & 2.447 & 2.515 & 10/5/10 22:54 & 894 & 2.448 & 2.516 \\
\hline 10/5/10 22:12 & 851 & 2.433 & 2.501 & 10/5/10 22:33 & 873 & 2.447 & 2.515 & 10/5/10 22:54 & 894 & 2.449 & 2.517 \\
\hline 10/5/10 22:12 & 852 & 2.436 & 2.504 & 10/5/10 22:33 & 873 & 2.461 & 2.529 & 10/5/10 22:55 & 894 & 2.452 & 2.52 \\
\hline 10/5/10 22:12 & 852 & 2.435 & 2.503 & 10/5/10 22:34 & 873 & 2.445 & 2.513 & 10/5/10 22:55 & 895 & 2.452 & 2.52 \\
\hline 10/5/10 22:13 & 852 & 2.448 & 2.516 & 10/5/10 22:34 & 874 & 2.454 & 2.522 & 10/5/10 22:55 & 895 & 2.450 & 2.518 \\
\hline 10/5/10 22:13 & 853 & 2.439 & 2.507 & 10/5/10 22:34 & 874 & 2.446 & 2.514 & 10/5/10 22:56 & 895 & 2.450 & 2.518 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 10/5/10 22:56 & 896 & 2.448 & 2.516 & 10/5/10 23:17 & 917 & 2.450 & 2.518 & 10/5/10 23:39 & 938 & 2.466 & 2.534 \\
\hline 10/5/10 22:56 & 896 & 2.447 & 2.515 & 10/5/10 23:18 & 917 & 2.450 & 2.518 & 10/5/10 23:39 & 939 & 2.462 & 2.53 \\
\hline 10/5/10 22:57 & 896 & 2.448 & 2.516 & 10/5/10 23:18 & 918 & 2.447 & 2.515 & 10/5/10 23:39 & 939 & 2.462 & 2.53 \\
\hline 10/5/10 22:57 & 897 & 2.440 & 2.508 & 10/5/10 23:18 & 918 & 2.451 & 2.519 & 10/5/10 23:40 & 939 & 2.464 & 2.532 \\
\hline 10/5/10 22:57 & 897 & 2.445 & 2.513 & 10/5/10 23:19 & 918 & 2.453 & 2.521 & 10/5/10 23:40 & 940 & 2.465 & 2.533 \\
\hline 10/5/10 22:58 & 897 & 2.448 & 2.516 & 10/5/10 23:19 & 919 & 2.448 & 2.516 & 10/5/10 23:40 & 940 & 2.462 & 2.53 \\
\hline 10/5/10 22:58 & 898 & 2.433 & 2.501 & 10/5/10 23:19 & 919 & 2.448 & 2.516 & 10/5/10 23:41 & 940 & 2.464 & 2.532 \\
\hline 10/5/10 22:58 & 898 & 2.439 & 2.507 & 10/5/10 23:20 & 919 & 2.453 & 2.521 & 10/5/10 23:41 & 941 & 2.465 & 2.533 \\
\hline 10/5/10 22:59 & 898 & 2.444 & 2.512 & 10/5/10 23:20 & 920 & 2.448 & 2.516 & 10/5/10 23:41 & 941 & 2.466 & 2.534 \\
\hline 10/5/10 22:59 & 899 & 2.443 & 2.511 & 10/5/10 23:20 & 920 & 2.450 & 2.518 & 10/5/10 23:42 & 941 & 2.467 & 2.535 \\
\hline 10/5/10 22:59 & 899 & 2.442 & 2.51 & 10/5/10 23:21 & 920 & 2.451 & 2.519 & 10/5/10 23:42 & 942 & 2.462 & 2.53 \\
\hline 10/5/10 23:00 & 899 & 2.437 & 2.505 & 10/5/10 23:21 & 921 & 2.450 & 2.518 & 10/5/10 23:42 & 942 & 2.465 & 2.533 \\
\hline 10/5/10 23:00 & 900 & 2.440 & 2.508 & 10/5/10 23:21 & 921 & 2.449 & 2.517 & 10/5/10 23:43 & 942 & 2.465 & 2.533 \\
\hline 10/5/10 23:00 & 900 & 2.442 & 2.51 & 10/5/10 23:22 & 921 & 2.449 & 2.517 & 10/5/10 23:43 & 943 & 2.467 & 2.535 \\
\hline 10/5/10 23:01 & 900 & 2.441 & 2.509 & 10/5/10 23:22 & 922 & 2.451 & 2.519 & 10/5/10 23:43 & 943 & 2.466 & 2.534 \\
\hline 10/5/10 23:01 & 901 & 2.463 & 2.531 & 10/5/10 23:22 & 922 & 2.454 & 2.522 & 10/5/10 23:44 & 943 & 2.464 & 2.532 \\
\hline 10/5/10 23:01 & 901 & 2.448 & 2.516 & 10/5/10 23:23 & 922 & 2.452 & 2.52 & 10/5/10 23:44 & 944 & 2.467 & 2.535 \\
\hline 10/5/10 23:02 & 901 & 2.444 & 2.512 & 10/5/10 23:23 & 923 & 2.448 & 2.516 & 10/5/10 23:44 & 944 & 2.465 & 2.533 \\
\hline 10/5/10 23:02 & 902 & 2.443 & 2.511 & 10/5/10 23:23 & 923 & 2.447 & 2.515 & 10/5/10 23:45 & 944 & 2.472 & 2.54 \\
\hline 10/5/10 23:02 & 902 & 2.449 & 2.517 & 10/5/10 23:24 & 923 & 2.451 & 2.519 & 10/5/10 23:45 & 945 & 2.466 & 2.534 \\
\hline 10/5/10 23:03 & 902 & 2.447 & 2.515 & 10/5/10 23:24 & 924 & 2.452 & 2.52 & 10/5/10 23:45 & 945 & 2.471 & 2.539 \\
\hline 10/5/10 23:03 & 903 & 2.446 & 2.514 & 10/5/10 23:24 & 924 & 2.449 & 2.517 & 10/5/10 23:46 & 945 & 2.469 & 2.537 \\
\hline 10/5/10 23:03 & 903 & 2.444 & 2.512 & 10/5/10 23:25 & 924 & 2.451 & 2.519 & 10/5/10 23:46 & 946 & 2.470 & 2.538 \\
\hline 10/5/10 23:04 & 903 & 2.447 & 2.515 & 10/5/10 23:25 & 925 & 2.452 & 2.52 & 10/5/10 23:46 & 946 & 2.470 & 2.538 \\
\hline 10/5/10 23:04 & 904 & 2.444 & 2.512 & 10/5/10 23:25 & 925 & 2.452 & 2.52 & 10/5/10 23:47 & 946 & 2.467 & 2.535 \\
\hline 10/5/10 23:04 & 904 & 2.454 & 2.522 & 10/5/10 23:26 & 925 & 2.450 & 2.518 & 10/5/10 23:47 & 947 & 2.468 & 2.536 \\
\hline 10/5/10 23:05 & 904 & 2.444 & 2.512 & 10/5/10 23:26 & 926 & 2.450 & 2.518 & 10/5/10 23:47 & 947 & 2.468 & 2.536 \\
\hline 10/5/10 23:05 & 905 & 2.445 & 2.513 & 10/5/10 23:26 & 926 & 2.467 & 2.535 & 10/5/10 23:48 & 947 & 2.469 & 2.537 \\
\hline 10/5/10 23:05 & 905 & 2.442 & 2.51 & 10/5/10 23:27 & 926 & 2.454 & 2.522 & 10/5/10 23:48 & 948 & 2.467 & 2.535 \\
\hline 10/5/10 23:06 & 905 & 2.442 & 2.51 & 10/5/10 23:27 & 927 & 2.456 & 2.524 & 10/5/10 23:48 & 948 & 2.467 & 2.535 \\
\hline 10/5/10 23:06 & 906 & 2.442 & 2.51 & 10/5/10 23:27 & 927 & 2.455 & 2.523 & 10/5/10 23:49 & 948 & 2.470 & 2.538 \\
\hline 10/5/10 23:06 & 906 & 2.446 & 2.514 & 10/5/10 23:28 & 927 & 2.451 & 2.519 & 10/5/10 23:49 & 949 & 2.469 & 2.537 \\
\hline 10/5/10 23:07 & 906 & 2.445 & 2.513 & 10/5/10 23:28 & 928 & 2.451 & 2.519 & 10/5/10 23:49 & 949 & 2.466 & 2.534 \\
\hline 10/5/10 23:07 & 907 & 2.442 & 2.51 & 10/5/10 23:28 & 928 & 2.456 & 2.524 & 10/5/10 23:50 & 949 & 2.468 & 2.536 \\
\hline 10/5/10 23:07 & 907 & 2.444 & 2.512 & 10/5/10 23:29 & 928 & 2.453 & 2.521 & 10/5/10 23:50 & 950 & 2.469 & 2.537 \\
\hline 10/5/10 23:08 & 907 & 2.459 & 2.527 & 10/5/10 23:29 & 929 & 2.453 & 2.521 & 10/5/10 23:50 & 950 & 2.467 & 2.535 \\
\hline 10/5/10 23:08 & 908 & 2.441 & 2.509 & 10/5/10 23:29 & 929 & 2.458 & 2.526 & 10/5/10 23:51 & 950 & 2.465 & 2.533 \\
\hline 10/5/10 23:08 & 908 & 2.456 & 2.524 & 10/5/10 23:30 & 929 & 2.455 & 2.523 & 10/5/10 23:51 & 951 & 2.466 & 2.534 \\
\hline 10/5/10 23:09 & 908 & 2.447 & 2.515 & 10/5/10 23:30 & 930 & 2.457 & 2.525 & 10/5/10 23:51 & 951 & 2.477 & 2.545 \\
\hline 10/5/10 23:09 & 909 & 2.444 & 2.512 & 10/5/10 23:30 & 930 & 2.458 & 2.526 & 10/5/10 23:52 & 951 & 2.464 & 2.532 \\
\hline 10/5/10 23:09 & 909 & 2.456 & 2.524 & 10/5/10 23:31 & 930 & 2.459 & 2.527 & 10/5/10 23:52 & 952 & 2.467 & 2.535 \\
\hline 10/5/10 23:10 & 909 & 2.445 & 2.513 & 10/5/10 23:31 & 931 & 2.470 & 2.538 & 10/5/10 23:52 & 952 & 2.470 & 2.538 \\
\hline 10/5/10 23:10 & 910 & 2.444 & 2.512 & 10/5/10 23:31 & 931 & 2.461 & 2.529 & 10/5/10 23:53 & 952 & 2.464 & 2.532 \\
\hline 10/5/10 23:10 & 910 & 2.454 & 2.522 & 10/5/10 23:32 & 931 & 2.459 & 2.527 & 10/5/10 23:53 & 953 & 2.466 & 2.534 \\
\hline 10/5/10 23:11 & 910 & 2.445 & 2.513 & 10/5/10 23:32 & 932 & 2.457 & 2.525 & 10/5/10 23:53 & 953 & 2.465 & 2.533 \\
\hline 10/5/10 23:11 & 911 & 2.448 & 2.516 & 10/5/10 23:32 & 932 & 2.458 & 2.526 & 10/5/10 23:54 & 953 & 2.465 & 2.533 \\
\hline 10/5/10 23:11 & 911 & 2.450 & 2.518 & 10/5/10 23:33 & 932 & 2.457 & 2.525 & 10/5/10 23:54 & 954 & 2.466 & 2.534 \\
\hline 10/5/10 23:12 & 911 & 2.448 & 2.516 & 10/5/10 23:33 & 933 & 2.458 & 2.526 & 10/5/10 23:54 & 954 & 2.466 & 2.534 \\
\hline 10/5/10 23:12 & 912 & 2.447 & 2.515 & 10/5/10 23:33 & 933 & 2.460 & 2.528 & 10/5/10 23:55 & 954 & 2.472 & 2.54 \\
\hline 10/5/10 23:12 & 912 & 2.448 & 2.516 & 10/5/10 23:34 & 933 & 2.460 & 2.528 & 10/5/10 23:55 & 955 & 2.466 & 2.534 \\
\hline 10/5/10 23:13 & 912 & 2.446 & 2.514 & 10/5/10 23:34 & 934 & 2.459 & 2.527 & 10/5/10 23:55 & 955 & 2.466 & 2.534 \\
\hline 10/5/10 23:13 & 913 & 2.449 & 2.517 & 10/5/10 23:34 & 934 & 2.458 & 2.526 & 10/5/10 23:56 & 955 & 2.467 & 2.535 \\
\hline 10/5/10 23:13 & 913 & 2.446 & 2.514 & 10/5/10 23:35 & 934 & 2.461 & 2.529 & 10/5/10 23:56 & 956 & 2.470 & 2.538 \\
\hline 10/5/10 23:14 & 913 & 2.447 & 2.515 & 10/5/10 23:35 & 935 & 2.457 & 2.525 & 10/5/10 23:56 & 956 & 2.471 & 2.539 \\
\hline 10/5/10 23:14 & 914 & 2.451 & 2.519 & 10/5/10 23:35 & 935 & 2.460 & 2.528 & 10/5/10 23:57 & 956 & 2.470 & 2.538 \\
\hline 10/5/10 23:14 & 914 & 2.451 & 2.519 & 10/5/10 23:36 & 935 & 2.464 & 2.532 & 10/5/10 23:57 & 957 & 2.466 & 2.534 \\
\hline 10/5/10 23:15 & 914 & 2.450 & 2.518 & 10/5/10 23:36 & 936 & 2.461 & 2.529 & 10/5/10 23:57 & 957 & 2.470 & 2.538 \\
\hline 10/5/10 23:15 & 915 & 2.449 & 2.517 & 10/5/10 23:36 & 936 & 2.460 & 2.528 & 10/5/10 23:58 & 957 & 2.473 & 2.541 \\
\hline 10/5/10 23:15 & 915 & 2.449 & 2.517 & 10/5/10 23:37 & 936 & 2.457 & 2.525 & 10/5/10 23:58 & 958 & 2.468 & 2.536 \\
\hline 10/5/10 23:16 & 915 & 2.449 & 2.517 & 10/5/10 23:37 & 937 & 2.460 & 2.528 & 10/5/10 23:58 & 958 & 2.472 & 2.54 \\
\hline 10/5/10 23:16 & 916 & 2.452 & 2.52 & 10/5/10 23:37 & 937 & 2.461 & 2.529 & 10/5/10 23:59 & 958 & 2.472 & 2.54 \\
\hline 10/5/10 23:16 & 916 & 2.445 & 2.513 & 10/5/10 23:38 & 937 & 2.460 & 2.528 & 10/5/10 23:59 & 959 & 2.473 & 2.541 \\
\hline 10/5/10 23:17 & 916 & 2.453 & 2.521 & 10/5/10 23:38 & 938 & 2.464 & 2.532 & 10/5/10 23:59 & 959 & 2.471 & 2.539 \\
\hline 10/5/10 23:17 & 917 & 2.448 & 2.516 & 10/5/10 23:38 & 938 & 2.462 & 2.53 & 10/6/10 0:00 & 959 & 2.471 & 2.539 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 10/6/10 0:00 & 960 & 2.480 & 2.548 & 10/6/10 0:21 & 981 & 2.475 & 2.543 & 10/6/10 0:43 & 1002 & 2.480 & 2.548 \\
\hline 10/6/10 0:00 & 960 & 2.471 & 2.539 & 10/6/10 0:22 & 981 & 2.477 & 2.545 & 10/6/10 0:43 & 1003 & 2.484 & 2.552 \\
\hline 10/6/10 0:01 & 960 & 2.474 & 2.542 & 10/6/10 0:22 & 982 & 2.477 & 2.545 & 10/6/10 0:43 & 1003 & 2.486 & 2.554 \\
\hline 10/6/10 0:01 & 961 & 2.472 & 2.54 & 10/6/10 0:22 & 982 & 2.476 & 2.544 & 10/6/10 0:44 & 1003 & 2.482 & 2.55 \\
\hline 10/6/10 0:01 & 961 & 2.473 & 2.541 & 10/6/10 0:23 & 982 & 2.475 & 2.543 & 10/6/10 0:44 & 1004 & 2.482 & 2.55 \\
\hline 10/6/10 0:02 & 961 & 2.485 & 2.553 & 10/6/10 0:23 & 983 & 2.475 & 2.543 & 10/6/10 0:44 & 1004 & 2.479 & 2.547 \\
\hline 10/6/10 0:02 & 962 & 2.476 & 2.544 & 10/6/10 0:23 & 983 & 2.474 & 2.542 & 10/6/10 0:45 & 1004 & 2.482 & 2.55 \\
\hline 10/6/10 0:02 & 962 & 2.472 & 2.54 & 10/6/10 0:24 & 983 & 2.474 & 2.542 & 10/6/10 0:45 & 1005 & 2.481 & 2.549 \\
\hline 10/6/10 0:03 & 962 & 2.475 & 2.543 & 10/6/10 0:24 & 984 & 2.478 & 2.546 & 10/6/10 0:45 & 1005 & 2.484 & 2.552 \\
\hline 10/6/10 0:03 & 963 & 2.476 & 2.544 & 10/6/10 0:24 & 984 & 2.478 & 2.546 & 10/6/10 0:46 & 1005 & 2.480 & 2.548 \\
\hline 10/6/10 0:03 & 963 & 2.474 & 2.542 & 10/6/10 0:25 & 984 & 2.481 & 2.549 & 10/6/10 0:46 & 1006 & 2.484 & 2.552 \\
\hline 10/6/10 0:04 & 963 & 2.476 & 2.544 & 10/6/10 0:25 & 985 & 2.476 & 2.544 & 10/6/10 0:46 & 1006 & 2.482 & 2.55 \\
\hline 10/6/10 0:04 & 964 & 2.475 & 2.543 & 10/6/10 0:25 & 985 & 2.476 & 2.544 & 10/6/10 0:47 & 1006 & 2.482 & 2.55 \\
\hline 10/6/10 0:04 & 964 & 2.473 & 2.541 & 10/6/10 0:26 & 985 & 2.473 & 2.541 & 10/6/10 0:47 & 1007 & 2.484 & 2.552 \\
\hline 10/6/10 0:05 & 964 & 2.476 & 2.544 & 10/6/10 0:26 & 986 & 2.475 & 2.543 & 10/6/10 0:47 & 1007 & 2.481 & 2.549 \\
\hline 10/6/10 0:05 & 965 & 2.470 & 2.538 & 10/6/10 0:26 & 986 & 2.472 & 2.54 & 10/6/10 0:48 & 1007 & 2.485 & 2.553 \\
\hline 10/6/10 0:05 & 965 & 2.462 & 2.53 & 10/6/10 0:27 & 986 & 2.484 & 2.552 & 10/6/10 0:48 & 1008 & 2.486 & 2.554 \\
\hline 10/6/10 0:06 & 965 & 2.475 & 2.543 & 10/6/10 0:27 & 987 & 2.478 & 2.546 & 10/6/10 0:48 & 1008 & 2.488 & 2.556 \\
\hline 10/6/10 0:06 & 966 & 2.473 & 2.541 & 10/6/10 0:27 & 987 & 2.473 & 2.541 & 10/6/10 0:49 & 1008 & 2.485 & 2.553 \\
\hline 10/6/10 0:06 & 966 & 2.469 & 2.537 & 10/6/10 0:28 & 987 & 2.474 & 2.542 & 10/6/10 0:49 & 1009 & 2.485 & 2.553 \\
\hline 10/6/10 0:07 & 966 & 2.471 & 2.539 & 10/6/10 0:28 & 988 & 2.478 & 2.546 & 10/6/10 0:49 & 1009 & 2.484 & 2.552 \\
\hline 10/6/10 0:07 & 967 & 2.473 & 2.541 & 10/6/10 0:28 & 988 & 2.477 & 2.545 & 10/6/10 0:50 & 1009 & 2.484 & 2.552 \\
\hline 10/6/10 0:07 & 967 & 2.474 & 2.542 & 10/6/10 0:29 & 988 & 2.479 & 2.547 & 10/6/10 0:50 & 1010 & 2.485 & 2.553 \\
\hline 10/6/10 0:08 & 967 & 2.472 & 2.54 & 10/6/10 0:29 & 989 & 2.473 & 2.541 & 10/6/10 0:50 & 1010 & 2.488 & 2.556 \\
\hline 10/6/10 0:08 & 968 & 2.473 & 2.541 & 10/6/10 0:29 & 989 & 2.474 & 2.542 & 10/6/10 0:51 & 1010 & 2.487 & 2.555 \\
\hline 10/6/10 0:08 & 968 & 2.478 & 2.546 & 10/6/10 0:30 & 989 & 2.477 & 2.545 & 10/6/10 0:51 & 1011 & 2.493 & 2.561 \\
\hline 10/6/10 0:09 & 968 & 2.475 & 2.543 & 10/6/10 0:30 & 990 & 2.477 & 2.545 & 10/6/10 0:51 & 1011 & 2.488 & 2.556 \\
\hline 10/6/10 0:09 & 969 & 2.475 & 2.543 & 10/6/10 0:30 & 990 & 2.475 & 2.543 & 10/6/10 0:52 & 1011 & 2.486 & 2.554 \\
\hline 10/6/10 0:09 & 969 & 2.474 & 2.542 & 10/6/10 0:31 & 990 & 2.477 & 2.545 & 10/6/10 0:52 & 1012 & 2.486 & 2.554 \\
\hline 10/6/10 0:10 & 969 & 2.475 & 2.543 & 10/6/10 0:31 & 991 & 2.476 & 2.544 & 10/6/10 0:52 & 1012 & 2.488 & 2.556 \\
\hline 10/6/10 0:10 & 970 & 2.472 & 2.54 & 10/6/10 0:31 & 991 & 2.478 & 2.546 & 10/6/10 0:53 & 1012 & 2.489 & 2.557 \\
\hline 10/6/10 0:10 & 970 & 2.478 & 2.546 & 10/6/10 0:32 & 991 & 2.479 & 2.547 & 10/6/10 0:53 & 1013 & 2.486 & 2.554 \\
\hline 10/6/10 0:11 & 970 & 2.475 & 2.543 & 10/6/10 0:32 & 992 & 2.477 & 2.545 & 10/6/10 0:53 & 1013 & 2.489 & 2.557 \\
\hline 10/6/10 0:11 & 971 & 2.478 & 2.546 & 10/6/10 0:32 & 992 & 2.475 & 2.543 & 10/6/10 0:54 & 1013 & 2.488 & 2.556 \\
\hline 10/6/10 0:11 & 971 & 2.475 & 2.543 & 10/6/10 0:33 & 992 & 2.476 & 2.544 & 10/6/10 0:54 & 1014 & 2.488 & 2.556 \\
\hline 10/6/10 0:12 & 971 & 2.476 & 2.544 & 10/6/10 0:33 & 993 & 2.476 & 2.544 & 10/6/10 0:54 & 1014 & 2.488 & 2.556 \\
\hline 10/6/10 0:12 & 972 & 2.476 & 2.544 & 10/6/10 0:33 & 993 & 2.481 & 2.549 & 10/6/10 0:55 & 1014 & 2.488 & 2.556 \\
\hline 10/6/10 0:12 & 972 & 2.475 & 2.543 & 10/6/10 0:34 & 993 & 2.477 & 2.545 & 10/6/10 0:55 & 1015 & 2.486 & 2.554 \\
\hline 10/6/10 0:13 & 972 & 2.476 & 2.544 & 10/6/10 0:34 & 994 & 2.477 & 2.545 & 10/6/10 0:55 & 1015 & 2.486 & 2.554 \\
\hline 10/6/10 0:13 & 973 & 2.476 & 2.544 & 10/6/10 0:34 & 994 & 2.479 & 2.547 & 10/6/10 0:56 & 1015 & 2.487 & 2.555 \\
\hline 10/6/10 0:13 & 973 & 2.472 & 2.54 & 10/6/10 0:35 & 994 & 2.473 & 2.541 & 10/6/10 0:56 & 1016 & 2.487 & 2.555 \\
\hline 10/6/10 0:14 & 973 & 2.475 & 2.543 & 10/6/10 0:35 & 995 & 2.475 & 2.543 & 10/6/10 0:56 & 1016 & 2.488 & 2.556 \\
\hline 10/6/10 0:14 & 974 & 2.476 & 2.544 & 10/6/10 0:35 & 995 & 2.476 & 2.544 & 10/6/10 0:57 & 1016 & 2.486 & 2.554 \\
\hline 10/6/10 0:14 & 974 & 2.474 & 2.542 & 10/6/10 0:36 & 995 & 2.479 & 2.547 & 10/6/10 0:57 & 1017 & 2.490 & 2.558 \\
\hline 10/6/10 0:15 & 974 & 2.474 & 2.542 & 10/6/10 0:36 & 996 & 2.477 & 2.545 & 10/6/10 0:57 & 1017 & 2.485 & 2.553 \\
\hline 10/6/10 0:15 & 975 & 2.477 & 2.545 & 10/6/10 0:36 & 996 & 2.486 & 2.554 & 10/6/10 0:58 & 1017 & 2.488 & 2.556 \\
\hline 10/6/10 0:15 & 975 & 2.475 & 2.543 & 10/6/10 0:37 & 996 & 2.474 & 2.542 & 10/6/10 0:58 & 1018 & 2.487 & 2.555 \\
\hline 10/6/10 0:16 & 975 & 2.475 & 2.543 & 10/6/10 0:37 & 997 & 2.478 & 2.546 & 10/6/10 0:58 & 1018 & 2.488 & 2.556 \\
\hline 10/6/10 0:16 & 976 & 2.478 & 2.546 & 10/6/10 0:37 & 997 & 2.476 & 2.544 & 10/6/10 0:59 & 1018 & 2.485 & 2.553 \\
\hline 10/6/10 0:16 & 976 & 2.473 & 2.541 & 10/6/10 0:38 & 997 & 2.477 & 2.545 & 10/6/10 0:59 & 1019 & 2.483 & 2.551 \\
\hline 10/6/10 0:17 & 976 & 2.477 & 2.545 & 10/6/10 0:38 & 998 & 2.479 & 2.547 & 10/6/10 0:59 & 1019 & 2.486 & 2.554 \\
\hline 10/6/10 0:17 & 977 & 2.476 & 2.544 & 10/6/10 0:38 & 998 & 2.479 & 2.547 & 10/6/10 1:00 & 1019 & 2.487 & 2.555 \\
\hline 10/6/10 0:17 & 977 & 2.474 & 2.542 & 10/6/10 0:39 & 998 & 2.481 & 2.549 & 10/6/10 1:00 & 1020 & 2.487 & 2.555 \\
\hline 10/6/10 0:18 & 977 & 2.476 & 2.544 & 10/6/10 0:39 & 999 & 2.478 & 2.546 & 10/6/10 1:00 & 1020 & 2.491 & 2.559 \\
\hline 10/6/10 0:18 & 978 & 2.476 & 2.544 & 10/6/10 0:39 & 999 & 2.475 & 2.543 & 10/6/10 1:01 & 1020 & 2.492 & 2.56 \\
\hline 10/6/10 0:18 & 978 & 2.477 & 2.545 & 10/6/10 0:40 & 999 & 2.479 & 2.547 & 10/6/10 1:01 & 1021 & 2.485 & 2.553 \\
\hline 10/6/10 0:19 & 978 & 2.476 & 2.544 & 10/6/10 0:40 & 1000 & 2.481 & 2.549 & 10/6/10 1:01 & 1021 & 2.489 & 2.557 \\
\hline 10/6/10 0:19 & 979 & 2.478 & 2.546 & 10/6/10 0:40 & 1000 & 2.482 & 2.55 & 10/6/10 1:02 & 1021 & 2.488 & 2.556 \\
\hline 10/6/10 0:19 & 979 & 2.479 & 2.547 & 10/6/10 0:41 & 1000 & 2.485 & 2.553 & 10/6/10 1:02 & 1022 & 2.486 & 2.554 \\
\hline 10/6/10 0:20 & 979 & 2.476 & 2.544 & 10/6/10 0:41 & 1001 & 2.479 & 2.547 & 10/6/10 1:02 & 1022 & 2.487 & 2.555 \\
\hline 10/6/10 0:20 & 980 & 2.474 & 2.542 & 10/6/10 0:41 & 1001 & 2.482 & 2.55 & 10/6/10 1:03 & 1022 & 2.486 & 2.554 \\
\hline 10/6/10 0:20 & 980 & 2.475 & 2.543 & 10/6/10 0:42 & 1001 & 2.483 & 2.551 & 10/6/10 1:03 & 1023 & 2.487 & 2.555 \\
\hline 10/6/10 0:21 & 980 & 2.475 & 2.543 & 10/6/10 0:42 & 1002 & 2.480 & 2.548 & 10/6/10 1:03 & 1023 & 2.484 & 2.552 \\
\hline 10/6/10 0:21 & 981 & 2.475 & 2.543 & 10/6/10 0:42 & 1002 & 2.483 & 2.551 & 10/6/10 1:04 & 1023 & 2.487 & 2.555 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 10/6/10 1:04 & 1024 & 2.487 & 2.555 & 10/6/10 1:25 & 1045 & 2.495 & 2.563 & 10/6/10 1:47 & 1066 & 2.514 & 2.582 \\
\hline 10/6/10 1:04 & 1024 & 2.490 & 2.558 & 10/6/10 1:26 & 1045 & 2.497 & 2.565 & 10/6/10 1:47 & 1067 & 2.510 & 2.578 \\
\hline 10/6/10 1:05 & 1024 & 2.489 & 2.557 & 10/6/10 1:26 & 1046 & 2.503 & 2.571 & 10/6/10 1:47 & 1067 & 2.514 & 2.582 \\
\hline 10/6/10 1:05 & 1025 & 2.484 & 2.552 & 10/6/10 1:26 & 1046 & 2.495 & 2.563 & 10/6/10 1:48 & 1067 & 2.514 & 2.582 \\
\hline 10/6/10 1:05 & 1025 & 2.490 & 2.558 & 10/6/10 1:27 & 1046 & 2.496 & 2.564 & 10/6/10 1:48 & 1068 & 2.512 & 2.58 \\
\hline 10/6/10 1:06 & 1025 & 2.494 & 2.562 & 10/6/10 1:27 & 1047 & 2.499 & 2.567 & 10/6/10 1:48 & 1068 & 2.509 & 2.577 \\
\hline 10/6/10 1:06 & 1026 & 2.494 & 2.562 & 10/6/10 1:27 & 1047 & 2.499 & 2.567 & 10/6/10 1:49 & 1068 & 2.514 & 2.582 \\
\hline 10/6/10 1:06 & 1026 & 2.495 & 2.563 & 10/6/10 1:28 & 1047 & 2.501 & 2.569 & 10/6/10 1:49 & 1069 & 2.517 & 2.585 \\
\hline 10/6/10 1:07 & 1026 & 2.501 & 2.569 & 10/6/10 1:28 & 1048 & 2.500 & 2.568 & 10/6/10 1:49 & 1069 & 2.517 & 2.585 \\
\hline 10/6/10 1:07 & 1027 & 2.503 & 2.571 & 10/6/10 1:28 & 1048 & 2.500 & 2.568 & 10/6/10 1:50 & 1069 & 2.516 & 2.584 \\
\hline 10/6/10 1:07 & 1027 & 2.494 & 2.562 & 10/6/10 1:29 & 1048 & 2.500 & 2.568 & 10/6/10 1:50 & 1070 & 2.513 & 2.581 \\
\hline 10/6/10 1:08 & 1027 & 2.492 & 2.56 & 10/6/10 1:29 & 1049 & 2.502 & 2.57 & 10/6/10 1:50 & 1070 & 2.516 & 2.584 \\
\hline 10/6/10 1:08 & 1028 & 2.498 & 2.566 & 10/6/10 1:29 & 1049 & 2.500 & 2.568 & 10/6/10 1:51 & 1070 & 2.515 & 2.583 \\
\hline 10/6/10 1:08 & 1028 & 2.497 & 2.565 & 10/6/10 1:30 & 1049 & 2.501 & 2.569 & 10/6/10 1:51 & 1071 & 2.515 & 2.583 \\
\hline 10/6/10 1:09 & 1028 & 2.491 & 2.559 & 10/6/10 1:30 & 1050 & 2.502 & 2.57 & 10/6/10 1:51 & 1071 & 2.512 & 2.58 \\
\hline 10/6/10 1:09 & 1029 & 2.492 & 2.56 & 10/6/10 1:30 & 1050 & 2.500 & 2.568 & 10/6/10 1:52 & 1071 & 2.513 & 2.581 \\
\hline 10/6/10 1:09 & 1029 & 2.498 & 2.566 & 10/6/10 1:31 & 1050 & 2.500 & 2.568 & 10/6/10 1:52 & 1072 & 2.514 & 2.582 \\
\hline 10/6/10 1:10 & 1029 & 2.494 & 2.562 & 10/6/10 1:31 & 1051 & 2.503 & 2.571 & 10/6/10 1:52 & 1072 & 2.517 & 2.585 \\
\hline 10/6/10 1:10 & 1030 & 2.496 & 2.564 & 10/6/10 1:31 & 1051 & 2.500 & 2.568 & 10/6/10 1:53 & 1072 & 2.513 & 2.581 \\
\hline 10/6/10 1:10 & 1030 & 2.495 & 2.563 & 10/6/10 1:32 & 1051 & 2.503 & 2.571 & 10/6/10 1:53 & 1073 & 2.512 & 2.58 \\
\hline 10/6/10 1:11 & 1030 & 2.497 & 2.565 & 10/6/10 1:32 & 1052 & 2.504 & 2.572 & 10/6/10 1:53 & 1073 & 2.514 & 2.582 \\
\hline 10/6/10 1:11 & 1031 & 2.496 & 2.564 & 10/6/10 1:32 & 1052 & 2.502 & 2.57 & 10/6/10 1:54 & 1073 & 2.514 & 2.582 \\
\hline 10/6/10 1:11 & 1031 & 2.497 & 2.565 & 10/6/10 1:33 & 1052 & 2.501 & 2.569 & 10/6/10 1:54 & 1074 & 2.518 & 2.586 \\
\hline 10/6/10 1:12 & 1031 & 2.494 & 2.562 & 10/6/10 1:33 & 1053 & 2.503 & 2.571 & 10/6/10 1:54 & 1074 & 2.520 & 2.588 \\
\hline 10/6/10 1:12 & 1032 & 2.508 & 2.576 & 10/6/10 1:33 & 1053 & 2.506 & 2.574 & 10/6/10 1:55 & 1074 & 2.515 & 2.583 \\
\hline 10/6/10 1:12 & 1032 & 2.498 & 2.566 & 10/6/10 1:34 & 1053 & 2.502 & 2.57 & 10/6/10 1:55 & 1075 & 2.516 & 2.584 \\
\hline 10/6/10 1:13 & 1032 & 2.497 & 2.565 & 10/6/10 1:34 & 1054 & 2.502 & 2.57 & 10/6/10 1:55 & 1075 & 2.517 & 2.585 \\
\hline 10/6/10 1:13 & 1033 & 2.497 & 2.565 & 10/6/10 1:34 & 1054 & 2.504 & 2.572 & 10/6/10 1:56 & 1075 & 2.519 & 2.587 \\
\hline 10/6/10 1:13 & 1033 & 2.500 & 2.568 & 10/6/10 1:35 & 1054 & 2.504 & 2.572 & 10/6/10 1:56 & 1076 & 2.515 & 2.583 \\
\hline 10/6/10 1:14 & 1033 & 2.501 & 2.569 & 10/6/10 1:35 & 1055 & 2.507 & 2.575 & 10/6/10 1:56 & 1076 & 2.515 & 2.583 \\
\hline 10/6/10 1:14 & 1034 & 2.500 & 2.568 & 10/6/10 1:35 & 1055 & 2.505 & 2.573 & 10/6/10 1:57 & 1076 & 2.517 & 2.585 \\
\hline 10/6/10 1:14 & 1034 & 2.496 & 2.564 & 10/6/10 1:36 & 1055 & 2.504 & 2.572 & 10/6/10 1:57 & 1077 & 2.515 & 2.583 \\
\hline 10/6/10 1:15 & 1034 & 2.498 & 2.566 & 10/6/10 1:36 & 1056 & 2.507 & 2.575 & 10/6/10 1:57 & 1077 & 2.518 & 2.586 \\
\hline 10/6/10 1:15 & 1035 & 2.498 & 2.566 & 10/6/10 1:36 & 1056 & 2.507 & 2.575 & 10/6/10 1:58 & 1077 & 2.516 & 2.584 \\
\hline 10/6/10 1:15 & 1035 & 2.498 & 2.566 & 10/6/10 1:37 & 1056 & 2.505 & 2.573 & 10/6/10 1:58 & 1078 & 2.514 & 2.582 \\
\hline 10/6/10 1:16 & 1035 & 2.497 & 2.565 & 10/6/10 1:37 & 1057 & 2.505 & 2.573 & 10/6/10 1:58 & 1078 & 2.515 & 2.583 \\
\hline 10/6/10 1:16 & 1036 & 2.498 & 2.566 & 10/6/10 1:37 & 1057 & 2.508 & 2.576 & 10/6/10 1:59 & 1078 & 2.517 & 2.585 \\
\hline 10/6/10 1:16 & 1036 & 2.498 & 2.566 & 10/6/10 1:38 & 1057 & 2.506 & 2.574 & 10/6/10 1:59 & 1079 & 2.515 & 2.583 \\
\hline 10/6/10 1:17 & 1036 & 2.500 & 2.568 & 10/6/10 1:38 & 1058 & 2.507 & 2.575 & 10/6/10 1:59 & 1079 & 2.515 & 2.583 \\
\hline 10/6/10 1:17 & 1037 & 2.501 & 2.569 & 10/6/10 1:38 & 1058 & 2.506 & 2.574 & 10/6/10 2:00 & 1079 & 2.515 & 2.583 \\
\hline 10/6/10 1:17 & 1037 & 2.509 & 2.577 & 10/6/10 1:39 & 1058 & 2.507 & 2.575 & 10/6/10 2:00 & 1080 & 2.519 & 2.587 \\
\hline 10/6/10 1:18 & 1037 & 2.500 & 2.568 & 10/6/10 1:39 & 1059 & 2.507 & 2.575 & 10/6/10 2:00 & 1080 & 2.520 & 2.588 \\
\hline 10/6/10 1:18 & 1038 & 2.497 & 2.565 & 10/6/10 1:39 & 1059 & 2.507 & 2.575 & 10/6/10 2:01 & 1080 & 2.516 & 2.584 \\
\hline 10/6/10 1:18 & 1038 & 2.499 & 2.567 & 10/6/10 1:40 & 1059 & 2.508 & 2.576 & 10/6/10 2:01 & 1081 & 2.519 & 2.587 \\
\hline 10/6/10 1:19 & 1038 & 2.500 & 2.568 & 10/6/10 1:40 & 1060 & 2.509 & 2.577 & 10/6/10 2:01 & 1081 & 2.518 & 2.586 \\
\hline 10/6/10 1:19 & 1039 & 2.500 & 2.568 & 10/6/10 1:40 & 1060 & 2.507 & 2.575 & 10/6/10 2:02 & 1081 & 2.518 & 2.586 \\
\hline 10/6/10 1:19 & 1039 & 2.505 & 2.573 & 10/6/10 1:41 & 1060 & 2.509 & 2.577 & 10/6/10 2:02 & 1082 & 2.521 & 2.589 \\
\hline 10/6/10 1:20 & 1039 & 2.499 & 2.567 & 10/6/10 1:41 & 1061 & 2.508 & 2.576 & 10/6/10 2:02 & 1082 & 2.520 & 2.588 \\
\hline 10/6/10 1:20 & 1040 & 2.502 & 2.57 & 10/6/10 1:41 & 1061 & 2.509 & 2.577 & 10/6/10 2:03 & 1082 & 2.523 & 2.591 \\
\hline 10/6/10 1:20 & 1040 & 2.499 & 2.567 & 10/6/10 1:42 & 1061 & 2.509 & 2.577 & 10/6/10 2:03 & 1083 & 2.520 & 2.588 \\
\hline 10/6/10 1:21 & 1040 & 2.497 & 2.565 & 10/6/10 1:42 & 1062 & 2.508 & 2.576 & 10/6/10 2:03 & 1083 & 2.519 & 2.587 \\
\hline 10/6/10 1:21 & 1041 & 2.497 & 2.565 & 10/6/10 1:42 & 1062 & 2.508 & 2.576 & 10/6/10 2:04 & 1083 & 2.515 & 2.583 \\
\hline 10/6/10 1:21 & 1041 & 2.497 & 2.565 & 10/6/10 1:43 & 1062 & 2.512 & 2.58 & 10/6/10 2:04 & 1084 & 2.518 & 2.586 \\
\hline 10/6/10 1:22 & 1041 & 2.496 & 2.564 & 10/6/10 1:43 & 1063 & 2.509 & 2.577 & 10/6/10 2:04 & 1084 & 2.520 & 2.588 \\
\hline 10/6/10 1:22 & 1042 & 2.498 & 2.566 & 10/6/10 1:43 & 1063 & 2.511 & 2.579 & 10/6/10 2:05 & 1084 & 2.522 & 2.59 \\
\hline 10/6/10 1:22 & 1042 & 2.500 & 2.568 & 10/6/10 1:44 & 1063 & 2.509 & 2.577 & 10/6/10 2:05 & 1085 & 2.531 & 2.599 \\
\hline 10/6/10 1:23 & 1042 & 2.499 & 2.567 & 10/6/10 1:44 & 1064 & 2.510 & 2.578 & 10/6/10 2:05 & 1085 & 2.521 & 2.589 \\
\hline 10/6/10 1:23 & 1043 & 2.500 & 2.568 & 10/6/10 1:44 & 1064 & 2.510 & 2.578 & 10/6/10 2:06 & 1085 & 2.520 & 2.588 \\
\hline 10/6/10 1:23 & 1043 & 2.500 & 2.568 & 10/6/10 1:45 & 1064 & 2.512 & 2.58 & 10/6/10 2:06 & 1086 & 2.522 & 2.59 \\
\hline 10/6/10 1:24 & 1043 & 2.499 & 2.567 & 10/6/10 1:45 & 1065 & 2.513 & 2.581 & 10/6/10 2:06 & 1086 & 2.523 & 2.591 \\
\hline 10/6/10 1:24 & 1044 & 2.500 & 2.568 & 10/6/10 1:45 & 1065 & 2.511 & 2.579 & 10/6/10 2:07 & 1086 & 2.522 & 2.59 \\
\hline 10/6/10 1:24 & 1044 & 2.498 & 2.566 & 10/6/10 1:46 & 1065 & 2.510 & 2.578 & 10/6/10 2:07 & 1087 & 2.522 & 2.59 \\
\hline 10/6/10 1:25 & 1044 & 2.498 & 2.566 & 10/6/10 1:46 & 1066 & 2.509 & 2.577 & 10/6/10 2:07 & 1087 & 2.527 & 2.595 \\
\hline 10/6/10 1:25 & 1045 & 2.499 & 2.567 & 10/6/10 1:46 & 1066 & 2.511 & 2.579 & 10/6/10 2:08 & 1087 & 2.520 & 2.588 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 10/6/10 2:08 & 1088 & 2.532 & 2.6 & 10/6/10 2:29 & 1109 & 2.525 & 2.593 & 10/6/10 2:51 & 1130 & 2.530 & 2.598 \\
\hline 10/6/10 2:08 & 1088 & 2.521 & 2.589 & 10/6/10 2:30 & 1109 & 2.530 & 2.598 & 10/6/10 2:51 & 1131 & 2.532 & 2.6 \\
\hline 10/6/10 2:09 & 1088 & 2.524 & 2.592 & 10/6/10 2:30 & 1110 & 2.528 & 2.596 & 10/6/10 2:51 & 1131 & 2.534 & 2.602 \\
\hline 10/6/10 2:09 & 1089 & 2.522 & 2.59 & 10/6/10 2:30 & 1110 & 2.528 & 2.596 & 10/6/10 2:52 & 1131 & 2.532 & 2.6 \\
\hline 10/6/10 2:09 & 1089 & 2.522 & 2.59 & 10/6/10 2:31 & 1110 & 2.529 & 2.597 & 10/6/10 2:52 & 1132 & 2.531 & 2.599 \\
\hline 10/6/10 2:10 & 1089 & 2.522 & 2.59 & 10/6/10 2:31 & 1111 & 2.539 & 2.607 & 10/6/10 2:52 & 1132 & 2.531 & 2.599 \\
\hline 10/6/10 2:10 & 1090 & 2.523 & 2.591 & 10/6/10 2:31 & 1111 & 2.530 & 2.598 & 10/6/10 2:53 & 1132 & 2.532 & 2.6 \\
\hline 10/6/10 2:10 & 1090 & 2.522 & 2.59 & 10/6/10 2:32 & 1111 & 2.529 & 2.597 & 10/6/10 2:53 & 1133 & 2.533 & 2.601 \\
\hline 10/6/10 2:11 & 1090 & 2.526 & 2.594 & 10/6/10 2:32 & 1112 & 2.529 & 2.597 & 10/6/10 2:53 & 1133 & 2.534 & 2.602 \\
\hline 10/6/10 2:11 & 1091 & 2.522 & 2.59 & 10/6/10 2:32 & 1112 & 2.527 & 2.595 & 10/6/10 2:54 & 1133 & 2.532 & 2.6 \\
\hline 10/6/10 2:11 & 1091 & 2.525 & 2.593 & 10/6/10 2:33 & 1112 & 2.532 & 2.6 & 10/6/10 2:54 & 1134 & 2.531 & 2.599 \\
\hline 10/6/10 2:12 & 1091 & 2.523 & 2.591 & 10/6/10 2:33 & 1113 & 2.528 & 2.596 & 10/6/10 2:54 & 1134 & 2.537 & 2.605 \\
\hline 10/6/10 2:12 & 1092 & 2.522 & 2.59 & 10/6/10 2:33 & 1113 & 2.533 & 2.601 & 10/6/10 2:55 & 1134 & 2.534 & 2.602 \\
\hline 10/6/10 2:12 & 1092 & 2.521 & 2.589 & 10/6/10 2:34 & 1113 & 2.529 & 2.597 & 10/6/10 2:55 & 1135 & 2.535 & 2.603 \\
\hline 10/6/10 2:13 & 1092 & 2.522 & 2.59 & 10/6/10 2:34 & 1114 & 2.529 & 2.597 & 10/6/10 2:55 & 1135 & 2.534 & 2.602 \\
\hline 10/6/10 2:13 & 1093 & 2.521 & 2.589 & 10/6/10 2:34 & 1114 & 2.528 & 2.596 & 10/6/10 2:56 & 1135 & 2.538 & 2.606 \\
\hline 10/6/10 2:13 & 1093 & 2.523 & 2.591 & 10/6/10 2:35 & 1114 & 2.528 & 2.596 & 10/6/10 2:56 & 1136 & 2.535 & 2.603 \\
\hline 10/6/10 2:14 & 1093 & 2.523 & 2.591 & 10/6/10 2:35 & 1115 & 2.528 & 2.596 & 10/6/10 2:56 & 1136 & 2.531 & 2.599 \\
\hline 10/6/10 2:14 & 1094 & 2.525 & 2.593 & 10/6/10 2:35 & 1115 & 2.538 & 2.606 & 10/6/10 2:57 & 1136 & 2.535 & 2.603 \\
\hline 10/6/10 2:14 & 1094 & 2.524 & 2.592 & 10/6/10 2:36 & 1115 & 2.527 & 2.595 & 10/6/10 2:57 & 1137 & 2.534 & 2.602 \\
\hline 10/6/10 2:15 & 1094 & 2.521 & 2.589 & 10/6/10 2:36 & 1116 & 2.527 & 2.595 & 10/6/10 2:57 & 1137 & 2.533 & 2.601 \\
\hline 10/6/10 2:15 & 1095 & 2.524 & 2.592 & 10/6/10 2:36 & 1116 & 2.530 & 2.598 & 10/6/10 2:58 & 1137 & 2.533 & 2.601 \\
\hline 10/6/10 2:15 & 1095 & 2.523 & 2.591 & 10/6/10 2:37 & 1116 & 2.531 & 2.599 & 10/6/10 2:58 & 1138 & 2.534 & 2.602 \\
\hline 10/6/10 2:16 & 1095 & 2.524 & 2.592 & 10/6/10 2:37 & 1117 & 2.531 & 2.599 & 10/6/10 2:58 & 1138 & 2.533 & 2.601 \\
\hline 10/6/10 2:16 & 1096 & 2.523 & 2.591 & 10/6/10 2:37 & 1117 & 2.532 & 2.6 & 10/6/10 2:59 & 1138 & 2.535 & 2.603 \\
\hline 10/6/10 2:16 & 1096 & 2.526 & 2.594 & 10/6/10 2:38 & 1117 & 2.530 & 2.598 & 10/6/10 2:59 & 1139 & 2.532 & 2.6 \\
\hline 10/6/10 2:17 & 1096 & 2.523 & 2.591 & 10/6/10 2:38 & 1118 & 2.529 & 2.597 & 10/6/10 2:59 & 1139 & 2.532 & 2.6 \\
\hline 10/6/10 2:17 & 1097 & 2.522 & 2.59 & 10/6/10 2:38 & 1118 & 2.529 & 2.597 & 10/6/10 3:00 & 1139 & 2.531 & 2.599 \\
\hline 10/6/10 2:17 & 1097 & 2.535 & 2.603 & 10/6/10 2:39 & 1118 & 2.529 & 2.597 & 10/6/10 3:00 & 1140 & 2.531 & 2.599 \\
\hline 10/6/10 2:18 & 1097 & 2.521 & 2.589 & 10/6/10 2:39 & 1119 & 2.529 & 2.597 & 10/6/10 3:00 & 1140 & 2.532 & 2.6 \\
\hline 10/6/10 2:18 & 1098 & 2.527 & 2.595 & 10/6/10 2:39 & 1119 & 2.532 & 2.6 & 10/6/10 3:01 & 1140 & 2.531 & 2.599 \\
\hline 10/6/10 2:18 & 1098 & 2.523 & 2.591 & 10/6/10 2:40 & 1119 & 2.533 & 2.601 & 10/6/10 3:01 & 1141 & 2.531 & 2.599 \\
\hline 10/6/10 2:19 & 1098 & 2.527 & 2.595 & 10/6/10 2:40 & 1120 & 2.529 & 2.597 & 10/6/10 3:01 & 1141 & 2.533 & 2.601 \\
\hline 10/6/10 2:19 & 1099 & 2.523 & 2.591 & 10/6/10 2:40 & 1120 & 2.532 & 2.6 & 10/6/10 3:02 & 1141 & 2.529 & 2.597 \\
\hline 10/6/10 2:19 & 1099 & 2.521 & 2.589 & 10/6/10 2:41 & 1120 & 2.531 & 2.599 & 10/6/10 3:02 & 1142 & 2.530 & 2.598 \\
\hline 10/6/10 2:20 & 1099 & 2.523 & 2.591 & 10/6/10 2:41 & 1121 & 2.528 & 2.596 & 10/6/10 3:02 & 1142 & 2.529 & 2.597 \\
\hline 10/6/10 2:20 & 1100 & 2.526 & 2.594 & 10/6/10 2:41 & 1121 & 2.530 & 2.598 & 10/6/10 3:03 & 1142 & 2.531 & 2.599 \\
\hline 10/6/10 2:20 & 1100 & 2.524 & 2.592 & 10/6/10 2:42 & 1121 & 2.530 & 2.598 & 10/6/10 3:03 & 1143 & 2.534 & 2.602 \\
\hline 10/6/10 2:21 & 1100 & 2.528 & 2.596 & 10/6/10 2:42 & 1122 & 2.527 & 2.595 & 10/6/10 3:03 & 1143 & 2.539 & 2.607 \\
\hline 10/6/10 2:21 & 1101 & 2.527 & 2.595 & 10/6/10 2:42 & 1122 & 2.532 & 2.6 & 10/6/10 3:04 & 1143 & 2.530 & 2.598 \\
\hline 10/6/10 2:21 & 1101 & 2.524 & 2.592 & 10/6/10 2:43 & 1122 & 2.532 & 2.6 & 10/6/10 3:04 & 1144 & 2.531 & 2.599 \\
\hline 10/6/10 2:22 & 1101 & 2.524 & 2.592 & 10/6/10 2:43 & 1123 & 2.532 & 2.6 & 10/6/10 3:04 & 1144 & 2.533 & 2.601 \\
\hline 10/6/10 2:22 & 1102 & 2.526 & 2.594 & 10/6/10 2:43 & 1123 & 2.530 & 2.598 & 10/6/10 3:05 & 1144 & 2.534 & 2.602 \\
\hline 10/6/10 2:22 & 1102 & 2.526 & 2.594 & 10/6/10 2:44 & 1123 & 2.528 & 2.596 & 10/6/10 3:05 & 1145 & 2.527 & 2.595 \\
\hline 10/6/10 2:23 & 1102 & 2.528 & 2.596 & 10/6/10 2:44 & 1124 & 2.529 & 2.597 & 10/6/10 3:05 & 1145 & 2.541 & 2.609 \\
\hline 10/6/10 2:23 & 1103 & 2.528 & 2.596 & 10/6/10 2:44 & 1124 & 2.527 & 2.595 & 10/6/10 3:06 & 1145 & 2.531 & 2.599 \\
\hline 10/6/10 2:23 & 1103 & 2.527 & 2.595 & 10/6/10 2:45 & 1124 & 2.531 & 2.599 & 10/6/10 3:06 & 1146 & 2.532 & 2.6 \\
\hline 10/6/10 2:24 & 1103 & 2.527 & 2.595 & 10/6/10 2:45 & 1125 & 2.532 & 2.6 & 10/6/10 3:06 & 1146 & 2.528 & 2.596 \\
\hline 10/6/10 2:24 & 1104 & 2.526 & 2.594 & 10/6/10 2:45 & 1125 & 2.532 & 2.6 & 10/6/10 3:07 & 1146 & 2.533 & 2.601 \\
\hline 10/6/10 2:24 & 1104 & 2.525 & 2.593 & 10/6/10 2:46 & 1125 & 2.532 & 2.6 & 10/6/10 3:07 & 1147 & 2.532 & 2.6 \\
\hline 10/6/10 2:25 & 1104 & 2.526 & 2.594 & 10/6/10 2:46 & 1126 & 2.527 & 2.595 & 10/6/10 3:07 & 1147 & 2.532 & 2.6 \\
\hline 10/6/10 2:25 & 1105 & 2.531 & 2.599 & 10/6/10 2:46 & 1126 & 2.529 & 2.597 & 10/6/10 3:08 & 1147 & 2.534 & 2.602 \\
\hline 10/6/10 2:25 & 1105 & 2.526 & 2.594 & 10/6/10 2:47 & 1126 & 2.530 & 2.598 & 10/6/10 3:08 & 1148 & 2.527 & 2.595 \\
\hline 10/6/10 2:26 & 1105 & 2.526 & 2.594 & 10/6/10 2:47 & 1127 & 2.528 & 2.596 & 10/6/10 3:08 & 1148 & 2.532 & 2.6 \\
\hline 10/6/10 2:26 & 1106 & 2.527 & 2.595 & 10/6/10 2:47 & 1127 & 2.531 & 2.599 & 10/6/10 3:09 & 1148 & 2.530 & 2.598 \\
\hline 10/6/10 2:26 & 1106 & 2.527 & 2.595 & 10/6/10 2:48 & 1127 & 2.530 & 2.598 & 10/6/10 3:09 & 1149 & 2.532 & 2.6 \\
\hline 10/6/10 2:27 & 1106 & 2.529 & 2.597 & 10/6/10 2:48 & 1128 & 2.531 & 2.599 & 10/6/10 3:09 & 1149 & 2.531 & 2.599 \\
\hline 10/6/10 2:27 & 1107 & 2.529 & 2.597 & 10/6/10 2:48 & 1128 & 2.530 & 2.598 & 10/6/10 3:10 & 1149 & 2.529 & 2.597 \\
\hline 10/6/10 2:27 & 1107 & 2.528 & 2.596 & 10/6/10 2:49 & 1128 & 2.530 & 2.598 & 10/6/10 3:10 & 1150 & 2.534 & 2.602 \\
\hline 10/6/10 2:28 & 1107 & 2.528 & 2.596 & 10/6/10 2:49 & 1129 & 2.532 & 2.6 & 10/6/10 3:10 & 1150 & 2.530 & 2.598 \\
\hline 10/6/10 2:28 & 1108 & 2.530 & 2.598 & 10/6/10 2:49 & 1129 & 2.530 & 2.598 & 10/6/10 3:11 & 1150 & 2.533 & 2.601 \\
\hline 10/6/10 2:28 & 1108 & 2.525 & 2.593 & 10/6/10 2:50 & 1129 & 2.533 & 2.601 & 10/6/10 3:11 & 1151 & 2.533 & 2.601 \\
\hline 10/6/10 2:29 & 1108 & 2.525 & 2.593 & 10/6/10 2:50 & 1130 & 2.532 & 2.6 & 10/6/10 3:11 & 1151 & 2.532 & 2.6 \\
\hline 10/6/10 2:29 & 1109 & 2.526 & 2.594 & 10/6/10 2:50 & 1130 & 2.536 & 2.604 & 10/6/10 3:12 & 1151 & 2.535 & 2.603 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 10/6/10 3:12 & 1152 & 2.531 & 2.599 & 10/6/10 3:33 & 1173 & 2.535 & 2.603 & 10/6/10 3:55 & 1194 & 2.544 & 2.612 \\
\hline 10/6/10 3:12 & 1152 & 2.528 & 2.596 & 10/6/10 3:34 & 1173 & 2.536 & 2.604 & 10/6/10 3:55 & 1195 & 2.549 & 2.617 \\
\hline 10/6/10 3:13 & 1152 & 2.533 & 2.601 & 10/6/10 3:34 & 1174 & 2.536 & 2.604 & 10/6/10 3:55 & 1195 & 2.549 & 2.617 \\
\hline 10/6/10 3:13 & 1153 & 2.533 & 2.601 & 10/6/10 3:34 & 1174 & 2.535 & 2.603 & 10/6/10 3:56 & 1195 & 2.546 & 2.614 \\
\hline 10/6/10 3:13 & 1153 & 2.533 & 2.601 & 10/6/10 3:35 & 1174 & 2.537 & 2.605 & 10/6/10 3:56 & 1196 & 2.549 & 2.617 \\
\hline 10/6/10 3:14 & 1153 & 2.532 & 2.6 & 10/6/10 3:35 & 1175 & 2.538 & 2.606 & 10/6/10 3:56 & 1196 & 2.547 & 2.615 \\
\hline 10/6/10 3:14 & 1154 & 2.532 & 2.6 & 10/6/10 3:35 & 1175 & 2.535 & 2.603 & 10/6/10 3:57 & 1196 & 2.551 & 2.619 \\
\hline 10/6/10 3:14 & 1154 & 2.534 & 2.602 & 10/6/10 3:36 & 1175 & 2.534 & 2.602 & 10/6/10 3:57 & 1197 & 2.544 & 2.612 \\
\hline 10/6/10 3:15 & 1154 & 2.536 & 2.604 & 10/6/10 3:36 & 1176 & 2.536 & 2.604 & 10/6/10 3:57 & 1197 & 2.552 & 2.62 \\
\hline 10/6/10 3:15 & 1155 & 2.534 & 2.602 & 10/6/10 3:36 & 1176 & 2.547 & 2.615 & 10/6/10 3:58 & 1197 & 2.550 & 2.618 \\
\hline 10/6/10 3:15 & 1155 & 2.534 & 2.602 & 10/6/10 3:37 & 1176 & 2.536 & 2.604 & 10/6/10 3:58 & 1198 & 2.546 & 2.614 \\
\hline 10/6/10 3:16 & 1155 & 2.531 & 2.599 & 10/6/10 3:37 & 1177 & 2.536 & 2.604 & 10/6/10 3:58 & 1198 & 2.548 & 2.616 \\
\hline 10/6/10 3:16 & 1156 & 2.533 & 2.601 & 10/6/10 3:37 & 1177 & 2.537 & 2.605 & 10/6/10 3:59 & 1198 & 2.553 & 2.621 \\
\hline 10/6/10 3:16 & 1156 & 2.537 & 2.605 & 10/6/10 3:38 & 1177 & 2.537 & 2.605 & 10/6/10 3:59 & 1199 & 2.550 & 2.618 \\
\hline 10/6/10 3:17 & 1156 & 2.533 & 2.601 & 10/6/10 3:38 & 1178 & 2.536 & 2.604 & 10/6/10 3:59 & 1199 & 2.551 & 2.619 \\
\hline 10/6/10 3:17 & 1157 & 2.540 & 2.608 & 10/6/10 3:38 & 1178 & 2.534 & 2.602 & 10/6/10 4:00 & 1199 & 2.551 & 2.619 \\
\hline 10/6/10 3:17 & 1157 & 2.532 & 2.6 & 10/6/10 3:39 & 1178 & 2.534 & 2.602 & 10/6/10 4:00 & 1200 & 2.550 & 2.618 \\
\hline 10/6/10 3:18 & 1157 & 2.534 & 2.602 & 10/6/10 3:39 & 1179 & 2.549 & 2.617 & 10/6/10 4:00 & 1200 & 2.549 & 2.617 \\
\hline 10/6/10 3:18 & 1158 & 2.533 & 2.601 & 10/6/10 3:39 & 1179 & 2.549 & 2.617 & 10/6/10 4:01 & 1200 & 2.548 & 2.616 \\
\hline 10/6/10 3:18 & 1158 & 2.532 & 2.6 & 10/6/10 3:40 & 1179 & 2.536 & 2.604 & 10/6/10 4:01 & 1201 & 2.548 & 2.616 \\
\hline 10/6/10 3:19 & 1158 & 2.533 & 2.601 & 10/6/10 3:40 & 1180 & 2.535 & 2.603 & 10/6/10 4:01 & 1201 & 2.551 & 2.619 \\
\hline 10/6/10 3:19 & 1159 & 2.533 & 2.601 & 10/6/10 3:40 & 1180 & 2.538 & 2.606 & 10/6/10 4:02 & 1201 & 2.552 & 2.62 \\
\hline 10/6/10 3:19 & 1159 & 2.533 & 2.601 & 10/6/10 3:41 & 1180 & 2.536 & 2.604 & 10/6/10 4:02 & 1202 & 2.554 & 2.622 \\
\hline 10/6/10 3:20 & 1159 & 2.534 & 2.602 & 10/6/10 3:41 & 1181 & 2.537 & 2.605 & 10/6/10 4:02 & 1202 & 2.552 & 2.62 \\
\hline 10/6/10 3:20 & 1160 & 2.533 & 2.601 & 10/6/10 3:41 & 1181 & 2.537 & 2.605 & 10/6/10 4:03 & 1202 & 2.552 & 2.62 \\
\hline 10/6/10 3:20 & 1160 & 2.530 & 2.598 & 10/6/10 3:42 & 1181 & 2.538 & 2.606 & 10/6/10 4:03 & 1203 & 2.552 & 2.62 \\
\hline 10/6/10 3:21 & 1160 & 2.546 & 2.614 & 10/6/10 3:42 & 1182 & 2.538 & 2.606 & 10/6/10 4:03 & 1203 & 2.552 & 2.62 \\
\hline 10/6/10 3:21 & 1161 & 2.533 & 2.601 & 10/6/10 3:42 & 1182 & 2.539 & 2.607 & 10/6/10 4:04 & 1203 & 2.552 & 2.62 \\
\hline 10/6/10 3:21 & 1161 & 2.531 & 2.599 & 10/6/10 3:43 & 1182 & 2.541 & 2.609 & 10/6/10 4:04 & 1204 & 2.552 & 2.62 \\
\hline 10/6/10 3:22 & 1161 & 2.534 & 2.602 & 10/6/10 3:43 & 1183 & 2.543 & 2.611 & 10/6/10 4:04 & 1204 & 2.551 & 2.619 \\
\hline 10/6/10 3:22 & 1162 & 2.532 & 2.6 & 10/6/10 3:43 & 1183 & 2.543 & 2.611 & 10/6/10 4:05 & 1204 & 2.552 & 2.62 \\
\hline 10/6/10 3:22 & 1162 & 2.546 & 2.614 & 10/6/10 3:44 & 1183 & 2.542 & 2.61 & 10/6/10 4:05 & 1205 & 2.551 & 2.619 \\
\hline 10/6/10 3:23 & 1162 & 2.530 & 2.598 & 10/6/10 3:44 & 1184 & 2.544 & 2.612 & 10/6/10 4:05 & 1205 & 2.555 & 2.623 \\
\hline 10/6/10 3:23 & 1163 & 2.532 & 2.6 & 10/6/10 3:44 & 1184 & 2.543 & 2.611 & 10/6/10 4:06 & 1205 & 2.550 & 2.618 \\
\hline 10/6/10 3:23 & 1163 & 2.535 & 2.603 & 10/6/10 3:45 & 1184 & 2.540 & 2.608 & 10/6/10 4:06 & 1206 & 2.552 & 2.62 \\
\hline 10/6/10 3:24 & 1163 & 2.543 & 2.611 & 10/6/10 3:45 & 1185 & 2.543 & 2.611 & 10/6/10 4:06 & 1206 & 2.554 & 2.622 \\
\hline 10/6/10 3:24 & 1164 & 2.534 & 2.602 & 10/6/10 3:45 & 1185 & 2.540 & 2.608 & 10/6/10 4:07 & 1206 & 2.554 & 2.622 \\
\hline 10/6/10 3:24 & 1164 & 2.533 & 2.601 & 10/6/10 3:46 & 1185 & 2.543 & 2.611 & 10/6/10 4:07 & 1207 & 2.556 & 2.624 \\
\hline 10/6/10 3:25 & 1164 & 2.534 & 2.602 & 10/6/10 3:46 & 1186 & 2.542 & 2.61 & 10/6/10 4:07 & 1207 & 2.552 & 2.62 \\
\hline 10/6/10 3:25 & 1165 & 2.535 & 2.603 & 10/6/10 3:46 & 1186 & 2.546 & 2.614 & 10/6/10 4:08 & 1207 & 2.553 & 2.621 \\
\hline 10/6/10 3:25 & 1165 & 2.534 & 2.602 & 10/6/10 3:47 & 1186 & 2.544 & 2.612 & 10/6/10 4:08 & 1208 & 2.554 & 2.622 \\
\hline 10/6/10 3:26 & 1165 & 2.531 & 2.599 & 10/6/10 3:47 & 1187 & 2.545 & 2.613 & 10/6/10 4:08 & 1208 & 2.556 & 2.624 \\
\hline 10/6/10 3:26 & 1166 & 2.536 & 2.604 & 10/6/10 3:47 & 1187 & 2.544 & 2.612 & 10/6/10 4:09 & 1208 & 2.556 & 2.624 \\
\hline 10/6/10 3:26 & 1166 & 2.535 & 2.603 & 10/6/10 3:48 & 1187 & 2.548 & 2.616 & 10/6/10 4:09 & 1209 & 2.559 & 2.627 \\
\hline 10/6/10 3:27 & 1166 & 2.534 & 2.602 & 10/6/10 3:48 & 1188 & 2.543 & 2.611 & 10/6/10 4:09 & 1209 & 2.555 & 2.623 \\
\hline 10/6/10 3:27 & 1167 & 2.537 & 2.605 & 10/6/10 3:48 & 1188 & 2.547 & 2.615 & 10/6/10 4:10 & 1209 & 2.555 & 2.623 \\
\hline 10/6/10 3:27 & 1167 & 2.535 & 2.603 & 10/6/10 3:49 & 1188 & 2.543 & 2.611 & 10/6/10 4:10 & 1210 & 2.556 & 2.624 \\
\hline 10/6/10 3:28 & 1167 & 2.545 & 2.613 & 10/6/10 3:49 & 1189 & 2.547 & 2.615 & 10/6/10 4:10 & 1210 & 2.556 & 2.624 \\
\hline 10/6/10 3:28 & 1168 & 2.532 & 2.6 & 10/6/10 3:49 & 1189 & 2.544 & 2.612 & 10/6/10 4:11 & 1210 & 2.554 & 2.622 \\
\hline 10/6/10 3:28 & 1168 & 2.534 & 2.602 & 10/6/10 3:50 & 1189 & 2.546 & 2.614 & 10/6/10 4:11 & 1211 & 2.561 & 2.629 \\
\hline 10/6/10 3:29 & 1168 & 2.534 & 2.602 & 10/6/10 3:50 & 1190 & 2.546 & 2.614 & 10/6/10 4:11 & 1211 & 2.565 & 2.633 \\
\hline 10/6/10 3:29 & 1169 & 2.534 & 2.602 & 10/6/10 3:50 & 1190 & 2.546 & 2.614 & 10/6/10 4:12 & 1211 & 2.558 & 2.626 \\
\hline 10/6/10 3:29 & 1169 & 2.535 & 2.603 & 10/6/10 3:51 & 1190 & 2.544 & 2.612 & 10/6/10 4:12 & 1212 & 2.556 & 2.624 \\
\hline 10/6/10 3:30 & 1169 & 2.544 & 2.612 & 10/6/10 3:51 & 1191 & 2.544 & 2.612 & 10/6/10 4:12 & 1212 & 2.557 & 2.625 \\
\hline 10/6/10 3:30 & 1170 & 2.534 & 2.602 & 10/6/10 3:51 & 1191 & 2.547 & 2.615 & 10/6/10 4:13 & 1212 & 2.558 & 2.626 \\
\hline 10/6/10 3:30 & 1170 & 2.534 & 2.602 & 10/6/10 3:52 & 1191 & 2.544 & 2.612 & 10/6/10 4:13 & 1213 & 2.562 & 2.63 \\
\hline 10/6/10 3:31 & 1170 & 2.549 & 2.617 & 10/6/10 3:52 & 1192 & 2.547 & 2.615 & 10/6/10 4:13 & 1213 & 2.558 & 2.626 \\
\hline 10/6/10 3:31 & 1171 & 2.536 & 2.604 & 10/6/10 3:52 & 1192 & 2.547 & 2.615 & 10/6/10 4:14 & 1213 & 2.557 & 2.625 \\
\hline 10/6/10 3:31 & 1171 & 2.536 & 2.604 & 10/6/10 3:53 & 1192 & 2.552 & 2.62 & 10/6/10 4:14 & 1214 & 2.558 & 2.626 \\
\hline 10/6/10 3:32 & 1171 & 2.545 & 2.613 & 10/6/10 3:53 & 1193 & 2.549 & 2.617 & 10/6/10 4:14 & 1214 & 2.558 & 2.626 \\
\hline 10/6/10 3:32 & 1172 & 2.534 & 2.602 & 10/6/10 3:53 & 1193 & 2.546 & 2.614 & 10/6/10 4:15 & 1214 & 2.560 & 2.628 \\
\hline 10/6/10 3:32 & 1172 & 2.534 & 2.602 & 10/6/10 3:54 & 1193 & 2.545 & 2.613 & 10/6/10 4:15 & 1215 & 2.562 & 2.63 \\
\hline 10/6/10 3:33 & 1172 & 2.536 & 2.604 & 10/6/10 3:54 & 1194 & 2.551 & 2.619 & 10/6/10 4:15 & 1215 & 2.560 & 2.628 \\
\hline 10/6/10 3:33 & 1173 & 2.537 & 2.605 & 10/6/10 3:54 & 1194 & 2.548 & 2.616 & 10/6/10 4:16 & 1215 & 2.564 & 2.632 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 10/6/10 4:16 & 1216 & 2.564 & 2.632 & 10/6/10 4:37 & 1237 & 2.575 & 2.643 & 10/6/10 4:59 & 1258 & 2.594 & 2.662 \\
\hline 10/6/10 4:16 & 1216 & 2.561 & 2.629 & 10/6/10 4:38 & 1237 & 2.574 & 2.642 & 10/6/10 4:59 & 1259 & 2.596 & 2.664 \\
\hline 10/6/10 4:17 & 1216 & 2.564 & 2.632 & 10/6/10 4:38 & 1238 & 2.574 & 2.642 & 10/6/10 4:59 & 1259 & 2.594 & 2.662 \\
\hline 10/6/10 4:17 & 1217 & 2.567 & 2.635 & 10/6/10 4:38 & 1238 & 2.575 & 2.643 & 10/6/10 5:00 & 1259 & 2.598 & 2.666 \\
\hline 10/6/10 4:17 & 1217 & 2.560 & 2.628 & 10/6/10 4:39 & 1238 & 2.577 & 2.645 & 10/6/10 5:00 & 1260 & 2.600 & 2.668 \\
\hline 10/6/10 4:18 & 1217 & 2.562 & 2.63 & 10/6/10 4:39 & 1239 & 2.576 & 2.644 & 10/6/10 5:00 & 1260 & 2.599 & 2.667 \\
\hline 10/6/10 4:18 & 1218 & 2.565 & 2.633 & 10/6/10 4:39 & 1239 & 2.576 & 2.644 & 10/6/10 5:01 & 1260 & 2.604 & 2.672 \\
\hline 10/6/10 4:18 & 1218 & 2.562 & 2.63 & 10/6/10 4:40 & 1239 & 2.578 & 2.646 & 10/6/10 5:01 & 1261 & 2.601 & 2.669 \\
\hline 10/6/10 4:19 & 1218 & 2.562 & 2.63 & 10/6/10 4:40 & 1240 & 2.575 & 2.643 & 10/6/10 5:01 & 1261 & 2.601 & 2.669 \\
\hline 10/6/10 4:19 & 1219 & 2.562 & 2.63 & 10/6/10 4:40 & 1240 & 2.578 & 2.646 & 10/6/10 5:02 & 1261 & 2.600 & 2.668 \\
\hline 10/6/10 4:19 & 1219 & 2.560 & 2.628 & 10/6/10 4:41 & 1240 & 2.577 & 2.645 & 10/6/10 5:02 & 1262 & 2.602 & 2.67 \\
\hline 10/6/10 4:20 & 1219 & 2.563 & 2.631 & 10/6/10 4:41 & 1241 & 2.579 & 2.647 & 10/6/10 5:02 & 1262 & 2.601 & 2.669 \\
\hline 10/6/10 4:20 & 1220 & 2.565 & 2.633 & 10/6/10 4:41 & 1241 & 2.579 & 2.647 & 10/6/10 5:03 & 1262 & 2.607 & 2.675 \\
\hline 10/6/10 4:20 & 1220 & 2.563 & 2.631 & 10/6/10 4:42 & 1241 & 2.577 & 2.645 & 10/6/10 5:03 & 1263 & 2.604 & 2.672 \\
\hline 10/6/10 4:21 & 1220 & 2.565 & 2.633 & 10/6/10 4:42 & 1242 & 2.575 & 2.643 & 10/6/10 5:03 & 1263 & 2.608 & 2.676 \\
\hline 10/6/10 4:21 & 1221 & 2.567 & 2.635 & 10/6/10 4:42 & 1242 & 2.575 & 2.643 & 10/6/10 5:04 & 1263 & 2.604 & 2.672 \\
\hline 10/6/10 4:21 & 1221 & 2.568 & 2.636 & 10/6/10 4:43 & 1242 & 2.579 & 2.647 & 10/6/10 5:04 & 1264 & 2.605 & 2.673 \\
\hline 10/6/10 4:22 & 1221 & 2.567 & 2.635 & 10/6/10 4:43 & 1243 & 2.578 & 2.646 & 10/6/10 5:04 & 1264 & 2.610 & 2.678 \\
\hline 10/6/10 4:22 & 1222 & 2.567 & 2.635 & 10/6/10 4:43 & 1243 & 2.581 & 2.649 & 10/6/10 5:05 & 1264 & 2.605 & 2.673 \\
\hline 10/6/10 4:22 & 1222 & 2.563 & 2.631 & 10/6/10 4:44 & 1243 & 2.581 & 2.649 & 10/6/10 5:05 & 1265 & 2.608 & 2.676 \\
\hline 10/6/10 4:23 & 1222 & 2.564 & 2.632 & 10/6/10 4:44 & 1244 & 2.581 & 2.649 & 10/6/10 5:05 & 1265 & 2.606 & 2.674 \\
\hline 10/6/10 4:23 & 1223 & 2.569 & 2.637 & 10/6/10 4:44 & 1244 & 2.580 & 2.648 & 10/6/10 5:06 & 1265 & 2.608 & 2.676 \\
\hline 10/6/10 4:23 & 1223 & 2.570 & 2.638 & 10/6/10 4:45 & 1244 & 2.582 & 2.65 & 10/6/10 5:06 & 1266 & 2.612 & 2.68 \\
\hline 10/6/10 4:24 & 1223 & 2.568 & 2.636 & 10/6/10 4:45 & 1245 & 2.582 & 2.65 & 10/6/10 5:06 & 1266 & 2.604 & 2.672 \\
\hline 10/6/10 4:24 & 1224 & 2.570 & 2.638 & 10/6/10 4:45 & 1245 & 2.582 & 2.65 & 10/6/10 5:07 & 1266 & 2.610 & 2.678 \\
\hline 10/6/10 4:24 & 1224 & 2.568 & 2.636 & 10/6/10 4:46 & 1245 & 2.580 & 2.648 & 10/6/10 5:07 & 1267 & 2.611 & 2.679 \\
\hline 10/6/10 4:25 & 1224 & 2.567 & 2.635 & 10/6/10 4:46 & 1246 & 2.579 & 2.647 & 10/6/10 5:07 & 1267 & 2.605 & 2.673 \\
\hline 10/6/10 4:25 & 1225 & 2.564 & 2.632 & 10/6/10 4:46 & 1246 & 2.580 & 2.648 & 10/6/10 5:08 & 1267 & 2.613 & 2.681 \\
\hline 10/6/10 4:25 & 1225 & 2.571 & 2.639 & 10/6/10 4:47 & 1246 & 2.585 & 2.653 & 10/6/10 5:08 & 1268 & 2.606 & 2.674 \\
\hline 10/6/10 4:26 & 1225 & 2.566 & 2.634 & 10/6/10 4:47 & 1247 & 2.584 & 2.652 & 10/6/10 5:08 & 1268 & 2.606 & 2.674 \\
\hline 10/6/10 4:26 & 1226 & 2.569 & 2.637 & 10/6/10 4:47 & 1247 & 2.585 & 2.653 & 10/6/10 5:09 & 1268 & 2.607 & 2.675 \\
\hline 10/6/10 4:26 & 1226 & 2.569 & 2.637 & 10/6/10 4:48 & 1247 & 2.582 & 2.65 & 10/6/10 5:09 & 1269 & 2.607 & 2.675 \\
\hline 10/6/10 4:27 & 1226 & 2.568 & 2.636 & 10/6/10 4:48 & 1248 & 2.585 & 2.653 & 10/6/10 5:09 & 1269 & 2.608 & 2.676 \\
\hline 10/6/10 4:27 & 1227 & 2.571 & 2.639 & 10/6/10 4:48 & 1248 & 2.586 & 2.654 & 10/6/10 5:10 & 1269 & 2.608 & 2.676 \\
\hline 10/6/10 4:27 & 1227 & 2.571 & 2.639 & 10/6/10 4:49 & 1248 & 2.587 & 2.655 & 10/6/10 5:10 & 1270 & 2.611 & 2.679 \\
\hline 10/6/10 4:28 & 1227 & 2.570 & 2.638 & 10/6/10 4:49 & 1249 & 2.582 & 2.65 & 10/6/10 5:10 & 1270 & 2.609 & 2.677 \\
\hline 10/6/10 4:28 & 1228 & 2.570 & 2.638 & 10/6/10 4:49 & 1249 & 2.587 & 2.655 & 10/6/10 5:11 & 1270 & 2.612 & 2.68 \\
\hline 10/6/10 4:28 & 1228 & 2.571 & 2.639 & 10/6/10 4:50 & 1249 & 2.587 & 2.655 & 10/6/10 5:11 & 1271 & 2.616 & 2.684 \\
\hline 10/6/10 4:29 & 1228 & 2.571 & 2.639 & 10/6/10 4:50 & 1250 & 2.584 & 2.652 & 10/6/10 5:11 & 1271 & 2.614 & 2.682 \\
\hline 10/6/10 4:29 & 1229 & 2.569 & 2.637 & 10/6/10 4:50 & 1250 & 2.585 & 2.653 & 10/6/10 5:12 & 1271 & 2.611 & 2.679 \\
\hline 10/6/10 4:29 & 1229 & 2.570 & 2.638 & 10/6/10 4:51 & 1250 & 2.583 & 2.651 & 10/6/10 5:12 & 1272 & 2.612 & 2.68 \\
\hline 10/6/10 4:30 & 1229 & 2.568 & 2.636 & 10/6/10 4:51 & 1251 & 2.584 & 2.652 & 10/6/10 5:12 & 1272 & 2.611 & 2.679 \\
\hline 10/6/10 4:30 & 1230 & 2.578 & 2.646 & 10/6/10 4:51 & 1251 & 2.587 & 2.655 & 10/6/10 5:13 & 1272 & 2.614 & 2.682 \\
\hline 10/6/10 4:30 & 1230 & 2.575 & 2.643 & 10/6/10 4:52 & 1251 & 2.588 & 2.656 & 10/6/10 5:13 & 1273 & 2.611 & 2.679 \\
\hline 10/6/10 4:31 & 1230 & 2.577 & 2.645 & 10/6/10 4:52 & 1252 & 2.591 & 2.659 & 10/6/10 5:13 & 1273 & 2.608 & 2.676 \\
\hline 10/6/10 4:31 & 1231 & 2.569 & 2.637 & 10/6/10 4:52 & 1252 & 2.587 & 2.655 & 10/6/10 5:14 & 1273 & 2.613 & 2.681 \\
\hline 10/6/10 4:31 & 1231 & 2.569 & 2.637 & 10/6/10 4:53 & 1252 & 2.592 & 2.66 & 10/6/10 5:14 & 1274 & 2.611 & 2.679 \\
\hline 10/6/10 4:32 & 1231 & 2.575 & 2.643 & 10/6/10 4:53 & 1253 & 2.589 & 2.657 & 10/6/10 5:14 & 1274 & 2.611 & 2.679 \\
\hline 10/6/10 4:32 & 1232 & 2.572 & 2.64 & 10/6/10 4:53 & 1253 & 2.594 & 2.662 & 10/6/10 5:15 & 1274 & 2.613 & 2.681 \\
\hline 10/6/10 4:32 & 1232 & 2.572 & 2.64 & 10/6/10 4:54 & 1253 & 2.592 & 2.66 & 10/6/10 5:15 & 1275 & 2.615 & 2.683 \\
\hline 10/6/10 4:33 & 1232 & 2.575 & 2.643 & 10/6/10 4:54 & 1254 & 2.591 & 2.659 & 10/6/10 5:15 & 1275 & 2.613 & 2.681 \\
\hline 10/6/10 4:33 & 1233 & 2.585 & 2.653 & 10/6/10 4:54 & 1254 & 2.591 & 2.659 & 10/6/10 5:16 & 1275 & 2.610 & 2.678 \\
\hline 10/6/10 4:33 & 1233 & 2.574 & 2.642 & 10/6/10 4:55 & 1254 & 2.591 & 2.659 & 10/6/10 5:16 & 1276 & 2.617 & 2.685 \\
\hline 10/6/10 4:34 & 1233 & 2.573 & 2.641 & 10/6/10 4:55 & 1255 & 2.587 & 2.655 & 10/6/10 5:16 & 1276 & 2.615 & 2.683 \\
\hline 10/6/10 4:34 & 1234 & 2.577 & 2.645 & 10/6/10 4:55 & 1255 & 2.592 & 2.66 & 10/6/10 5:17 & 1276 & 2.618 & 2.686 \\
\hline 10/6/10 4:34 & 1234 & 2.574 & 2.642 & 10/6/10 4:56 & 1255 & 2.591 & 2.659 & 10/6/10 5:17 & 1277 & 2.617 & 2.685 \\
\hline 10/6/10 4:35 & 1234 & 2.575 & 2.643 & 10/6/10 4:56 & 1256 & 2.592 & 2.66 & 10/6/10 5:17 & 1277 & 2.617 & 2.685 \\
\hline 10/6/10 4:35 & 1235 & 2.574 & 2.642 & 10/6/10 4:56 & 1256 & 2.595 & 2.663 & 10/6/10 5:18 & 1277 & 2.616 & 2.684 \\
\hline 10/6/10 4:35 & 1235 & 2.575 & 2.643 & 10/6/10 4:57 & 1256 & 2.594 & 2.662 & 10/6/10 5:18 & 1278 & 2.617 & 2.685 \\
\hline 10/6/10 4:36 & 1235 & 2.577 & 2.645 & 10/6/10 4:57 & 1257 & 2.598 & 2.666 & 10/6/10 5:18 & 1278 & 2.615 & 2.683 \\
\hline 10/6/10 4:36 & 1236 & 2.579 & 2.647 & 10/6/10 4:57 & 1257 & 2.595 & 2.663 & 10/6/10 5:19 & 1278 & 2.617 & 2.685 \\
\hline 10/6/10 4:36 & 1236 & 2.578 & 2.646 & 10/6/10 4:58 & 1257 & 2.598 & 2.666 & 10/6/10 5:19 & 1279 & 2.613 & 2.681 \\
\hline 10/6/10 4:37 & 1236 & 2.572 & 2.64 & 10/6/10 4:58 & 1258 & 2.597 & 2.665 & 10/6/10 5:19 & 1279 & 2.613 & 2.681 \\
\hline 10/6/10 4:37 & 1237 & 2.575 & 2.643 & 10/6/10 4:58 & 1258 & 2.599 & 2.667 & 10/6/10 5:20 & 1279 & 2.612 & 2.68 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 10/6/10 5:20 & 1280 & 2.613 & 2.681 & 10/6/10 5:41 & 1301 & 2.628 & 2.696 & 10/6/10 6:03 & 1322 & 2.645 & 2.713 \\
\hline 10/6/10 5:20 & 1280 & 2.616 & 2.684 & 10/6/10 5:42 & 1301 & 2.629 & 2.697 & 10/6/10 6:03 & 1323 & 2.645 & 2.713 \\
\hline 10/6/10 5:21 & 1280 & 2.615 & 2.683 & 10/6/10 5:42 & 1302 & 2.641 & 2.709 & 10/6/10 6:03 & 1323 & 2.646 & 2.714 \\
\hline 10/6/10 5:21 & 1281 & 2.609 & 2.677 & 10/6/10 5:42 & 1302 & 2.632 & 2.7 & 10/6/10 6:04 & 1323 & 2.647 & 2.715 \\
\hline 10/6/10 5:21 & 1281 & 2.612 & 2.68 & 10/6/10 5:43 & 1302 & 2.634 & 2.702 & 10/6/10 6:04 & 1324 & 2.645 & 2.713 \\
\hline 10/6/10 5:22 & 1281 & 2.612 & 2.68 & 10/6/10 5:43 & 1303 & 2.634 & 2.702 & 10/6/10 6:04 & 1324 & 2.648 & 2.716 \\
\hline 10/6/10 5:22 & 1282 & 2.612 & 2.68 & 10/6/10 5:43 & 1303 & 2.630 & 2.698 & 10/6/10 6:05 & 1324 & 2.645 & 2.713 \\
\hline 10/6/10 5:22 & 1282 & 2.613 & 2.681 & 10/6/10 5:44 & 1303 & 2.634 & 2.702 & 10/6/10 6:05 & 1325 & 2.651 & 2.719 \\
\hline 10/6/10 5:23 & 1282 & 2.612 & 2.68 & 10/6/10 5:44 & 1304 & 2.633 & 2.701 & 10/6/10 6:05 & 1325 & 2.657 & 2.725 \\
\hline 10/6/10 5:23 & 1283 & 2.613 & 2.681 & 10/6/10 5:44 & 1304 & 2.632 & 2.7 & 10/6/10 6:06 & 1325 & 2.655 & 2.723 \\
\hline 10/6/10 5:23 & 1283 & 2.614 & 2.682 & 10/6/10 5:45 & 1304 & 2.632 & 2.7 & 10/6/10 6:06 & 1326 & 2.653 & 2.721 \\
\hline 10/6/10 5:24 & 1283 & 2.612 & 2.68 & 10/6/10 5:45 & 1305 & 2.635 & 2.703 & 10/6/10 6:06 & 1326 & 2.653 & 2.721 \\
\hline 10/6/10 5:24 & 1284 & 2.614 & 2.682 & 10/6/10 5:45 & 1305 & 2.630 & 2.698 & 10/6/10 6:07 & 1326 & 2.655 & 2.723 \\
\hline 10/6/10 5:24 & 1284 & 2.616 & 2.684 & 10/6/10 5:46 & 1305 & 2.631 & 2.699 & 10/6/10 6:07 & 1327 & 2.655 & 2.723 \\
\hline 10/6/10 5:25 & 1284 & 2.615 & 2.683 & 10/6/10 5:46 & 1306 & 2.632 & 2.7 & 10/6/10 6:07 & 1327 & 2.655 & 2.723 \\
\hline 10/6/10 5:25 & 1285 & 2.620 & 2.688 & 10/6/10 5:46 & 1306 & 2.633 & 2.701 & 10/6/10 6:08 & 1327 & 2.652 & 2.72 \\
\hline 10/6/10 5:25 & 1285 & 2.618 & 2.686 & 10/6/10 5:47 & 1306 & 2.632 & 2.7 & 10/6/10 6:08 & 1328 & 2.655 & 2.723 \\
\hline 10/6/10 5:26 & 1285 & 2.617 & 2.685 & 10/6/10 5:47 & 1307 & 2.636 & 2.704 & 10/6/10 6:08 & 1328 & 2.654 & 2.722 \\
\hline 10/6/10 5:26 & 1286 & 2.617 & 2.685 & 10/6/10 5:47 & 1307 & 2.634 & 2.702 & 10/6/10 6:09 & 1328 & 2.651 & 2.719 \\
\hline 10/6/10 5:26 & 1286 & 2.617 & 2.685 & 10/6/10 5:48 & 1307 & 2.634 & 2.702 & 10/6/10 6:09 & 1329 & 2.655 & 2.723 \\
\hline 10/6/10 5:27 & 1286 & 2.614 & 2.682 & 10/6/10 5:48 & 1308 & 2.629 & 2.697 & 10/6/10 6:09 & 1329 & 2.654 & 2.722 \\
\hline 10/6/10 5:27 & 1287 & 2.617 & 2.685 & 10/6/10 5:48 & 1308 & 2.635 & 2.703 & 10/6/10 6:10 & 1329 & 2.648 & 2.716 \\
\hline 10/6/10 5:27 & 1287 & 2.617 & 2.685 & 10/6/10 5:49 & 1308 & 2.628 & 2.696 & 10/6/10 6:10 & 1330 & 2.647 & 2.715 \\
\hline 10/6/10 5:28 & 1287 & 2.618 & 2.686 & 10/6/10 5:49 & 1309 & 2.631 & 2.699 & 10/6/10 6:10 & 1330 & 2.649 & 2.717 \\
\hline 10/6/10 5:28 & 1288 & 2.622 & 2.69 & 10/6/10 5:49 & 1309 & 2.630 & 2.698 & 10/6/10 6:11 & 1330 & 2.650 & 2.718 \\
\hline 10/6/10 5:28 & 1288 & 2.618 & 2.686 & 10/6/10 5:50 & 1309 & 2.634 & 2.702 & 10/6/10 6:11 & 1331 & 2.650 & 2.718 \\
\hline 10/6/10 5:29 & 1288 & 2.620 & 2.688 & 10/6/10 5:50 & 1310 & 2.632 & 2.7 & 10/6/10 6:11 & 1331 & 2.649 & 2.717 \\
\hline 10/6/10 5:29 & 1289 & 2.619 & 2.687 & 10/6/10 5:50 & 1310 & 2.632 & 2.7 & 10/6/10 6:12 & 1331 & 2.650 & 2.718 \\
\hline 10/6/10 5:29 & 1289 & 2.613 & 2.681 & 10/6/10 5:51 & 1310 & 2.638 & 2.706 & 10/6/10 6:12 & 1332 & 2.650 & 2.718 \\
\hline 10/6/10 5:30 & 1289 & 2.617 & 2.685 & 10/6/10 5:51 & 1311 & 2.638 & 2.706 & 10/6/10 6:12 & 1332 & 2.651 & 2.719 \\
\hline 10/6/10 5:30 & 1290 & 2.618 & 2.686 & 10/6/10 5:51 & 1311 & 2.638 & 2.706 & 10/6/10 6:13 & 1332 & 2.647 & 2.715 \\
\hline 10/6/10 5:30 & 1290 & 2.617 & 2.685 & 10/6/10 5:52 & 1311 & 2.638 & 2.706 & 10/6/10 6:13 & 1333 & 2.659 & 2.727 \\
\hline 10/6/10 5:31 & 1290 & 2.623 & 2.691 & 10/6/10 5:52 & 1312 & 2.638 & 2.706 & 10/6/10 6:13 & 1333 & 2.647 & 2.715 \\
\hline 10/6/10 5:31 & 1291 & 2.617 & 2.685 & 10/6/10 5:52 & 1312 & 2.644 & 2.712 & 10/6/10 6:14 & 1333 & 2.650 & 2.718 \\
\hline 10/6/10 5:31 & 1291 & 2.622 & 2.69 & 10/6/10 5:53 & 1312 & 2.642 & 2.71 & 10/6/10 6:14 & 1334 & 2.651 & 2.719 \\
\hline 10/6/10 5:32 & 1291 & 2.623 & 2.691 & 10/6/10 5:53 & 1313 & 2.640 & 2.708 & 10/6/10 6:14 & 1334 & 2.652 & 2.72 \\
\hline 10/6/10 5:32 & 1292 & 2.623 & 2.691 & 10/6/10 5:53 & 1313 & 2.640 & 2.708 & 10/6/10 6:15 & 1334 & 2.653 & 2.721 \\
\hline 10/6/10 5:32 & 1292 & 2.620 & 2.688 & 10/6/10 5:54 & 1313 & 2.641 & 2.709 & 10/6/10 6:15 & 1335 & 2.654 & 2.722 \\
\hline 10/6/10 5:33 & 1292 & 2.617 & 2.685 & 10/6/10 5:54 & 1314 & 2.641 & 2.709 & 10/6/10 6:15 & 1335 & 2.648 & 2.716 \\
\hline 10/6/10 5:33 & 1293 & 2.627 & 2.695 & 10/6/10 5:54 & 1314 & 2.639 & 2.707 & 10/6/10 6:16 & 1335 & 2.658 & 2.726 \\
\hline 10/6/10 5:33 & 1293 & 2.618 & 2.686 & 10/6/10 5:55 & 1314 & 2.641 & 2.709 & 10/6/10 6:16 & 1336 & 2.651 & 2.719 \\
\hline 10/6/10 5:34 & 1293 & 2.621 & 2.689 & 10/6/10 5:55 & 1315 & 2.643 & 2.711 & 10/6/10 6:16 & 1336 & 2.649 & 2.717 \\
\hline 10/6/10 5:34 & 1294 & 2.621 & 2.689 & 10/6/10 5:55 & 1315 & 2.642 & 2.71 & 10/6/10 6:17 & 1336 & 2.652 & 2.72 \\
\hline 10/6/10 5:34 & 1294 & 2.620 & 2.688 & 10/6/10 5:56 & 1315 & 2.638 & 2.706 & 10/6/10 6:17 & 1337 & 2.652 & 2.72 \\
\hline 10/6/10 5:35 & 1294 & 2.621 & 2.689 & 10/6/10 5:56 & 1316 & 2.639 & 2.707 & 10/6/10 6:17 & 1337 & 2.652 & 2.72 \\
\hline 10/6/10 5:35 & 1295 & 2.616 & 2.684 & 10/6/10 5:56 & 1316 & 2.638 & 2.706 & 10/6/10 6:18 & 1337 & 2.652 & 2.72 \\
\hline 10/6/10 5:35 & 1295 & 2.617 & 2.685 & 10/6/10 5:57 & 1316 & 2.640 & 2.708 & 10/6/10 6:18 & 1338 & 2.654 & 2.722 \\
\hline 10/6/10 5:36 & 1295 & 2.618 & 2.686 & 10/6/10 5:57 & 1317 & 2.638 & 2.706 & 10/6/10 6:18 & 1338 & 2.652 & 2.72 \\
\hline 10/6/10 5:36 & 1296 & 2.622 & 2.69 & 10/6/10 5:57 & 1317 & 2.642 & 2.71 & 10/6/10 6:19 & 1338 & 2.650 & 2.718 \\
\hline 10/6/10 5:36 & 1296 & 2.622 & 2.69 & 10/6/10 5:58 & 1317 & 2.638 & 2.706 & 10/6/10 6:19 & 1339 & 2.660 & 2.728 \\
\hline 10/6/10 5:37 & 1296 & 2.620 & 2.688 & 10/6/10 5:58 & 1318 & 2.644 & 2.712 & 10/6/10 6:19 & 1339 & 2.649 & 2.717 \\
\hline 10/6/10 5:37 & 1297 & 2.619 & 2.687 & 10/6/10 5:58 & 1318 & 2.644 & 2.712 & 10/6/10 6:20 & 1339 & 2.651 & 2.719 \\
\hline 10/6/10 5:37 & 1297 & 2.627 & 2.695 & 10/6/10 5:59 & 1318 & 2.642 & 2.71 & 10/6/10 6:20 & 1340 & 2.654 & 2.722 \\
\hline 10/6/10 5:38 & 1297 & 2.627 & 2.695 & 10/6/10 5:59 & 1319 & 2.640 & 2.708 & 10/6/10 6:20 & 1340 & 2.647 & 2.715 \\
\hline 10/6/10 5:38 & 1298 & 2.624 & 2.692 & 10/6/10 5:59 & 1319 & 2.634 & 2.702 & 10/6/10 6:21 & 1340 & 2.650 & 2.718 \\
\hline 10/6/10 5:38 & 1298 & 2.621 & 2.689 & 10/6/10 6:00 & 1319 & 2.644 & 2.712 & 10/6/10 6:21 & 1341 & 2.651 & 2.719 \\
\hline 10/6/10 5:39 & 1298 & 2.627 & 2.695 & 10/6/10 6:00 & 1320 & 2.648 & 2.716 & 10/6/10 6:21 & 1341 & 2.652 & 2.72 \\
\hline 10/6/10 5:39 & 1299 & 2.625 & 2.693 & 10/6/10 6:00 & 1320 & 2.647 & 2.715 & 10/6/10 6:22 & 1341 & 2.647 & 2.715 \\
\hline 10/6/10 5:39 & 1299 & 2.623 & 2.691 & 10/6/10 6:01 & 1320 & 2.644 & 2.712 & 10/6/10 6:22 & 1342 & 2.649 & 2.717 \\
\hline 10/6/10 5:40 & 1299 & 2.627 & 2.695 & 10/6/10 6:01 & 1321 & 2.640 & 2.708 & 10/6/10 6:22 & 1342 & 2.650 & 2.718 \\
\hline 10/6/10 5:40 & 1300 & 2.623 & 2.691 & 10/6/10 6:01 & 1321 & 2.647 & 2.715 & 10/6/10 6:23 & 1342 & 2.645 & 2.713 \\
\hline 10/6/10 5:40 & 1300 & 2.629 & 2.697 & 10/6/10 6:02 & 1321 & 2.647 & 2.715 & 10/6/10 6:23 & 1343 & 2.646 & 2.714 \\
\hline 10/6/10 5:41 & 1300 & 2.640 & 2.708 & 10/6/10 6:02 & 1322 & 2.644 & 2.712 & 10/6/10 6:23 & 1343 & 2.649 & 2.717 \\
\hline 10/6/10 5:41 & 1301 & 2.629 & 2.697 & 10/6/10 6:02 & 1322 & 2.646 & 2.714 & 10/6/10 6:24 & 1343 & 2.650 & 2.718 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 10/6/10 6:24 & 1344 & 2.654 & 2.722 & 10/6/10 6:45 & 1365 & 2.678 & 2.746 & 10/6/10 7:07 & 1386 & 2.678 & 2.746 \\
\hline 10/6/10 6:24 & 1344 & 2.653 & 2.721 & 10/6/10 6:46 & 1365 & 2.663 & 2.731 & 10/6/10 7:07 & 1387 & 2.668 & 2.736 \\
\hline 10/6/10 6:25 & 1344 & 2.651 & 2.719 & 10/6/10 6:46 & 1366 & 2.662 & 2.73 & 10/6/10 7:07 & 1387 & 2.671 & 2.739 \\
\hline 10/6/10 6:25 & 1345 & 2.651 & 2.719 & 10/6/10 6:46 & 1366 & 2.663 & 2.731 & 10/6/10 7:08 & 1387 & 2.675 & 2.743 \\
\hline 10/6/10 6:25 & 1345 & 2.652 & 2.72 & 10/6/10 6:47 & 1366 & 2.661 & 2.729 & 10/6/10 7:08 & 1388 & 2.671 & 2.739 \\
\hline 10/6/10 6:26 & 1345 & 2.652 & 2.72 & 10/6/10 6:47 & 1367 & 2.661 & 2.729 & 10/6/10 7:08 & 1388 & 2.670 & 2.738 \\
\hline 10/6/10 6:26 & 1346 & 2.649 & 2.717 & 10/6/10 6:47 & 1367 & 2.665 & 2.733 & 10/6/10 7:09 & 1388 & 2.678 & 2.746 \\
\hline 10/6/10 6:26 & 1346 & 2.652 & 2.72 & 10/6/10 6:48 & 1367 & 2.668 & 2.736 & 10/6/10 7:09 & 1389 & 2.671 & 2.739 \\
\hline 10/6/10 6:27 & 1346 & 2.654 & 2.722 & 10/6/10 6:48 & 1368 & 2.666 & 2.734 & 10/6/10 7:09 & 1389 & 2.670 & 2.738 \\
\hline 10/6/10 6:27 & 1347 & 2.662 & 2.73 & 10/6/10 6:48 & 1368 & 2.668 & 2.736 & 10/6/10 7:10 & 1389 & 2.668 & 2.736 \\
\hline 10/6/10 6:27 & 1347 & 2.649 & 2.717 & 10/6/10 6:49 & 1368 & 2.662 & 2.73 & 10/6/10 7:10 & 1390 & 2.672 & 2.74 \\
\hline 10/6/10 6:28 & 1347 & 2.651 & 2.719 & 10/6/10 6:49 & 1369 & 2.666 & 2.734 & 10/6/10 7:10 & 1390 & 2.681 & 2.749 \\
\hline 10/6/10 6:28 & 1348 & 2.651 & 2.719 & 10/6/10 6:49 & 1369 & 2.657 & 2.725 & 10/6/10 7:11 & 1390 & 2.668 & 2.736 \\
\hline 10/6/10 6:28 & 1348 & 2.650 & 2.718 & 10/6/10 6:50 & 1369 & 2.659 & 2.727 & 10/6/10 7:11 & 1391 & 2.669 & 2.737 \\
\hline 10/6/10 6:29 & 1348 & 2.654 & 2.722 & 10/6/10 6:50 & 1370 & 2.666 & 2.734 & 10/6/10 7:11 & 1391 & 2.672 & 2.74 \\
\hline 10/6/10 6:29 & 1349 & 2.653 & 2.721 & 10/6/10 6:50 & 1370 & 2.651 & 2.719 & 10/6/10 7:12 & 1391 & 2.672 & 2.74 \\
\hline 10/6/10 6:29 & 1349 & 2.650 & 2.718 & 10/6/10 6:51 & 1370 & 2.664 & 2.732 & 10/6/10 7:12 & 1392 & 2.675 & 2.743 \\
\hline 10/6/10 6:30 & 1349 & 2.650 & 2.718 & 10/6/10 6:51 & 1371 & 2.657 & 2.725 & 10/6/10 7:12 & 1392 & 2.673 & 2.741 \\
\hline 10/6/10 6:30 & 1350 & 2.652 & 2.72 & 10/6/10 6:51 & 1371 & 2.659 & 2.727 & 10/6/10 7:13 & 1392 & 2.669 & 2.737 \\
\hline 10/6/10 6:30 & 1350 & 2.651 & 2.719 & 10/6/10 6:52 & 1371 & 2.664 & 2.732 & 10/6/10 7:13 & 1393 & 2.667 & 2.735 \\
\hline 10/6/10 6:31 & 1350 & 2.655 & 2.723 & 10/6/10 6:52 & 1372 & 2.659 & 2.727 & 10/6/10 7:13 & 1393 & 2.665 & 2.733 \\
\hline 10/6/10 6:31 & 1351 & 2.651 & 2.719 & 10/6/10 6:52 & 1372 & 2.658 & 2.726 & 10/6/10 7:14 & 1393 & 2.669 & 2.737 \\
\hline 10/6/10 6:31 & 1351 & 2.652 & 2.72 & 10/6/10 6:53 & 1372 & 2.662 & 2.73 & 10/6/10 7:14 & 1394 & 2.672 & 2.74 \\
\hline 10/6/10 6:32 & 1351 & 2.657 & 2.725 & 10/6/10 6:53 & 1373 & 2.676 & 2.744 & 10/6/10 7:14 & 1394 & 2.671 & 2.739 \\
\hline 10/6/10 6:32 & 1352 & 2.661 & 2.729 & 10/6/10 6:53 & 1373 & 2.658 & 2.726 & 10/6/10 7:15 & 1394 & 2.671 & 2.739 \\
\hline 10/6/10 6:32 & 1352 & 2.661 & 2.729 & 10/6/10 6:54 & 1373 & 2.660 & 2.728 & 10/6/10 7:15 & 1395 & 2.671 & 2.739 \\
\hline 10/6/10 6:33 & 1352 & 2.658 & 2.726 & 10/6/10 6:54 & 1374 & 2.656 & 2.724 & 10/6/10 7:15 & 1395 & 2.668 & 2.736 \\
\hline 10/6/10 6:33 & 1353 & 2.659 & 2.727 & 10/6/10 6:54 & 1374 & 2.658 & 2.726 & 10/6/10 7:16 & 1395 & 2.664 & 2.732 \\
\hline 10/6/10 6:33 & 1353 & 2.660 & 2.728 & 10/6/10 6:55 & 1374 & 2.664 & 2.732 & 10/6/10 7:16 & 1396 & 2.679 & 2.747 \\
\hline 10/6/10 6:34 & 1353 & 2.659 & 2.727 & 10/6/10 6:55 & 1375 & 2.664 & 2.732 & 10/6/10 7:16 & 1396 & 2.673 & 2.741 \\
\hline 10/6/10 6:34 & 1354 & 2.660 & 2.728 & 10/6/10 6:55 & 1375 & 2.663 & 2.731 & 10/6/10 7:17 & 1396 & 2.674 & 2.742 \\
\hline 10/6/10 6:34 & 1354 & 2.658 & 2.726 & 10/6/10 6:56 & 1375 & 2.661 & 2.729 & 10/6/10 7:17 & 1397 & 2.673 & 2.741 \\
\hline 10/6/10 6:35 & 1354 & 2.660 & 2.728 & 10/6/10 6:56 & 1376 & 2.658 & 2.726 & 10/6/10 7:17 & 1397 & 2.667 & 2.735 \\
\hline 10/6/10 6:35 & 1355 & 2.669 & 2.737 & 10/6/10 6:56 & 1376 & 2.660 & 2.728 & 10/6/10 7:18 & 1397 & 2.671 & 2.739 \\
\hline 10/6/10 6:35 & 1355 & 2.662 & 2.73 & 10/6/10 6:57 & 1376 & 2.659 & 2.727 & 10/6/10 7:18 & 1398 & 2.669 & 2.737 \\
\hline 10/6/10 6:36 & 1355 & 2.659 & 2.727 & 10/6/10 6:57 & 1377 & 2.660 & 2.728 & 10/6/10 7:18 & 1398 & 2.684 & 2.752 \\
\hline 10/6/10 6:36 & 1356 & 2.657 & 2.725 & 10/6/10 6:57 & 1377 & 2.656 & 2.724 & 10/6/10 7:19 & 1398 & 2.686 & 2.754 \\
\hline 10/6/10 6:36 & 1356 & 2.660 & 2.728 & 10/6/10 6:58 & 1377 & 2.659 & 2.727 & 10/6/10 7:19 & 1399 & 2.669 & 2.737 \\
\hline 10/6/10 6:37 & 1356 & 2.661 & 2.729 & 10/6/10 6:58 & 1378 & 2.658 & 2.726 & 10/6/10 7:19 & 1399 & 2.669 & 2.737 \\
\hline 10/6/10 6:37 & 1357 & 2.659 & 2.727 & 10/6/10 6:58 & 1378 & 2.659 & 2.727 & 10/6/10 7:20 & 1399 & 2.670 & 2.738 \\
\hline 10/6/10 6:37 & 1357 & 2.660 & 2.728 & 10/6/10 6:59 & 1378 & 2.663 & 2.731 & 10/6/10 7:20 & 1400 & 2.670 & 2.738 \\
\hline 10/6/10 6:38 & 1357 & 2.654 & 2.722 & 10/6/10 6:59 & 1379 & 2.662 & 2.73 & 10/6/10 7:20 & 1400 & 2.671 & 2.739 \\
\hline 10/6/10 6:38 & 1358 & 2.664 & 2.732 & 10/6/10 6:59 & 1379 & 2.663 & 2.731 & 10/6/10 7:21 & 1400 & 2.670 & 2.738 \\
\hline 10/6/10 6:38 & 1358 & 2.659 & 2.727 & 10/6/10 7:00 & 1379 & 2.661 & 2.729 & 10/6/10 7:21 & 1401 & 2.672 & 2.74 \\
\hline 10/6/10 6:39 & 1358 & 2.663 & 2.731 & 10/6/10 7:00 & 1380 & 2.661 & 2.729 & 10/6/10 7:21 & 1401 & 2.670 & 2.738 \\
\hline 10/6/10 6:39 & 1359 & 2.673 & 2.741 & 10/6/10 7:00 & 1380 & 2.662 & 2.73 & 10/6/10 7:22 & 1401 & 2.673 & 2.741 \\
\hline 10/6/10 6:39 & 1359 & 2.662 & 2.73 & 10/6/10 7:01 & 1380 & 2.663 & 2.731 & 10/6/10 7:22 & 1402 & 2.678 & 2.746 \\
\hline 10/6/10 6:40 & 1359 & 2.661 & 2.729 & 10/6/10 7:01 & 1381 & 2.678 & 2.746 & 10/6/10 7:22 & 1402 & 2.674 & 2.742 \\
\hline 10/6/10 6:40 & 1360 & 2.662 & 2.73 & 10/6/10 7:01 & 1381 & 2.666 & 2.734 & 10/6/10 7:23 & 1402 & 2.674 & 2.742 \\
\hline 10/6/10 6:40 & 1360 & 2.658 & 2.726 & 10/6/10 7:02 & 1381 & 2.665 & 2.733 & 10/6/10 7:23 & 1403 & 2.664 & 2.732 \\
\hline 10/6/10 6:41 & 1360 & 2.662 & 2.73 & 10/6/10 7:02 & 1382 & 2.665 & 2.733 & 10/6/10 7:23 & 1403 & 2.663 & 2.731 \\
\hline 10/6/10 6:41 & 1361 & 2.663 & 2.731 & 10/6/10 7:02 & 1382 & 2.670 & 2.738 & 10/6/10 7:24 & 1403 & 2.682 & 2.75 \\
\hline 10/6/10 6:41 & 1361 & 2.661 & 2.729 & 10/6/10 7:03 & 1382 & 2.661 & 2.729 & 10/6/10 7:24 & 1404 & 2.676 & 2.744 \\
\hline 10/6/10 6:42 & 1361 & 2.662 & 2.73 & 10/6/10 7:03 & 1383 & 2.666 & 2.734 & 10/6/10 7:24 & 1404 & 2.673 & 2.741 \\
\hline 10/6/10 6:42 & 1362 & 2.661 & 2.729 & 10/6/10 7:03 & 1383 & 2.665 & 2.733 & 10/6/10 7:25 & 1404 & 2.675 & 2.743 \\
\hline 10/6/10 6:42 & 1362 & 2.664 & 2.732 & 10/6/10 7:04 & 1383 & 2.672 & 2.74 & 10/6/10 7:25 & 1405 & 2.673 & 2.741 \\
\hline 10/6/10 6:43 & 1362 & 2.664 & 2.732 & 10/6/10 7:04 & 1384 & 2.660 & 2.728 & 10/6/10 7:25 & 1405 & 2.679 & 2.747 \\
\hline 10/6/10 6:43 & 1363 & 2.665 & 2.733 & 10/6/10 7:04 & 1384 & 2.657 & 2.725 & 10/6/10 7:26 & 1405 & 2.671 & 2.739 \\
\hline 10/6/10 6:43 & 1363 & 2.661 & 2.729 & 10/6/10 7:05 & 1384 & 2.657 & 2.725 & 10/6/10 7:26 & 1406 & 2.673 & 2.741 \\
\hline 10/6/10 6:44 & 1363 & 2.662 & 2.73 & 10/6/10 7:05 & 1385 & 2.663 & 2.731 & 10/6/10 7:26 & 1406 & 2.685 & 2.753 \\
\hline 10/6/10 6:44 & 1364 & 2.674 & 2.742 & 10/6/10 7:05 & 1385 & 2.667 & 2.735 & 10/6/10 7:27 & 1406 & 2.672 & 2.74 \\
\hline 10/6/10 6:44 & 1364 & 2.659 & 2.727 & 10/6/10 7:06 & 1385 & 2.668 & 2.736 & 10/6/10 7:27 & 1407 & 2.674 & 2.742 \\
\hline 10/6/10 6:45 & 1364 & 2.667 & 2.735 & 10/6/10 7:06 & 1386 & 2.676 & 2.744 & 10/6/10 7:27 & 1407 & 2.675 & 2.743 \\
\hline 10/6/10 6:45 & 1365 & 2.663 & 2.731 & 10/6/10 7:06 & 1386 & 2.671 & 2.739 & 10/6/10 7:28 & 1407 & 2.678 & 2.746 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 10/6/10 7:28 & 1408 & 2.677 & 2.745 & 10/6/10 7:49 & 1429 & 2.691 & 2.759 & 10/6/10 8:11 & 1450 & 1.498 & 1.566 \\
\hline 10/6/10 7:28 & 1408 & 2.680 & 2.748 & 10/6/10 7:50 & 1429 & 2.681 & 2.749 & 10/6/10 8:11 & 1451 & 1.499 & 1.567 \\
\hline 10/6/10 7:29 & 1408 & 2.679 & 2.747 & 10/6/10 7:50 & 1430 & 2.683 & 2.751 & 10/6/10 8:11 & 1451 & 1.493 & 1.561 \\
\hline 10/6/10 7:29 & 1409 & 2.679 & 2.747 & 10/6/10 7:50 & 1430 & 2.685 & 2.753 & 10/6/10 8:12 & 1451 & 1.490 & 1.558 \\
\hline 10/6/10 7:29 & 1409 & 2.680 & 2.748 & 10/6/10 7:51 & 1430 & 2.688 & 2.756 & 10/6/10 8:12 & 1452 & 1.490 & 1.558 \\
\hline 10/6/10 7:30 & 1409 & 2.677 & 2.745 & 10/6/10 7:51 & 1431 & 2.686 & 2.754 & 10/6/10 8:12 & 1452 & 1.485 & 1.553 \\
\hline 10/6/10 7:30 & 1410 & 2.675 & 2.743 & 10/6/10 7:51 & 1431 & 2.688 & 2.756 & 10/6/10 8:13 & 1452 & 1.480 & 1.548 \\
\hline 10/6/10 7:30 & 1410 & 2.679 & 2.747 & 10/6/10 7:52 & 1431 & 2.688 & 2.756 & 10/6/10 8:13 & 1453 & 1.480 & 1.548 \\
\hline 10/6/10 7:31 & 1410 & 2.675 & 2.743 & 10/6/10 7:52 & 1432 & 2.684 & 2.752 & 10/6/10 8:13 & 1453 & 1.481 & 1.549 \\
\hline 10/6/10 7:31 & 1411 & 2.670 & 2.738 & 10/6/10 7:52 & 1432 & 2.686 & 2.754 & 10/6/10 8:14 & 1453 & 1.473 & 1.541 \\
\hline 10/6/10 7:31 & 1411 & 2.676 & 2.744 & 10/6/10 7:53 & 1432 & 2.697 & 2.765 & 10/6/10 8:14 & 1454 & 1.469 & 1.537 \\
\hline 10/6/10 7:32 & 1411 & 2.673 & 2.741 & 10/6/10 7:53 & 1433 & 2.690 & 2.758 & 10/6/10 8:14 & 1454 & 1.471 & 1.539 \\
\hline 10/6/10 7:32 & 1412 & 2.677 & 2.745 & 10/6/10 7:53 & 1433 & 2.689 & 2.757 & 10/6/10 8:15 & 1454 & 1.470 & 1.538 \\
\hline 10/6/10 7:32 & 1412 & 2.678 & 2.746 & 10/6/10 7:54 & 1433 & 2.689 & 2.757 & 10/6/10 8:15 & 1455 & 1.462 & 1.53 \\
\hline 10/6/10 7:33 & 1412 & 2.678 & 2.746 & 10/6/10 7:54 & 1434 & 2.691 & 2.759 & 10/6/10 8:15 & 1455 & 1.461 & 1.529 \\
\hline 10/6/10 7:33 & 1413 & 2.679 & 2.747 & 10/6/10 7:54 & 1434 & 2.687 & 2.755 & 10/6/10 8:16 & 1455 & 1.461 & 1.529 \\
\hline 10/6/10 7:33 & 1413 & 2.680 & 2.748 & 10/6/10 7:55 & 1434 & 2.690 & 2.758 & 10/6/10 8:16 & 1456 & 1.454 & 1.522 \\
\hline 10/6/10 7:34 & 1413 & 2.682 & 2.75 & 10/6/10 7:55 & 1435 & 2.694 & 2.762 & 10/6/10 8:16 & 1456 & 1.454 & 1.522 \\
\hline 10/6/10 7:34 & 1414 & 2.682 & 2.75 & 10/6/10 7:55 & 1435 & 2.696 & 2.764 & 10/6/10 8:17 & 1456 & 1.453 & 1.521 \\
\hline 10/6/10 7:34 & 1414 & 2.681 & 2.749 & 10/6/10 7:56 & 1435 & 2.694 & 2.762 & 10/6/10 8:17 & 1457 & 1.447 & 1.515 \\
\hline 10/6/10 7:35 & 1414 & 2.679 & 2.747 & 10/6/10 7:56 & 1436 & 2.693 & 2.761 & 10/6/10 8:17 & 1457 & 1.445 & 1.513 \\
\hline 10/6/10 7:35 & 1415 & 2.679 & 2.747 & 10/6/10 7:56 & 1436 & 2.687 & 2.755 & 10/6/10 8:18 & 1457 & 1.443 & 1.511 \\
\hline 10/6/10 7:35 & 1415 & 2.680 & 2.748 & 10/6/10 7:57 & 1436 & 2.692 & 2.76 & 10/6/10 8:18 & 1458 & 1.440 & 1.508 \\
\hline 10/6/10 7:36 & 1415 & 2.681 & 2.749 & 10/6/10 7:57 & 1437 & 2.694 & 2.762 & 10/6/10 8:18 & 1458 & 1.437 & 1.505 \\
\hline 10/6/10 7:36 & 1416 & 2.682 & 2.75 & 10/6/10 7:57 & 1437 & 2.696 & 2.764 & 10/6/10 8:19 & 1458 & 1.436 & 1.504 \\
\hline 10/6/10 7:36 & 1416 & 2.693 & 2.761 & 10/6/10 7:58 & 1437 & 2.697 & 2.765 & 10/6/10 8:19 & 1459 & 1.432 & 1.5 \\
\hline 10/6/10 7:37 & 1416 & 2.697 & 2.765 & 10/6/10 7:58 & 1438 & 2.693 & 2.761 & 10/6/10 8:19 & 1459 & 1.427 & 1.495 \\
\hline 10/6/10 7:37 & 1417 & 2.685 & 2.753 & 10/6/10 7:58 & 1438 & 2.690 & 2.758 & 10/6/10 8:20 & 1459 & 1.427 & 1.495 \\
\hline 10/6/10 7:37 & 1417 & 2.685 & 2.753 & 10/6/10 7:59 & 1438 & 2.699 & 2.767 & 10/6/10 8:20 & 1460 & 1.426 & 1.494 \\
\hline 10/6/10 7:38 & 1417 & 2.681 & 2.749 & 10/6/10 7:59 & 1439 & 2.704 & 2.772 & 10/6/10 8:20 & 1460 & 1.422 & 1.49 \\
\hline 10/6/10 7:38 & 1418 & 2.678 & 2.746 & 10/6/10 7:59 & 1439 & 2.695 & 2.763 & 10/6/10 8:21 & 1460 & 1.421 & 1.489 \\
\hline 10/6/10 7:38 & 1418 & 2.681 & 2.749 & 10/6/10 8:00 & 1439 & 2.697 & 2.765 & 10/6/10 8:21 & 1461 & 1.417 & 1.485 \\
\hline 10/6/10 7:39 & 1418 & 2.676 & 2.744 & 10/6/10 8:00 & 1440 & 2.696 & 2.764 & 10/6/10 8:21 & 1461 & 1.416 & 1.484 \\
\hline 10/6/10 7:39 & 1419 & 2.684 & 2.752 & 10/6/10 8:00 & 1440 & 1.691 & 1.759 & 10/6/10 8:22 & 1461 & 1.411 & 1.479 \\
\hline 10/6/10 7:39 & 1419 & 2.678 & 2.746 & 10/6/10 8:01 & 1440 & 1.291 & 1.359 & 10/6/10 8:22 & 1462 & 1.411 & 1.479 \\
\hline 10/6/10 7:40 & 1419 & 2.674 & 2.742 & 10/6/10 8:01 & 1441 & 1.222 & 1.29 & 10/6/10 8:22 & 1462 & 1.408 & 1.476 \\
\hline 10/6/10 7:40 & 1420 & 2.675 & 2.743 & 10/6/10 8:01 & 1441 & 1.204 & 1.272 & 10/6/10 8:23 & 1462 & 1.407 & 1.475 \\
\hline 10/6/10 7:40 & 1420 & 2.677 & 2.745 & 10/6/10 8:02 & 1441 & 1.206 & 1.274 & 10/6/10 8:23 & 1463 & 1.404 & 1.472 \\
\hline 10/6/10 7:41 & 1420 & 2.681 & 2.749 & 10/6/10 8:02 & 1442 & 1.220 & 1.288 & 10/6/10 8:23 & 1463 & 1.402 & 1.47 \\
\hline 10/6/10 7:41 & 1421 & 2.680 & 2.748 & 10/6/10 8:02 & 1442 & 1.236 & 1.304 & 10/6/10 8:24 & 1463 & 1.398 & 1.466 \\
\hline 10/6/10 7:41 & 1421 & 2.681 & 2.749 & 10/6/10 8:03 & 1442 & 1.261 & 1.329 & 10/6/10 8:24 & 1464 & 1.396 & 1.464 \\
\hline 10/6/10 7:42 & 1421 & 2.680 & 2.748 & 10/6/10 8:03 & 1443 & 1.283 & 1.351 & 10/6/10 8:24 & 1464 & 1.400 & 1.468 \\
\hline 10/6/10 7:42 & 1422 & 2.680 & 2.748 & 10/6/10 8:03 & 1443 & 1.314 & 1.382 & 10/6/10 8:25 & 1464 & 1.391 & 1.459 \\
\hline 10/6/10 7:42 & 1422 & 2.681 & 2.749 & 10/6/10 8:04 & 1443 & 1.348 & 1.416 & 10/6/10 8:25 & 1465 & 1.393 & 1.461 \\
\hline 10/6/10 7:43 & 1422 & 2.678 & 2.746 & 10/6/10 8:04 & 1444 & 1.385 & 1.453 & 10/6/10 8:25 & 1465 & 1.386 & 1.454 \\
\hline 10/6/10 7:43 & 1423 & 2.683 & 2.751 & 10/6/10 8:04 & 1444 & 1.427 & 1.495 & 10/6/10 8:26 & 1465 & 1.385 & 1.453 \\
\hline 10/6/10 7:43 & 1423 & 2.680 & 2.748 & 10/6/10 8:05 & 1444 & 1.481 & 1.549 & 10/6/10 8:26 & 1466 & 1.382 & 1.45 \\
\hline 10/6/10 7:44 & 1423 & 2.685 & 2.753 & 10/6/10 8:05 & 1445 & 1.534 & 1.602 & 10/6/10 8:26 & 1466 & 1.379 & 1.447 \\
\hline 10/6/10 7:44 & 1424 & 2.677 & 2.745 & 10/6/10 8:05 & 1445 & 1.547 & 1.615 & 10/6/10 8:27 & 1466 & 1.379 & 1.447 \\
\hline 10/6/10 7:44 & 1424 & 2.679 & 2.747 & 10/6/10 8:06 & 1445 & 1.547 & 1.615 & 10/6/10 8:27 & 1467 & 1.378 & 1.446 \\
\hline 10/6/10 7:45 & 1424 & 2.678 & 2.746 & 10/6/10 8:06 & 1446 & 1.546 & 1.614 & 10/6/10 8:27 & 1467 & 1.376 & 1.444 \\
\hline 10/6/10 7:45 & 1425 & 2.684 & 2.752 & 10/6/10 8:06 & 1446 & 1.539 & 1.607 & 10/6/10 8:28 & 1467 & 1.374 & 1.442 \\
\hline 10/6/10 7:45 & 1425 & 2.681 & 2.749 & 10/6/10 8:07 & 1446 & 1.539 & 1.607 & 10/6/10 8:28 & 1468 & 1.373 & 1.441 \\
\hline 10/6/10 7:46 & 1425 & 2.681 & 2.749 & 10/6/10 8:07 & 1447 & 1.536 & 1.604 & 10/6/10 8:28 & 1468 & 1.356 & 1.424 \\
\hline 10/6/10 7:46 & 1426 & 2.693 & 2.761 & 10/6/10 8:07 & 1447 & 1.533 & 1.601 & 10/6/10 8:29 & 1468 & 1.367 & 1.435 \\
\hline 10/6/10 7:46 & 1426 & 2.675 & 2.743 & 10/6/10 8:08 & 1447 & 1.530 & 1.598 & 10/6/10 8:29 & 1469 & 1.367 & 1.435 \\
\hline 10/6/10 7:47 & 1426 & 2.679 & 2.747 & 10/6/10 8:08 & 1448 & 1.526 & 1.594 & 10/6/10 8:29 & 1469 & 1.361 & 1.429 \\
\hline 10/6/10 7:47 & 1427 & 2.683 & 2.751 & 10/6/10 8:08 & 1448 & 1.522 & 1.59 & 10/6/10 8:30 & 1469 & 1.349 & 1.417 \\
\hline 10/6/10 7:47 & 1427 & 2.682 & 2.75 & 10/6/10 8:09 & 1448 & 1.519 & 1.587 & 10/6/10 8:30 & 1470 & 1.359 & 1.427 \\
\hline 10/6/10 7:48 & 1427 & 2.679 & 2.747 & 10/6/10 8:09 & 1449 & 1.518 & 1.586 & 10/6/10 8:30 & 1470 & 1.357 & 1.425 \\
\hline 10/6/10 7:48 & 1428 & 2.680 & 2.748 & 10/6/10 8:09 & 1449 & 1.514 & 1.582 & 10/6/10 8:31 & 1470 & 1.355 & 1.423 \\
\hline 10/6/10 7:48 & 1428 & 2.676 & 2.744 & 10/6/10 8:10 & 1449 & 1.511 & 1.579 & 10/6/10 8:31 & 1471 & 1.352 & 1.42 \\
\hline 10/6/10 7:49 & 1428 & 2.677 & 2.745 & 10/6/10 8:10 & 1450 & 1.504 & 1.572 & 10/6/10 8:31 & 1471 & 1.352 & 1.42 \\
\hline 10/6/10 7:49 & 1429 & 2.688 & 2.756 & 10/6/10 8:10 & 1450 & 1.504 & 1.572 & 10/6/10 8:32 & 1471 & 1.351 & 1.419 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 10/6/10 8:32 & 1472 & 1.347 & 1.415 & 10/6/10 8:53 & 1493 & 1.252 & 1.32 & 10/6/10 9:15 & 1514 & 1.164 & 1.232 \\
\hline 10/6/10 8:32 & 1472 & 1.347 & 1.415 & 10/6/10 8:54 & 1493 & 1.248 & 1.316 & 10/6/10 9:15 & 1515 & 1.167 & 1.235 \\
\hline 10/6/10 8:33 & 1472 & 1.343 & 1.411 & 10/6/10 8:54 & 1494 & 1.249 & 1.317 & 10/6/10 9:15 & 1515 & 1.163 & 1.231 \\
\hline 10/6/10 8:33 & 1473 & 1.341 & 1.409 & 10/6/10 8:54 & 1494 & 1.237 & 1.305 & 10/6/10 9:16 & 1515 & 1.167 & 1.235 \\
\hline 10/6/10 8:33 & 1473 & 1.342 & 1.41 & 10/6/10 8:55 & 1494 & 1.245 & 1.313 & 10/6/10 9:16 & 1516 & 1.163 & 1.231 \\
\hline 10/6/10 8:34 & 1473 & 1.338 & 1.406 & 10/6/10 8:55 & 1495 & 1.233 & 1.301 & 10/6/10 9:16 & 1516 & 1.160 & 1.228 \\
\hline 10/6/10 8:34 & 1474 & 1.338 & 1.406 & 10/6/10 8:55 & 1495 & 1.245 & 1.313 & 10/6/10 9:17 & 1516 & 1.161 & 1.229 \\
\hline 10/6/10 8:34 & 1474 & 1.337 & 1.405 & 10/6/10 8:56 & 1495 & 1.248 & 1.316 & 10/6/10 9:17 & 1517 & 1.161 & 1.229 \\
\hline 10/6/10 8:35 & 1474 & 1.336 & 1.404 & 10/6/10 8:56 & 1496 & 1.243 & 1.311 & 10/6/10 9:17 & 1517 & 1.158 & 1.226 \\
\hline 10/6/10 8:35 & 1475 & 1.332 & 1.4 & 10/6/10 8:56 & 1496 & 1.241 & 1.309 & 10/6/10 9:18 & 1517 & 1.160 & 1.228 \\
\hline 10/6/10 8:35 & 1475 & 1.330 & 1.398 & 10/6/10 8:57 & 1496 & 1.228 & 1.296 & 10/6/10 9:18 & 1518 & 1.155 & 1.223 \\
\hline 10/6/10 8:36 & 1475 & 1.332 & 1.4 & 10/6/10 8:57 & 1497 & 1.227 & 1.295 & 10/6/10 9:18 & 1518 & 1.156 & 1.224 \\
\hline 10/6/10 8:36 & 1476 & 1.328 & 1.396 & 10/6/10 8:57 & 1497 & 1.234 & 1.302 & 10/6/10 9:19 & 1518 & 1.156 & 1.224 \\
\hline 10/6/10 8:36 & 1476 & 1.328 & 1.396 & 10/6/10 8:58 & 1497 & 1.236 & 1.304 & 10/6/10 9:19 & 1519 & 1.151 & 1.219 \\
\hline 10/6/10 8:37 & 1476 & 1.325 & 1.393 & 10/6/10 8:58 & 1498 & 1.222 & 1.29 & 10/6/10 9:19 & 1519 & 1.151 & 1.219 \\
\hline 10/6/10 8:37 & 1477 & 1.325 & 1.393 & 10/6/10 8:58 & 1498 & 1.222 & 1.29 & 10/6/10 9:20 & 1519 & 1.153 & 1.221 \\
\hline 10/6/10 8:37 & 1477 & 1.322 & 1.39 & 10/6/10 8:59 & 1498 & 1.220 & 1.288 & 10/6/10 9:20 & 1520 & 1.152 & 1.22 \\
\hline 10/6/10 8:38 & 1477 & 1.318 & 1.386 & 10/6/10 8:59 & 1499 & 1.231 & 1.299 & 10/6/10 9:20 & 1520 & 1.147 & 1.215 \\
\hline 10/6/10 8:38 & 1478 & 1.320 & 1.388 & 10/6/10 8:59 & 1499 & 1.227 & 1.295 & 10/6/10 9:21 & 1520 & 1.149 & 1.217 \\
\hline 10/6/10 8:38 & 1478 & 1.316 & 1.384 & 10/6/10 9:00 & 1499 & 1.228 & 1.296 & 10/6/10 9:21 & 1521 & 1.147 & 1.215 \\
\hline 10/6/10 8:39 & 1478 & 1.315 & 1.383 & 10/6/10 9:00 & 1500 & 1.230 & 1.298 & 10/6/10 9:21 & 1521 & 1.145 & 1.213 \\
\hline 10/6/10 8:39 & 1479 & 1.313 & 1.381 & 10/6/10 9:00 & 1500 & 1.226 & 1.294 & 10/6/10 9:22 & 1521 & 1.145 & 1.213 \\
\hline 10/6/10 8:39 & 1479 & 1.310 & 1.378 & 10/6/10 9:01 & 1500 & 1.229 & 1.297 & 10/6/10 9:22 & 1522 & 1.141 & 1.209 \\
\hline 10/6/10 8:40 & 1479 & 1.296 & 1.364 & 10/6/10 9:01 & 1501 & 1.214 & 1.282 & 10/6/10 9:22 & 1522 & 1.142 & 1.21 \\
\hline 10/6/10 8:40 & 1480 & 1.308 & 1.376 & 10/6/10 9:01 & 1501 & 1.210 & 1.278 & 10/6/10 9:23 & 1522 & 1.137 & 1.205 \\
\hline 10/6/10 8:40 & 1480 & 1.305 & 1.373 & 10/6/10 9:02 & 1501 & 1.219 & 1.287 & 10/6/10 9:23 & 1523 & 1.153 & 1.221 \\
\hline 10/6/10 8:41 & 1480 & 1.307 & 1.375 & 10/6/10 9:02 & 1502 & 1.209 & 1.277 & 10/6/10 9:23 & 1523 & 1.139 & 1.207 \\
\hline 10/6/10 8:41 & 1481 & 1.307 & 1.375 & 10/6/10 9:02 & 1502 & 1.208 & 1.276 & 10/6/10 9:24 & 1523 & 1.137 & 1.205 \\
\hline 10/6/10 8:41 & 1481 & 1.301 & 1.369 & 10/6/10 9:03 & 1502 & 1.204 & 1.272 & 10/6/10 9:24 & 1524 & 1.137 & 1.205 \\
\hline 10/6/10 8:42 & 1481 & 1.302 & 1.37 & 10/6/10 9:03 & 1503 & 1.205 & 1.273 & 10/6/10 9:24 & 1524 & 1.137 & 1.205 \\
\hline 10/6/10 8:42 & 1482 & 1.289 & 1.357 & 10/6/10 9:03 & 1503 & 1.217 & 1.285 & 10/6/10 9:25 & 1524 & 1.134 & 1.202 \\
\hline 10/6/10 8:42 & 1482 & 1.298 & 1.366 & 10/6/10 9:04 & 1503 & 1.204 & 1.272 & 10/6/10 9:25 & 1525 & 1.133 & 1.201 \\
\hline 10/6/10 8:43 & 1482 & 1.297 & 1.365 & 10/6/10 9:04 & 1504 & 1.202 & 1.27 & 10/6/10 9:25 & 1525 & 1.131 & 1.199 \\
\hline 10/6/10 8:43 & 1483 & 1.284 & 1.352 & 10/6/10 9:04 & 1504 & 1.212 & 1.28 & 10/6/10 9:26 & 1525 & 1.130 & 1.198 \\
\hline 10/6/10 8:43 & 1483 & 1.293 & 1.361 & 10/6/10 9:05 & 1504 & 1.210 & 1.278 & 10/6/10 9:26 & 1526 & 1.131 & 1.199 \\
\hline 10/6/10 8:44 & 1483 & 1.289 & 1.357 & 10/6/10 9:05 & 1505 & 1.198 & 1.266 & 10/6/10 9:26 & 1526 & 1.129 & 1.197 \\
\hline 10/6/10 8:44 & 1484 & 1.289 & 1.357 & 10/6/10 9:05 & 1505 & 1.211 & 1.279 & 10/6/10 9:27 & 1526 & 1.126 & 1.194 \\
\hline 10/6/10 8:44 & 1484 & 1.290 & 1.358 & 10/6/10 9:06 & 1505 & 1.204 & 1.272 & 10/6/10 9:27 & 1527 & 1.129 & 1.197 \\
\hline 10/6/10 8:45 & 1484 & 1.288 & 1.356 & 10/6/10 9:06 & 1506 & 1.194 & 1.262 & 10/6/10 9:27 & 1527 & 1.128 & 1.196 \\
\hline 10/6/10 8:45 & 1485 & 1.286 & 1.354 & 10/6/10 9:06 & 1506 & 1.205 & 1.273 & 10/6/10 9:28 & 1527 & 1.126 & 1.194 \\
\hline 10/6/10 8:45 & 1485 & 1.283 & 1.351 & 10/6/10 9:07 & 1506 & 1.193 & 1.261 & 10/6/10 9:28 & 1528 & 1.126 & 1.194 \\
\hline 10/6/10 8:46 & 1485 & 1.281 & 1.349 & 10/6/10 9:07 & 1507 & 1.190 & 1.258 & 10/6/10 9:28 & 1528 & 1.125 & 1.193 \\
\hline 10/6/10 8:46 & 1486 & 1.280 & 1.348 & 10/6/10 9:07 & 1507 & 1.200 & 1.268 & 10/6/10 9:29 & 1528 & 1.123 & 1.191 \\
\hline 10/6/10 8:46 & 1486 & 1.280 & 1.348 & 10/6/10 9:08 & 1507 & 1.200 & 1.268 & 10/6/10 9:29 & 1529 & 1.132 & 1.2 \\
\hline 10/6/10 8:47 & 1486 & 1.277 & 1.345 & 10/6/10 9:08 & 1508 & 1.188 & 1.256 & 10/6/10 9:29 & 1529 & 1.123 & 1.191 \\
\hline 10/6/10 8:47 & 1487 & 1.277 & 1.345 & 10/6/10 9:08 & 1508 & 1.186 & 1.254 & 10/6/10 9:30 & 1529 & 1.132 & 1.2 \\
\hline 10/6/10 8:47 & 1487 & 1.274 & 1.342 & 10/6/10 9:09 & 1508 & 1.197 & 1.265 & 10/6/10 9:30 & 1530 & 1.118 & 1.186 \\
\hline 10/6/10 8:48 & 1487 & 1.275 & 1.343 & 10/6/10 9:09 & 1509 & 1.184 & 1.252 & 10/6/10 9:30 & 1530 & 1.118 & 1.186 \\
\hline 10/6/10 8:48 & 1488 & 1.271 & 1.339 & 10/6/10 9:09 & 1509 & 1.184 & 1.252 & 10/6/10 9:31 & 1530 & 1.115 & 1.183 \\
\hline 10/6/10 8:48 & 1488 & 1.261 & 1.329 & 10/6/10 9:10 & 1509 & 1.185 & 1.253 & 10/6/10 9:31 & 1531 & 1.113 & 1.181 \\
\hline 10/6/10 8:49 & 1488 & 1.268 & 1.336 & 10/6/10 9:10 & 1510 & 1.180 & 1.248 & 10/6/10 9:31 & 1531 & 1.116 & 1.184 \\
\hline 10/6/10 8:49 & 1489 & 1.267 & 1.335 & 10/6/10 9:10 & 1510 & 1.179 & 1.247 & 10/6/10 9:32 & 1531 & 1.113 & 1.181 \\
\hline 10/6/10 8:49 & 1489 & 1.267 & 1.335 & 10/6/10 9:11 & 1510 & 1.191 & 1.259 & 10/6/10 9:32 & 1532 & 1.114 & 1.182 \\
\hline 10/6/10 8:50 & 1489 & 1.266 & 1.334 & 10/6/10 9:11 & 1511 & 1.190 & 1.258 & 10/6/10 9:32 & 1532 & 1.114 & 1.182 \\
\hline 10/6/10 8:50 & 1490 & 1.263 & 1.331 & 10/6/10 9:11 & 1511 & 1.191 & 1.259 & 10/6/10 9:33 & 1532 & 1.111 & 1.179 \\
\hline 10/6/10 8:50 & 1490 & 1.264 & 1.332 & 10/6/10 9:12 & 1511 & 1.177 & 1.245 & 10/6/10 9:33 & 1533 & 1.114 & 1.182 \\
\hline 10/6/10 8:51 & 1490 & 1.260 & 1.328 & 10/6/10 9:12 & 1512 & 1.177 & 1.245 & 10/6/10 9:33 & 1533 & 1.111 & 1.179 \\
\hline 10/6/10 8:51 & 1491 & 1.261 & 1.329 & 10/6/10 9:12 & 1512 & 1.185 & 1.253 & 10/6/10 9:34 & 1533 & 1.108 & 1.176 \\
\hline 10/6/10 8:51 & 1491 & 1.260 & 1.328 & 10/6/10 9:13 & 1512 & 1.175 & 1.243 & 10/6/10 9:34 & 1534 & 1.108 & 1.176 \\
\hline 10/6/10 8:52 & 1491 & 1.260 & 1.328 & 10/6/10 9:13 & 1513 & 1.183 & 1.251 & 10/6/10 9:34 & 1534 & 1.109 & 1.177 \\
\hline 10/6/10 8:52 & 1492 & 1.257 & 1.325 & 10/6/10 9:13 & 1513 & 1.175 & 1.243 & 10/6/10 9:35 & 1534 & 1.104 & 1.172 \\
\hline 10/6/10 8:52 & 1492 & 1.257 & 1.325 & 10/6/10 9:14 & 1513 & 1.171 & 1.239 & 10/6/10 9:35 & 1535 & 1.106 & 1.174 \\
\hline 10/6/10 8:53 & 1492 & 1.254 & 1.322 & 10/6/10 9:14 & 1514 & 1.171 & 1.239 & 10/6/10 9:35 & 1535 & 1.107 & 1.175 \\
\hline 10/6/10 8:53 & 1493 & 1.254 & 1.322 & 10/6/10 9:14 & 1514 & 1.166 & 1.234 & 10/6/10 9:36 & 1535 & 1.101 & 1.169 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 10/6/10 9:36 & 1536 & 1.101 & 1.169 & 10/6/10 9:57 & 1557 & 1.049 & 1.117 & 10/6/10 10:19 & 1578 & 0.999 & 1.067 \\
\hline 10/6/10 9:36 & 1536 & 1.103 & 1.171 & 10/6/10 9:58 & 1557 & 1.047 & 1.115 & 10/6/10 10:19 & 1579 & 0.998 & 1.066 \\
\hline 10/6/10 9:37 & 1536 & 1.102 & 1.17 & 10/6/10 9:58 & 1558 & 1.046 & 1.114 & 10/6/10 10:19 & 1579 & 0.996 & 1.064 \\
\hline 10/6/10 9:37 & 1537 & 1.104 & 1.172 & 10/6/10 9:58 & 1558 & 1.048 & 1.116 & 10/6/10 10:20 & 1579 & 0.994 & 1.062 \\
\hline 10/6/10 9:37 & 1537 & 1.096 & 1.164 & 10/6/10 9:59 & 1558 & 1.045 & 1.113 & 10/6/10 10:20 & 1580 & 0.996 & 1.064 \\
\hline 10/6/10 9:38 & 1537 & 1.099 & 1.167 & 10/6/10 9:59 & 1559 & 1.046 & 1.114 & 10/6/10 10:20 & 1580 & 0.996 & 1.064 \\
\hline 10/6/10 9:38 & 1538 & 1.096 & 1.164 & 10/6/10 9:59 & 1559 & 1.046 & 1.114 & 10/6/10 10:21 & 1580 & 0.994 & 1.062 \\
\hline 10/6/10 9:38 & 1538 & 1.096 & 1.164 & 10/6/10 10:00 & 1559 & 1.043 & 1.111 & 10/6/10 10:21 & 1581 & 0.993 & 1.061 \\
\hline 10/6/10 9:39 & 1538 & 1.095 & 1.163 & 10/6/10 10:00 & 1560 & 1.046 & 1.114 & 10/6/10 10:21 & 1581 & 0.992 & 1.06 \\
\hline 10/6/10 9:39 & 1539 & 1.096 & 1.164 & 10/6/10 10:00 & 1560 & 1.046 & 1.114 & 10/6/10 10:22 & 1581 & 0.990 & 1.058 \\
\hline 10/6/10 9:39 & 1539 & 1.096 & 1.164 & 10/6/10 10:01 & 1560 & 1.039 & 1.107 & 10/6/10 10:22 & 1582 & 0.992 & 1.06 \\
\hline 10/6/10 9:40 & 1539 & 1.091 & 1.159 & 10/6/10 10:01 & 1561 & 1.040 & 1.108 & 10/6/10 10:22 & 1582 & 0.990 & 1.058 \\
\hline 10/6/10 9:40 & 1540 & 1.092 & 1.16 & 10/6/10 10:01 & 1561 & 1.036 & 1.104 & 10/6/10 10:23 & 1582 & 0.994 & 1.062 \\
\hline 10/6/10 9:40 & 1540 & 1.091 & 1.159 & 10/6/10 10:02 & 1561 & 1.042 & 1.11 & 10/6/10 10:23 & 1583 & 0.995 & 1.063 \\
\hline 10/6/10 9:41 & 1540 & 1.090 & 1.158 & 10/6/10 10:02 & 1562 & 1.037 & 1.105 & 10/6/10 10:23 & 1583 & 0.991 & 1.059 \\
\hline 10/6/10 9:41 & 1541 & 1.090 & 1.158 & 10/6/10 10:02 & 1562 & 1.037 & 1.105 & 10/6/10 10:24 & 1583 & 0.989 & 1.057 \\
\hline 10/6/10 9:41 & 1541 & 1.091 & 1.159 & 10/6/10 10:03 & 1562 & 1.034 & 1.102 & 10/6/10 10:24 & 1584 & 0.989 & 1.057 \\
\hline 10/6/10 9:42 & 1541 & 1.089 & 1.157 & 10/6/10 10:03 & 1563 & 1.034 & 1.102 & 10/6/10 10:24 & 1584 & 0.986 & 1.054 \\
\hline 10/6/10 9:42 & 1542 & 1.088 & 1.156 & 10/6/10 10:03 & 1563 & 1.035 & 1.103 & 10/6/10 10:25 & 1584 & 0.987 & 1.055 \\
\hline 10/6/10 9:42 & 1542 & 1.088 & 1.156 & 10/6/10 10:04 & 1563 & 1.033 & 1.101 & 10/6/10 10:25 & 1585 & 0.985 & 1.053 \\
\hline 10/6/10 9:43 & 1542 & 1.086 & 1.154 & 10/6/10 10:04 & 1564 & 1.033 & 1.101 & 10/6/10 10:25 & 1585 & 0.986 & 1.054 \\
\hline 10/6/10 9:43 & 1543 & 1.084 & 1.152 & 10/6/10 10:04 & 1564 & 1.028 & 1.096 & 10/6/10 10:26 & 1585 & 0.987 & 1.055 \\
\hline 10/6/10 9:43 & 1543 & 1.085 & 1.153 & 10/6/10 10:05 & 1564 & 1.027 & 1.095 & 10/6/10 10:26 & 1586 & 0.984 & 1.052 \\
\hline 10/6/10 9:44 & 1543 & 1.088 & 1.156 & 10/6/10 10:05 & 1565 & 1.027 & 1.095 & 10/6/10 10:26 & 1586 & 0.984 & 1.052 \\
\hline 10/6/10 9:44 & 1544 & 1.081 & 1.149 & 10/6/10 10:05 & 1565 & 1.028 & 1.096 & 10/6/10 10:27 & 1586 & 0.984 & 1.052 \\
\hline 10/6/10 9:44 & 1544 & 1.083 & 1.151 & 10/6/10 10:06 & 1565 & 1.029 & 1.097 & 10/6/10 10:27 & 1587 & 0.983 & 1.051 \\
\hline 10/6/10 9:45 & 1544 & 1.083 & 1.151 & 10/6/10 10:06 & 1566 & 1.026 & 1.094 & 10/6/10 10:27 & 1587 & 0.983 & 1.051 \\
\hline 10/6/10 9:45 & 1545 & 1.082 & 1.15 & 10/6/10 10:06 & 1566 & 1.026 & 1.094 & 10/6/10 10:28 & 1587 & 0.979 & 1.047 \\
\hline 10/6/10 9:45 & 1545 & 1.080 & 1.148 & 10/6/10 10:07 & 1566 & 1.023 & 1.091 & 10/6/10 10:28 & 1588 & 0.980 & 1.048 \\
\hline 10/6/10 9:46 & 1545 & 1.079 & 1.147 & 10/6/10 10:07 & 1567 & 1.023 & 1.091 & 10/6/10 10:28 & 1588 & 0.980 & 1.048 \\
\hline 10/6/10 9:46 & 1546 & 1.078 & 1.146 & 10/6/10 10:07 & 1567 & 1.025 & 1.093 & 10/6/10 10:29 & 1588 & 0.976 & 1.044 \\
\hline 10/6/10 9:46 & 1546 & 1.079 & 1.147 & 10/6/10 10:08 & 1567 & 1.021 & 1.089 & 10/6/10 10:29 & 1589 & 0.977 & 1.045 \\
\hline 10/6/10 9:47 & 1546 & 1.076 & 1.144 & 10/6/10 10:08 & 1568 & 1.018 & 1.086 & 10/6/10 10:29 & 1589 & 0.978 & 1.046 \\
\hline 10/6/10 9:47 & 1547 & 1.076 & 1.144 & 10/6/10 10:08 & 1568 & 1.020 & 1.088 & 10/6/10 10:30 & 1589 & 0.979 & 1.047 \\
\hline 10/6/10 9:47 & 1547 & 1.075 & 1.143 & 10/6/10 10:09 & 1568 & 1.021 & 1.089 & 10/6/10 10:30 & 1590 & 0.976 & 1.044 \\
\hline 10/6/10 9:48 & 1547 & 1.075 & 1.143 & 10/6/10 10:09 & 1569 & 1.020 & 1.088 & 10/6/10 10:30 & 1590 & 0.973 & 1.041 \\
\hline 10/6/10 9:48 & 1548 & 1.076 & 1.144 & 10/6/10 10:09 & 1569 & 1.021 & 1.089 & 10/6/10 10:31 & 1590 & 0.976 & 1.044 \\
\hline 10/6/10 9:48 & 1548 & 1.073 & 1.141 & 10/6/10 10:10 & 1569 & 1.017 & 1.085 & 10/6/10 10:31 & 1591 & 0.973 & 1.041 \\
\hline 10/6/10 9:49 & 1548 & 1.070 & 1.138 & 10/6/10 10:10 & 1570 & 1.016 & 1.084 & 10/6/10 10:31 & 1591 & 0.975 & 1.043 \\
\hline 10/6/10 9:49 & 1549 & 1.071 & 1.139 & 10/6/10 10:10 & 1570 & 1.018 & 1.086 & 10/6/10 10:32 & 1591 & 0.972 & 1.04 \\
\hline 10/6/10 9:49 & 1549 & 1.071 & 1.139 & 10/6/10 10:11 & 1570 & 1.017 & 1.085 & 10/6/10 10:32 & 1592 & 0.972 & 1.04 \\
\hline 10/6/10 9:50 & 1549 & 1.068 & 1.136 & 10/6/10 10:11 & 1571 & 1.014 & 1.082 & 10/6/10 10:32 & 1592 & 0.968 & 1.036 \\
\hline 10/6/10 9:50 & 1550 & 1.067 & 1.135 & 10/6/10 10:11 & 1571 & 1.016 & 1.084 & 10/6/10 10:33 & 1592 & 0.974 & 1.042 \\
\hline 10/6/10 9:50 & 1550 & 1.067 & 1.135 & 10/6/10 10:12 & 1571 & 1.011 & 1.079 & 10/6/10 10:33 & 1593 & 0.966 & 1.034 \\
\hline 10/6/10 9:51 & 1550 & 1.066 & 1.134 & 10/6/10 10:12 & 1572 & 1.012 & 1.08 & 10/6/10 10:33 & 1593 & 0.970 & 1.038 \\
\hline 10/6/10 9:51 & 1551 & 1.068 & 1.136 & 10/6/10 10:12 & 1572 & 1.010 & 1.078 & 10/6/10 10:34 & 1593 & 0.967 & 1.035 \\
\hline 10/6/10 9:51 & 1551 & 1.064 & 1.132 & 10/6/10 10:13 & 1572 & 1.011 & 1.079 & 10/6/10 10:34 & 1594 & 0.963 & 1.031 \\
\hline 10/6/10 9:52 & 1551 & 1.074 & 1.142 & 10/6/10 10:13 & 1573 & 1.009 & 1.077 & 10/6/10 10:34 & 1594 & 0.964 & 1.032 \\
\hline 10/6/10 9:52 & 1552 & 1.061 & 1.129 & 10/6/10 10:13 & 1573 & 1.009 & 1.077 & 10/6/10 10:35 & 1594 & 0.962 & 1.03 \\
\hline 10/6/10 9:52 & 1552 & 1.062 & 1.13 & 10/6/10 10:14 & 1573 & 1.010 & 1.078 & 10/6/10 10:35 & 1595 & 0.960 & 1.028 \\
\hline 10/6/10 9:53 & 1552 & 1.064 & 1.132 & 10/6/10 10:14 & 1574 & 1.008 & 1.076 & 10/6/10 10:35 & 1595 & 0.960 & 1.028 \\
\hline 10/6/10 9:53 & 1553 & 1.059 & 1.127 & 10/6/10 10:14 & 1574 & 1.010 & 1.078 & 10/6/10 10:36 & 1595 & 0.960 & 1.028 \\
\hline 10/6/10 9:53 & 1553 & 1.060 & 1.128 & 10/6/10 10:15 & 1574 & 1.009 & 1.077 & 10/6/10 10:36 & 1596 & 0.959 & 1.027 \\
\hline 10/6/10 9:54 & 1553 & 1.056 & 1.124 & 10/6/10 10:15 & 1575 & 1.006 & 1.074 & 10/6/10 10:36 & 1596 & 0.960 & 1.028 \\
\hline 10/6/10 9:54 & 1554 & 1.057 & 1.125 & 10/6/10 10:15 & 1575 & 1.007 & 1.075 & 10/6/10 10:37 & 1596 & 0.959 & 1.027 \\
\hline 10/6/10 9:54 & 1554 & 1.057 & 1.125 & 10/6/10 10:16 & 1575 & 1.005 & 1.073 & 10/6/10 10:37 & 1597 & 0.962 & 1.03 \\
\hline 10/6/10 9:55 & 1554 & 1.058 & 1.126 & 10/6/10 10:16 & 1576 & 1.004 & 1.072 & 10/6/10 10:37 & 1597 & 0.956 & 1.024 \\
\hline 10/6/10 9:55 & 1555 & 1.054 & 1.122 & 10/6/10 10:16 & 1576 & 1.001 & 1.069 & 10/6/10 10:38 & 1597 & 0.958 & 1.026 \\
\hline 10/6/10 9:55 & 1555 & 1.055 & 1.123 & 10/6/10 10:17 & 1576 & 1.001 & 1.069 & 10/6/10 10:38 & 1598 & 0.955 & 1.023 \\
\hline 10/6/10 9:56 & 1555 & 1.052 & 1.12 & 10/6/10 10:17 & 1577 & 1.003 & 1.071 & 10/6/10 10:38 & 1598 & 0.956 & 1.024 \\
\hline 10/6/10 9:56 & 1556 & 1.055 & 1.123 & 10/6/10 10:17 & 1577 & 1.005 & 1.073 & 10/6/10 10:39 & 1598 & 0.955 & 1.023 \\
\hline 10/6/10 9:56 & 1556 & 1.058 & 1.126 & 10/6/10 10:18 & 1577 & 1.001 & 1.069 & 10/6/10 10:39 & 1599 & 0.956 & 1.024 \\
\hline 10/6/10 9:57 & 1556 & 1.053 & 1.121 & 10/6/10 10:18 & 1578 & 0.999 & 1.067 & 10/6/10 10:39 & 1599 & 0.953 & 1.021 \\
\hline 10/6/10 9:57 & 1557 & 1.048 & 1.116 & 10/6/10 10:18 & 1578 & 1.000 & 1.068 & 10/6/10 10:40 & 1599 & 0.951 & 1.019 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 10/6/10 10:40 & 1600 & 0.958 & 1.026 & 10/6/10 11:01 & 1621 & 0.906 & 0.974 & 10/6/10 11:23 & 1642 & 0.870 & 0.938 \\
\hline 10/6/10 10:40 & 1600 & 0.951 & 1.019 & 10/6/10 11:02 & 1621 & 0.907 & 0.975 & 10/6/10 11:23 & 1643 & 0.867 & 0.935 \\
\hline 10/6/10 10:41 & 1600 & 0.953 & 1.021 & 10/6/10 11:02 & 1622 & 0.907 & 0.975 & 10/6/10 11:23 & 1643 & 0.868 & 0.936 \\
\hline 10/6/10 10:41 & 1601 & 0.948 & 1.016 & 10/6/10 11:02 & 1622 & 0.904 & 0.972 & 10/6/10 11:24 & 1643 & 0.867 & 0.935 \\
\hline 10/6/10 10:41 & 1601 & 0.948 & 1.016 & 10/6/10 11:03 & 1622 & 0.903 & 0.971 & 10/6/10 11:24 & 1644 & 0.866 & 0.934 \\
\hline 10/6/10 10:42 & 1601 & 0.949 & 1.017 & 10/6/10 11:03 & 1623 & 0.903 & 0.971 & 10/6/10 11:24 & 1644 & 0.865 & 0.933 \\
\hline 10/6/10 10:42 & 1602 & 0.953 & 1.021 & 10/6/10 11:03 & 1623 & 0.905 & 0.973 & 10/6/10 11:25 & 1644 & 0.863 & 0.931 \\
\hline 10/6/10 10:42 & 1602 & 0.948 & 1.016 & 10/6/10 11:04 & 1623 & 0.902 & 0.97 & 10/6/10 11:25 & 1645 & 0.864 & 0.932 \\
\hline 10/6/10 10:43 & 1602 & 0.947 & 1.015 & 10/6/10 11:04 & 1624 & 0.903 & 0.971 & 10/6/10 11:25 & 1645 & 0.865 & 0.933 \\
\hline 10/6/10 10:43 & 1603 & 0.947 & 1.015 & 10/6/10 11:04 & 1624 & 0.900 & 0.968 & 10/6/10 11:26 & 1645 & 0.865 & 0.933 \\
\hline 10/6/10 10:43 & 1603 & 0.944 & 1.012 & 10/6/10 11:05 & 1624 & 0.901 & 0.969 & 10/6/10 11:26 & 1646 & 0.863 & 0.931 \\
\hline 10/6/10 10:44 & 1603 & 0.942 & 1.01 & 10/6/10 11:05 & 1625 & 0.902 & 0.97 & 10/6/10 11:26 & 1646 & 0.859 & 0.927 \\
\hline 10/6/10 10:44 & 1604 & 0.946 & 1.014 & 10/6/10 11:05 & 1625 & 0.897 & 0.965 & 10/6/10 11:27 & 1646 & 0.859 & 0.927 \\
\hline 10/6/10 10:44 & 1604 & 0.946 & 1.014 & 10/6/10 11:06 & 1625 & 0.899 & 0.967 & 10/6/10 11:27 & 1647 & 0.860 & 0.928 \\
\hline 10/6/10 10:45 & 1604 & 0.941 & 1.009 & 10/6/10 11:06 & 1626 & 0.895 & 0.963 & 10/6/10 11:27 & 1647 & 0.862 & 0.93 \\
\hline 10/6/10 10:45 & 1605 & 0.941 & 1.009 & 10/6/10 11:06 & 1626 & 0.898 & 0.966 & 10/6/10 11:28 & 1647 & 0.858 & 0.926 \\
\hline 10/6/10 10:45 & 1605 & 0.942 & 1.01 & 10/6/10 11:07 & 1626 & 0.895 & 0.963 & 10/6/10 11:28 & 1648 & 0.857 & 0.925 \\
\hline 10/6/10 10:46 & 1605 & 0.939 & 1.007 & 10/6/10 11:07 & 1627 & 0.897 & 0.965 & 10/6/10 11:28 & 1648 & 0.858 & 0.926 \\
\hline 10/6/10 10:46 & 1606 & 0.938 & 1.006 & 10/6/10 11:07 & 1627 & 0.893 & 0.961 & 10/6/10 11:29 & 1648 & 0.856 & 0.924 \\
\hline 10/6/10 10:46 & 1606 & 0.939 & 1.007 & 10/6/10 11:08 & 1627 & 0.895 & 0.963 & 10/6/10 11:29 & 1649 & 0.855 & 0.923 \\
\hline 10/6/10 10:47 & 1606 & 0.940 & 1.008 & 10/6/10 11:08 & 1628 & 0.893 & 0.961 & 10/6/10 11:29 & 1649 & 0.854 & 0.922 \\
\hline 10/6/10 10:47 & 1607 & 0.936 & 1.004 & 10/6/10 11:08 & 1628 & 0.892 & 0.96 & 10/6/10 11:30 & 1649 & 0.856 & 0.924 \\
\hline 10/6/10 10:47 & 1607 & 0.934 & 1.002 & 10/6/10 11:09 & 1628 & 0.894 & 0.962 & 10/6/10 11:30 & 1650 & 0.853 & 0.921 \\
\hline 10/6/10 10:48 & 1607 & 0.936 & 1.004 & 10/6/10 11:09 & 1629 & 0.893 & 0.961 & 10/6/10 11:30 & 1650 & 0.854 & 0.922 \\
\hline 10/6/10 10:48 & 1608 & 0.936 & 1.004 & 10/6/10 11:09 & 1629 & 0.892 & 0.96 & 10/6/10 11:31 & 1650 & 0.852 & 0.92 \\
\hline 10/6/10 10:48 & 1608 & 0.933 & 1.001 & 10/6/10 11:10 & 1629 & 0.891 & 0.959 & 10/6/10 11:31 & 1651 & 0.852 & 0.92 \\
\hline 10/6/10 10:49 & 1608 & 0.932 & 1 & 10/6/10 11:10 & 1630 & 0.890 & 0.958 & 10/6/10 11:31 & 1651 & 0.851 & 0.919 \\
\hline 10/6/10 10:49 & 1609 & 0.936 & 1.004 & 10/6/10 11:10 & 1630 & 0.891 & 0.959 & 10/6/10 11:32 & 1651 & 0.855 & 0.923 \\
\hline 10/6/10 10:49 & 1609 & 0.931 & 0.999 & 10/6/10 11:11 & 1630 & 0.887 & 0.955 & 10/6/10 11:32 & 1652 & 0.846 & 0.914 \\
\hline 10/6/10 10:50 & 1609 & 0.933 & 1.001 & 10/6/10 11:11 & 1631 & 0.887 & 0.955 & 10/6/10 11:32 & 1652 & 0.852 & 0.92 \\
\hline 10/6/10 10:50 & 1610 & 0.930 & 0.998 & 10/6/10 11:11 & 1631 & 0.888 & 0.956 & 10/6/10 11:33 & 1652 & 0.855 & 0.923 \\
\hline 10/6/10 10:50 & 1610 & 0.926 & 0.994 & 10/6/10 11:12 & 1631 & 0.890 & 0.958 & 10/6/10 11:33 & 1653 & 0.850 & 0.918 \\
\hline 10/6/10 10:51 & 1610 & 0.928 & 0.996 & 10/6/10 11:12 & 1632 & 0.887 & 0.955 & 10/6/10 11:33 & 1653 & 0.853 & 0.921 \\
\hline 10/6/10 10:51 & 1611 & 0.926 & 0.994 & 10/6/10 11:12 & 1632 & 0.885 & 0.953 & 10/6/10 11:34 & 1653 & 0.854 & 0.922 \\
\hline 10/6/10 10:51 & 1611 & 0.926 & 0.994 & 10/6/10 11:13 & 1632 & 0.884 & 0.952 & 10/6/10 11:34 & 1654 & 0.850 & 0.918 \\
\hline 10/6/10 10:52 & 1611 & 0.924 & 0.992 & 10/6/10 11:13 & 1633 & 0.884 & 0.952 & 10/6/10 11:34 & 1654 & 0.852 & 0.92 \\
\hline 10/6/10 10:52 & 1612 & 0.924 & 0.992 & 10/6/10 11:13 & 1633 & 0.882 & 0.95 & 10/6/10 11:35 & 1654 & 0.847 & 0.915 \\
\hline 10/6/10 10:52 & 1612 & 0.923 & 0.991 & 10/6/10 11:14 & 1633 & 0.882 & 0.95 & 10/6/10 11:35 & 1655 & 0.848 & 0.916 \\
\hline 10/6/10 10:53 & 1612 & 0.924 & 0.992 & 10/6/10 11:14 & 1634 & 0.883 & 0.951 & 10/6/10 11:35 & 1655 & 0.846 & 0.914 \\
\hline 10/6/10 10:53 & 1613 & 0.920 & 0.988 & 10/6/10 11:14 & 1634 & 0.881 & 0.949 & 10/6/10 11:36 & 1655 & 0.845 & 0.913 \\
\hline 10/6/10 10:53 & 1613 & 0.921 & 0.989 & 10/6/10 11:15 & 1634 & 0.879 & 0.947 & 10/6/10 11:36 & 1656 & 0.846 & 0.914 \\
\hline 10/6/10 10:54 & 1613 & 0.921 & 0.989 & 10/6/10 11:15 & 1635 & 0.878 & 0.946 & 10/6/10 11:36 & 1656 & 0.848 & 0.916 \\
\hline 10/6/10 10:54 & 1614 & 0.923 & 0.991 & 10/6/10 11:15 & 1635 & 0.880 & 0.948 & 10/6/10 11:37 & 1656 & 0.848 & 0.916 \\
\hline 10/6/10 10:54 & 1614 & 0.921 & 0.989 & 10/6/10 11:16 & 1635 & 0.878 & 0.946 & 10/6/10 11:37 & 1657 & 0.847 & 0.915 \\
\hline 10/6/10 10:55 & 1614 & 0.919 & 0.987 & 10/6/10 11:16 & 1636 & 0.877 & 0.945 & 10/6/10 11:37 & 1657 & 0.842 & 0.91 \\
\hline 10/6/10 10:55 & 1615 & 0.915 & 0.983 & 10/6/10 11:16 & 1636 & 0.881 & 0.949 & 10/6/10 11:38 & 1657 & 0.845 & 0.913 \\
\hline 10/6/10 10:55 & 1615 & 0.917 & 0.985 & 10/6/10 11:17 & 1636 & 0.880 & 0.948 & 10/6/10 11:38 & 1658 & 0.840 & 0.908 \\
\hline 10/6/10 10:56 & 1615 & 0.917 & 0.985 & 10/6/10 11:17 & 1637 & 0.877 & 0.945 & 10/6/10 11:38 & 1658 & 0.840 & 0.908 \\
\hline 10/6/10 10:56 & 1616 & 0.916 & 0.984 & 10/6/10 11:17 & 1637 & 0.879 & 0.947 & 10/6/10 11:39 & 1658 & 0.840 & 0.908 \\
\hline 10/6/10 10:56 & 1616 & 0.917 & 0.985 & 10/6/10 11:18 & 1637 & 0.880 & 0.948 & 10/6/10 11:39 & 1659 & 0.843 & 0.911 \\
\hline 10/6/10 10:57 & 1616 & 0.918 & 0.986 & 10/6/10 11:18 & 1638 & 0.875 & 0.943 & 10/6/10 11:39 & 1659 & 0.839 & 0.907 \\
\hline 10/6/10 10:57 & 1617 & 0.914 & 0.982 & 10/6/10 11:18 & 1638 & 0.873 & 0.941 & 10/6/10 11:40 & 1659 & 0.841 & 0.909 \\
\hline 10/6/10 10:57 & 1617 & 0.912 & 0.98 & 10/6/10 11:19 & 1638 & 0.876 & 0.944 & 10/6/10 11:40 & 1660 & 0.842 & 0.91 \\
\hline 10/6/10 10:58 & 1617 & 0.914 & 0.982 & 10/6/10 11:19 & 1639 & 0.874 & 0.942 & 10/6/10 11:40 & 1660 & 0.840 & 0.908 \\
\hline 10/6/10 10:58 & 1618 & 0.910 & 0.978 & 10/6/10 11:19 & 1639 & 0.875 & 0.943 & 10/6/10 11:41 & 1660 & 0.840 & 0.908 \\
\hline 10/6/10 10:58 & 1618 & 0.912 & 0.98 & 10/6/10 11:20 & 1639 & 0.873 & 0.941 & 10/6/10 11:41 & 1661 & 0.836 & 0.904 \\
\hline 10/6/10 10:59 & 1618 & 0.909 & 0.977 & 10/6/10 11:20 & 1640 & 0.876 & 0.944 & 10/6/10 11:41 & 1661 & 0.837 & 0.905 \\
\hline 10/6/10 10:59 & 1619 & 0.913 & 0.981 & 10/6/10 11:20 & 1640 & 0.873 & 0.941 & 10/6/10 11:42 & 1661 & 0.837 & 0.905 \\
\hline 10/6/10 10:59 & 1619 & 0.908 & 0.976 & 10/6/10 11:21 & 1640 & 0.872 & 0.94 & 10/6/10 11:42 & 1662 & 0.836 & 0.904 \\
\hline 10/6/10 11:00 & 1619 & 0.912 & 0.98 & 10/6/10 11:21 & 1641 & 0.869 & 0.937 & 10/6/10 11:42 & 1662 & 0.835 & 0.903 \\
\hline 10/6/10 11:00 & 1620 & 0.907 & 0.975 & 10/6/10 11:21 & 1641 & 0.871 & 0.939 & 10/6/10 11:43 & 1662 & 0.834 & 0.902 \\
\hline 10/6/10 11:00 & 1620 & 0.909 & 0.977 & 10/6/10 11:22 & 1641 & 0.870 & 0.938 & 10/6/10 11:43 & 1663 & 0.832 & 0.9 \\
\hline 10/6/10 11:01 & 1620 & 0.906 & 0.974 & 10/6/10 11:22 & 1642 & 0.873 & 0.941 & 10/6/10 11:43 & 1663 & 0.837 & 0.905 \\
\hline 10/6/10 11:01 & 1621 & 0.910 & 0.978 & 10/6/10 11:22 & 1642 & 0.870 & 0.938 & 10/6/10 11:44 & 1663 & 0.832 & 0.9 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 10/6/10 11:44 & 1664 & 0.834 & 0.902 \\
\hline 10/6/10 11:44 & 1664 & 0.830 & 0.898 \\
\hline 10/6/10 11:45 & 1664 & 0.829 & 0.897 \\
\hline 10/6/10 11:45 & 1665 & 0.831 & 0.899 \\
\hline 10/6/10 11:45 & 1665 & 0.834 & 0.902 \\
\hline 10/6/10 11:46 & 1665 & 0.828 & 0.896 \\
\hline 10/6/10 11:46 & 1666 & 0.828 & 0.896 \\
\hline 10/6/10 11:46 & 1666 & 0.834 & 0.902 \\
\hline 10/6/10 11:47 & 1666 & 0.826 & 0.894 \\
\hline 10/6/10 11:47 & 1667 & 0.832 & 0.9 \\
\hline 10/6/10 11:47 & 1667 & 0.829 & 0.897 \\
\hline 10/6/10 11:48 & 1667 & 0.828 & 0.896 \\
\hline 10/6/10 11:48 & 1668 & 0.825 & 0.893 \\
\hline 10/6/10 11:48 & 1668 & 0.827 & 0.895 \\
\hline 10/6/10 11:49 & 1668 & 0.825 & 0.893 \\
\hline 10/6/10 11:49 & 1669 & 0.825 & 0.893 \\
\hline 10/6/10 11:49 & 1669 & 0.821 & 0.889 \\
\hline 10/6/10 11:50 & 1669 & 0.811 & 0.879 \\
\hline 10/6/10 11:50 & 1670 & 0.834 & 0.902 \\
\hline 10/6/10 11:50 & 1670 & 0.828 & 0.896 \\
\hline 10/6/10 11:51 & 1670 & 0.824 & 0.892 \\
\hline 10/6/10 11:51 & 1671 & 0.823 & 0.891 \\
\hline 10/6/10 11:51 & 1671 & 0.823 & 0.891 \\
\hline 10/6/10 11:52 & 1671 & 0.821 & 0.889 \\
\hline 10/6/10 11:52 & 1672 & 0.822 & 0.89 \\
\hline 10/6/10 11:52 & 1672 & 0.821 & 0.889 \\
\hline 10/6/10 11:53 & 1672 & 0.819 & 0.887 \\
\hline 10/6/10 11:53 & 1673 & 0.819 & 0.887 \\
\hline 10/6/10 11:53 & 1673 & 0.819 & 0.887 \\
\hline 10/6/10 11:54 & 1673 & 0.817 & 0.885 \\
\hline 10/6/10 11:54 & 1674 & 0.816 & 0.884 \\
\hline 10/6/10 11:54 & 1674 & 0.820 & 0.888 \\
\hline 10/6/10 11:55 & 1674 & 0.817 & 0.885 \\
\hline 10/6/10 11:55 & 1675 & 0.818 & 0.886 \\
\hline 10/6/10 11:55 & 1675 & 0.814 & 0.882 \\
\hline 10/6/10 11:56 & 1675 & 0.814 & 0.882 \\
\hline 10/6/10 11:56 & 1676 & 0.812 & 0.88 \\
\hline 10/6/10 11:56 & 1676 & 0.811 & 0.879 \\
\hline 10/6/10 11:57 & 1676 & 0.810 & 0.878 \\
\hline 10/6/10 11:57 & 1677 & 0.813 & 0.881 \\
\hline 10/6/10 11:57 & 1677 & 0.815 & 0.883 \\
\hline 10/6/10 11:58 & 1677 & 0.808 & 0.876 \\
\hline 10/6/10 11:58 & 1678 & 0.810 & 0.878 \\
\hline 10/6/10 11:58 & 1678 & 0.805 & 0.873 \\
\hline 10/6/10 11:59 & 1678 & 0.813 & 0.881 \\
\hline 10/6/10 11:59 & 1679 & 0.811 & 0.879 \\
\hline 10/6/10 11:59 & 1679 & 0.808 & 0.876 \\
\hline 10/6/10 12:00 & 1679 & 0.807 & 0.875 \\
\hline 10/6/10 12:00 & 1680 & 0.808 & 0.876 \\
\hline 10/6/10 12:00 & 1680 & 0.807 & 0.875 \\
\hline 10/6/10 12:01 & 1680 & 0.809 & 0.877 \\
\hline 10/6/10 12:01 & 1681 & 0.813 & 0.881 \\
\hline 10/6/10 12:01 & 1681 & 0.812 & 0.88 \\
\hline 10/6/10 12:02 & 1681 & 0.804 & 0.872 \\
\hline 10/6/10 12:02 & 1682 & 0.804 & 0.872 \\
\hline 10/6/10 12:02 & 1682 & 0.806 & 0.874 \\
\hline 10/6/10 12:03 & 1682 & 0.806 & 0.874 \\
\hline 10/6/10 12:03 & 1683 & 0.806 & 0.874 \\
\hline 10/6/10 12:03 & 1683 & 0.804 & 0.872 \\
\hline 10/6/10 12:04 & 1683 & 0.803 & 0.871 \\
\hline
\end{tabular}

\section*{Appendix E}

Groundwater Flow Model

\section*{Appendix E}

\title{
Groundwater Flow Model
}

\author{
Prepared for: \\ Bighorn-Desert View Water Agency \\ 622 S. Jemez Trail \\ Yucca Valley, California 92284
}

Prepared by:
Todd Engineers
2490 Mariner Square Loop, Suite 215
Alameda, CA 9501-1080

February 2011

\section*{Table of Contents}
Page
E1. INTRODUCTION ..... 1
E1.1 Model Objectives ..... 1
E1.2 Model Approach and Scope ..... 1
E2. MODEL INPUT AND CALIBRATION .....  3
E2.1 Calibration Process and Criteria ..... 3
E2.1.1. Historical Calibration Periods ..... 3
E2.1.2. Water Level Calibration Data. ..... 4
E2.1.3. Calibration Approach ..... 4
E2.2 Model Domain and Discretization ..... 5
E2.2.1. Model Area and Grid ..... 5
E2.2.2. Model Depth ..... 5
E2.3 Boundary Conditions .....  5
E2.3.1. Western Specified Flux Boundaries ..... 6
E2.3.2. Northern and Southern No-Flow Boundaries ..... 8
E2.3.3. Eastern General Head Boundary ..... 9
E2.3.4. Return Flow Recharge Boundary ..... 9
E2.4 Groundwater Production ..... 10
E2.5 Aquifer Hydraulic Properties ..... 10
E2.5.1. Alluvium Hydraulic Properties. ..... 11
E2.5.2. Fault Barrier Hydraulic Properties ..... 12
E2.5.3. Aquifer Storage Properties ..... 12
E3. MODEL RESULTS ..... 13
E3.1 Calibration Results ..... 13
E3.2 Simulated Heads ..... 14
E3.3 Flowpath Results ..... 14
E3.4 Water Balance and Volumetric Fluxes ..... 15
E3.5 Predicted Mounding and Flowpaths from Reche Spreading Grounds ..... 15
E4. REFERENCES ..... 17

\section*{List of Tables}

Table E1 Boundary Condition Specified Flux Rates
Table E2 Well Production
Table E3 Model Calibration Summary
Table E4 Annual Water Budget
Table E5 Cumulative Water Budget

\section*{List of Figures}

Figure E1 Model Domain and Boundaries
Figure E2 Calibration Well Locations
Figure E3 Aquifer Bottom Elevations
Figure E4 Boundary Conditions
Figure E5 Relationship between Rainfall and Water Levels in Pipes Wash Well 1N/5E-2N1
Figure E6 Recharge Rates for Western Flux Boundaries
Figure E7 BDVWA Water Customer Parcels and Recharge Areas
Figure E8 Return Flow Recharge Rates
Figure E9 Production Well Pumping Rates
Figure E10 Hydraulic Conductivity Polygon Distribution
Figure E11 Simulated Groundwater Elevations, 1994
Figure E12 Simulated Groundwater Elevations, 2009
Figure E13 Simulated Groundwater Elevation Change, 1994 to 2009
Figure E14 Simulated Forward Flow Paths, 2009 Conditions
Figure E15 Simulated Reverse Flow Paths, 2009 Conditions
Figure E16 Water Budget Summary 1994-2009
Figure E17 Simulated Water Table Mounding from Recharge of 1,500 AF after 6 Months
Figure E18 Simulated Water Levels over Time from Recharge of 1,500 AF in Alternating Years

Figure E19 Simulated Flow Paths from Recharge of 1,500 AF in Alternating Years

\title{
List of Charts \\ Chart E1 1994-2009 Observed and Simulated Groundwater Elevations, Well BDVWA 1 \\ Chart E2 1994-2009 Observed and Simulated Groundwater Elevations, Well BDVWA 2 \\ Chart E3 1994-2009 Observed and Simulated Groundwater Elevations, Well BDVWA 3 \\ Chart E4 1994-2009 Observed and Simulated Groundwater Elevations, Well BDVWA 4 \\ Chart E5 1994-2009 Observed and Simulated Groundwater Elevations, Well BDVWA 6 \\ Chart E6 1994-2009 Observed and Simulated Groundwater Elevations, Well BDVWA 7 \\ Chart E7 1994-2009 Observed and Simulated Groundwater Elevations, Well BDVWA 8 \\ Chart E8 1994-2009 Observed and Simulated Groundwater Elevations, Well BDVWA 9 \\ Chart E9 1994-2009 Observed and Simulated Groundwater Elevations, Well HDWD 24 \\ Chart E10 1994-2009 Observed and Simulated Groundwater Elevations, Well CSA 1 \\ Chart E11 1994-2009 Observed and Simulated Groundwater Elevations, Well CSA 2 \\ Chart E12 1994-2009 Observed and Simulated Groundwater Elevations, Well 2N1 \\ Chart E13 1994-2009 Observed and Simulated Groundwater Elevations, Well USGS Monitoring \\ Chart E14 1994-2009 Observed and Simulated Groundwater Elevations, Well Gubler 1K1 \\ Chart E15 1994-2009 Observed and Simulated Groundwater Elevations, Well Gubler 1G1
}

\section*{List of Attachments}

Attachment CD of Pipes/Reche MODFLOW and GMS Model Files

\section*{E1. INTRODUCTION}

This appendix to the Reche Spreading Grounds Recharge Feasibility Study Report (Feasibility Study report) and Groundwater Management Plan for the Ames Groundwater Basin, Pipes and Reche subbasins (GMMP) documents the construction and results of a water balance and numerical groundwater flow model used to assist in estimation of basin sustainable yield, characterization of groundwater flow conditions, and evaluation of recharge basin feasibility.

\section*{E1.1 Model Objectives}

The objectives of the groundwater flow model are to 1) aid in characterization and evaluation of groundwater flow conditions (sources, sinks, flow rates and directions) in the Pipes and Reche groundwater subbasins and adjacent areas where BDVWA and others operate groundwater supply wells, 2) evaluate hydraulic impacts (water table mounding, groundwater flow paths) associated with future operation of the proposed Reche groundwater recharge spreading basin, and 3) evaluate sustainable yield of the Reche subbasin in support of the focused groundwater management plan and Amendment to the Water Agreement between BDVWA, Hi-Desert Water District (HDWD), and Mojave Water Agency (MWA).

\section*{E1.2 Model Approach and Scope}

The numerical model simulates steady-state and transient groundwater flow in the Pipes and Reche subbasins. Groundwater recharge rates via subsurface inflow from Antelope Creek/Pipes Wash, Whalen's Wash, Ruby Mountain Wash, and distributed mountain-front recharge were estimated, along with rates of return flow from septic systems. Groundwater outflow via wells was defined based on metered pumping rates, and subsurface outflow from the Reche subbasin to the Giant Rock subbasin was simulated. After calibration, the model was used to predict water table mounding beneath the recharge basin, drawdown around nearby water supply wells, and flowpaths through the subbasins, across major geologic faults, from the recharge basin, and to the production wells.

The model was constructed using the United States Geologic Survey (USGS) numerical finitedifference codes MODFLOW and MODPATH. MODFLOW was selected for its usability, accuracy, efficiency and transportability. In particular the transportability of the public domain MODFLOW program and site model input files are advantageous for future site modeling. MODFLOW files have been provided to BDVWA and can be run without any proprietary software. Model construction and calibration was performed using the Groundwater Modeling System (GMS) v7.1 which pre-processes and post-processes MODFLOW and MODPATH files. Most of the input data were constructed and stored in GMS "GIS", "Map", "Scatter Point" and "2D Grid" modules. GMS software is not required to run the MODFLOW model. The MODFLOW

2000 files created by GMS also can be imported to other commercial MODFLOW software such as Visual MODFLOW or Groundwater Vistas with minor modification, or run using only executable MODFLOW and MODPATH codes.

Critical input parameters and controls on flow include water-budget components (inflows, outflows, and changes in storage), along with aquifer hydraulic properties (aquifer geometry and hydraulic properties of the alluvium and faults). The model inflows and outflows are based on an updated and refined water balance for the Pipes and Reche subbasins. The water balance was developed using available data and methodologies including those previously documented in the Basin Conceptual Model and Assessment of Water Supply and Demand for the Ames Valley, Johnson Valley, and Means Valley Groundwater Basins (Todd Engineers, 2007). This previous water balance was developed for the combined Ames Valley groundwater basin for the period 1990 through 2000. For this evaluation, the water balance period was extended through water year 2008-2009 (period ending September 30, 2009). Estimates for some key water balance components (including subsurface inflow and septic return flow) were refined. Each element of the water balance was evaluated independently, including inflows (e.g., recharge from rainfall resulting in subsurface inflow from Antelope Creek/Pipes Wash, Whalen's wash, and Ruby Mountain Wash, and septic return flows), and outflows (e.g., subsurface outflow, groundwater pumping). As part of the development of the GWMP, basin perennial yield was calculated and used in support of the Water Agreement Amendment.

The groundwater model domain and boundaries are shown on Figure E1. The active model area includes all of the Pipes and Reche subbasins, and a portion of the Giant Rock subbasin. The model domain also includes the proposed Reche spreading grounds recharge site and nearby BDVWA, HDWD, and San Bernardino County Service Area No. 70 W-1 (CSA No. 70 W1) water supply wells.

Hydraulic properties including permeability of basin alluvium and geologic faults, aquifer thickness, and storage coefficients were simulated appropriately across the model area. Appropriate boundary conditions were selected based on the water balance and observed groundwater elevations.

The model was calibrated to observed historical water levels between 1994 and 2009. The calibration process includes trial and error adjustment of input parameters and auto-calibration using the Parameter Estimation (PEST) computer code. Once calibrated, flow paths and travel times between the recharge site and downgradient areas, including production wells, were simulated using anticipated recharge and pumping rates and schedules. Forward flowpaths were simulated to evaluate groundwater flow directions and rates from recharge site to the production wells and outflow boundaries, and reverse flowpaths were simulated to identify capture zones of the existing production wells.

\section*{E2. MODEL INPUT AND CALIBRATION}

This section documents the approach and input parameters used to calibrate the groundwater flow model. Existing data were used to formulate the initial model input parameters. As described below, initial estimates of some input parameter values were modified during model calibration. Some input parameters, including extraction well pumping rates and water use/septic return flows, were defined on the basis of site measurements or estimates and were not varied for most of the model simulations. Other parameters, including aquifer hydraulic conductivity and boundary conditions, were adjusted within defined ranges to achieve model calibration.

\section*{E2.1 Calibration Process and Criteria}

Model calibration was accomplished by defining and achieving quantitative and semiquantitative calibration goals or targets. Calibration was assessed through evaluation of residuals, or the difference between observed and simulated groundwater elevations (heads), hydraulic gradient directions, and volumetric flow rates. For the steady-state site models constructed to simulate 1994 (wet) and 2007 (dry) conditions, head residuals were calculated for wells located throughout the Pipes and Reche subbasins. For the transient calibration period of 1994 to 2009, residuals were calculated in both space and time. Error residuals at each point were averaged in a variety of ways and statistical parameters including mean error and root mean squared error were calculated.

Criteria as were defined to evaluate the quality of model calibration. The two criteria used were the ASTM-recommended Root Mean Square (RMS) head residual error of less than ten percent of the model area groundwater elevation range and a mean error residual of less than five percent. The calibration criteria for the Pipes-Reche model are an RMS of 100 feet and Mean Error of 50 feet. This corresponds to a water table elevation range of about 3,600 feet above mean sea level (feet msl) where Pipes Wash enters Pipes Subbasin and 2,600 feet msl in the western portion of Giant Rock Subbasin.

\section*{E2.1.1. Historical Calibration Periods}

Both transient and steady-state models were constructed for calibration. The transient model included 180 monthly stress periods between October 1994 and September 2009. Steady-state models were also constructed and calibrated to reflect "average" groundwater flow conditions. To simulate the variability in hydrologic conditions at the site, steady-state models were constructed to simulate two different historical periods, Water Year (WY) 1994 and WY 2007. WY 1994 represents peak "wet" or "high groundwater" conditions, based on several years of above-average rainfall and associated recharge rates preceding this period, high pumping rates,
and peak historical groundwater elevation conditions, based on water level hydrographs. WY 2007 represents "dry" or "low groundwater" conditions after several below-average rainfall years between late 2005 and 2007. Models were calibrated to both 1994 and 2007 conditions by adjusting hydraulic conductivities and boundary conditions. The transient calibration simulated changes in groundwater elevations over time, and presentation of the calibration results in this Appendix focuses on this transient simulation.

\section*{E2.1.2. Water Level Calibration Data}

Available water level data were reviewed to define a set of wells used for model calibration.
Figure E2 shows the location of wells used to assess model calibration. The observed water level calibration data set includes most of the existing active production wells and a few dedicated monitoring wells. As shown in the figure, the spatial distribution calibration wells is favorable considering calibration wells are located both in the upgradient and downgradient portions of the Pipes and Reche subbasins.

\section*{E2.1.3. Calibration Approach}

The model was constructed and calibrated using both trial-and-error and PEST auto-calibration methods. Initial model construction and calibration runs were based on estimated input parameter values. Boundary conditions were developed based on observed groundwater elevations and estimated fluxes through Pipes, Whalen's, and Ruby Mountain washes. Minor modifications to the flux boundary locations and rates were made during calibration. Estimates of groundwater recharge from septic return flow were developed from water use data over time and a consumption factor for each land parcel. Estimated recharge from septic return was not adjusted during calibration. Initial estimates of hydraulic conductivity and aquifer storage coefficients were developed based initially on aquifer pumping test results and subsequently modified based on initial calibration and PEST results. Production well pumping rates were not adjusted during calibration runs.

Several parameter estimation simulations were performed using PEST simulating steady-state 1994 and 2009 conditions and a transient period of 1994 through 2009. The parameters selected for inversion were hydraulic conductivity and specific storage. PEST simulations inverted all polygons for hydraulic conductivity and specific storage simultaneously, with the exception of a polygon between the recharge site and Production well HDWD No. 24, which was assigned a fixed hydraulic conductivity value based on the constant-rate pumping test performed in October 2010. Minor hand adjustments of PEST-calculated conductivities were made for the final calibration. Results of the PEST simulations and final calibration are discussed in Section E3.0.

\section*{E2.2 Model Domain and Discretization}

The MODFLOW model simulates groundwater flow in a defined area and solves the governing equations controlling groundwater flow using the finite-difference method. For this numerical method, a rectangular grid of model cells is constructed, and hydraulic head is calculated at each grid cell.

\section*{E2.2.1. Model Area and Grid}

The Pipes/Reche subbasin active model domain includes the area bounded by:
- The valley floor at the base of the mountain front to the west;
- An east-west trending arc to the north coinciding with a broad bedrock high and thin saturated aquifer thickness in the northern portion of the Pipes and Reche subbasins;
- An arc east of the Homestead Valley Fault within the Giant Rock subbasin to the east
- A southwest-northeast trending arc beneath the Mesa area (southeast of Pipes Wash) where the alluvial aquifer becomes unsaturated.

A uniform row and column grid spacing of 100 feet was used. The model comprises 430 rows by 387 columns. A single MODFLOW layer represents the alluvial aquifer.

\section*{E2.2.2. Model Depth}

The model grid was constructed using the MODFLOW Layer Property Flow (LPF) Package and a "true layer" approach, with defined aquifer bottom elevations. Figure E3 illustrates the geometry of the base of the alluvial aquifer. The bedrock contact surface dips to the east from elevations of around 3,400 feet msl at the edge of the valley at the base of the mountains to elevations of around 2,600 feet in the thickest portions of the alluvial basin. A shallow bedrock ridge occurs beneath the Mesa area with alluvium-bedrock contact elevations of around 3,500 feet msl in the southwestern portion of the model to around 3,000 feet msl in the southeastern portion. A broad shallow bedrock ridge also occurs along the northern model boundary in the northern portion of the Pipes and Reche subbasins. The modeled bedrock elevation in the western portion of the Giant Rock Subbasin is around 2,500 feet msl. A bedrock surface discontinuity of 200 feet was simulated across the Homestead Valley Fault separating the Reche and Giant Rock subbasins.

\section*{E2.3 Boundary Conditions}

Figure E4 shows the model boundary condition locations and types. The Pipes/Reche groundwater model includes the following boundary conditions:
- Lateral time-varying specified fluxes via arcs across Pipes Wash, Whalen's Wash, Ruby Mountain Wash, and along the valley-mountain front boundary to the west;
- Lateral specified flux (no-flow) boundaries representing 1) the broad bedrock ridge and thin saturated aquifer thickness to the north and 2) shallow bedrock ridge beneath the Mesa area (southeast of Pipes Wash) where the alluvial aquifer becomes unsaturated to the south;
- A lateral general head boundary east of the Homestead Valley Fault within the Giant Rock groundwater basin to the east;
- Time varying specified flux boundaries via the top of the model representing aerial recharge from septic return flow;
- A specified flux (no flow) boundary at the base of the model.

For the specified flux boundaries (subsurface inflow and return flow), monthly rates were estimated and used in the transient flow model. The following sections describe quantification of the boundary flux rates and heads used in the mathematical model.

\section*{E2.3.1. Western Specified Flux Boundaries}

The principal source of natural groundwater recharge to the Pipes and Reche subbasins is the subsurface inflow of groundwater through the alluvium within Pipes Wash, Whalen's Wash, and Ruby Mountain Wash. This groundwater inflow originates from runoff of rainfall in the San Bernardino Mountains and recharge to the alluvium in the wash channel valleys east of the Pipes Subbasin. Runoff from rainfall infiltrates through the vadose zone to the water table prior to entering Pipes Subbasin as subsurface inflow mainly through the three major drainages entering the valley. Subsurface inflow rates from bedrock along the rest of the mountain-front are unknown, but the amount is assumed to represent a small portion of subsurface inflow, as discussed below.

Direct recharge from rainfall on the basin floor is assumed to be negligible given the small amounts of rainfall on the valley floor, deep water table, and high evapotranspiration rates. Intermittent flash flooding through Pipes Wash, Whalen's Wash, Ruby Mountain Wash and other drainage pathways occasionally brings water into and through the valley floor, but for the purposes of this analysis, the net amount of stormwater recharging groundwater is assumed to be negligible.

Figure 3 in the Feasibility Study report shows the contributing watershed area and annual rainfall isohyets for the model flux boundaries. The contributing watershed area is divided into three major drainages. Antelope Creek (tributary to Pipes Wash) has the largest contributing catchment area to the basin, representing over 60 percent of the overall contributing watershed
\begin{tabular}{lrr}
\hline Bighorn-Desert View Water Agency & Todd Engineers \\
Recharge Feasibility Study & Page 6 & February 2011 \\
Appendix F Groundwater Flow Model & &
\end{tabular}
area. Whalen's Wash and Ruby Mountain Wash to the north have smaller catchment sizes and lower average annual rainfall rates.

Based on a focused study of the watershed area and groundwater flow rates through Whalen's Wash and Antelope Creek/Pipes Wash, average natural subsurface inflow to the Pipes Subbasin is estimated at 2 percent of rainfall in the contributing watershed area. This average rainfall-recharge ratio is the basis for the boundary condition flux rates developed for the model.

Based on a 20-year study period from water year (WY) 1989-1990 to WY 2008-2009, the average annual recharge from rainfall for the Pipes Subbasin is 668 acre-feet per year (AFY). The Antelope Creek Catchment is the largest contributor of recharge (472 AFY), followed by Whalen's Wash (127 AFY), and Ruby Mountain Wash (69 AFY).

In order to vary the amount of natural subsurface inflow to the model boundary over time, precipitation over time across the contributing watersheds was calculated based on data from the rainfall gage at Big Bear and the average annual precipitation isohyetal map (Figure 3 in the Feasibility Study report). The Big Bear rainfall gage has been active since July 1960. Average annual precipitation for Water Year (WY) 1960-61 through WY 2008-2009 for the Big Bear gage is 21.60 inches. To estimate monthly rainfall in which precipitation at the Big Bear gage was not reported, the average relative monthly precipitation between the Big Bear gage and Lake Arrowhead gage was applied to Lake Arrowhead gage data for that month. Note that average annual rainfall in the contributing watershed areas of the three major drainages to the Pipes Subbasin is much lower than rainfall reported at the Big Bear gage, ranging from 8.54 inches for Antelope Valley (Pipes Wash), 6.35 inches for Whalen's Wash, and 5.39 inches for Ruby Mountain Wash.

To estimate annual recharge from rainfall over varying climatic conditions, the ratio of annual rainfall at the Big Bear gage to the long-term average annual rainfall at the Big Bear gage was applied to the average annual rainfall for the contributing watershed (based on spatial analysis of the isohyetal map) multiplied by 2 percent.

Additionally, for any given period, the percentage of rainfall that represents runoff is expected to be positively related to the rainfall amount (i.e. less than 2 percent runoff is expected when rainfall is below normal, while greater than 2 percent runoff is expected when rainfall is above average). To account for this variability, a variable runoff factor ranging from 0.5 percent (applied to years when annual rainfall at the Big Bear gage is less than 10 inches) up to 3.0 percent (for years when annual rainfall is 30 inches or greater) was applied to rainfall in the contributing catchment areas. The weighted-average runoff factor of 2 percent was maintained over study period.

To account for the vadose and saturated zone travel time and time lag for recharge entering the Pipes Subbasin as subsurface inflow, monthly rainfall reported at the Big Bear rainfall gage was compared with groundwater elevations in Well 1N/5E-2N1, located along Pipes Wash near the intersection of Pipes Wash and Highway 247 (Figure E2). Figure E5 shows that groundwater levels in Well 1N/5E-2N1 respond gradually to significant rainfall events in the San Bernardino Mountains and continue to do so for up to 2 years before receding. This process reflects the capacity of the alluvial materials to detain runoff generated in the contributing watersheds of the major drainages upgradient of the modeled area. For the model, a retention time was developed to "lag" and re-distribute the subsurface inflow over time. To simulate this process in the MODFLOW model, the effective monthly subsurface inflow rate was calculated by lagging rainfall amounts by one year and applying a detention coefficient of 0.90. A lag of one year combined with a detention coefficient of 0.90 was found to best simulate the effective subsurface inflow rate over the model period. Figure E5 shows the effective subsurface inflow rates for Antelope Creek/Pipes Wash using the method described above compared to groundwater levels in Well 1N/5E-2N1. Table E1 shows the effective annual subsurface inflow rates for all three of the major drainages in the model (Flux Arcs 2, 5, and 9).

A small portion of the total estimated subsurface inflow for each period was redistributed along the mountain-front arc segments between the three washes (see Figure E6 for final specified flux arc boundary locations). Again, the overall total subsurface inflow flow was maintained at 2 percent of rainfall. During calibration, the amount re-allocated to mountain-front recharge was varied, and ultimately 10 percent was used in the final calibrated model.

The annual flux rates used for each specific flux boundary arc are tabulated in Table E1. The average total model influx through Pipes Wash, Whalen's Wash, Ruby Mountain Wash, and mountain front arcs for the simulated period from WY 1994-95 to WY 2004-05 was 796 AFY, of which 703 AFY represents the influx through the main washes, 61 AFY represents the influx through mountain flux arcs, and 31 AFY represents return flows from parcels west of the flux arc boundaries (see Section E2.3.4. for additional discussion on return flows). It is noted that the estimated natural inflow ( 764 AFY) for the transient model period (WY1994-95 to WY 2004-05) is slightly higher than the average annual recharge estimated for the 20-year study period (WY 1989-1990 to WY 2008-2009) in the basin conceptual model report (Todd Engineers, 2007). This is due primarily to the modeled detention/lag of rainfall runoff generated during the winter storms of 1992/1993.

\section*{E2.3.2. Northern and Southern No-Flow Boundaries}

Portions of the alluvial aquifer beneath the Mesa separating the Pipes/Reche subbasins from the Copper Mountain Subbasin to the south and in the northern portion of the Pipes/Reche subbasins are thinly saturated to unsaturated (the water table occurs below the
alluvium/bedrock contact). The location of these unsaturated areas were determined based on comparisons of the water table and bedrock elevation surfaces and defined in the MODFLOW model as no-flow boundaries (Figure E4).

\section*{E2.3.3. Eastern General Head Boundary}

Figure E4 shows the location of a constant-head boundary arc used along the eastern model boundary in Giant Rock Subbasin. A constant head of 2,600 feet above mean sea level (feet msl ) was defined along the arc based on groundwater elevations measured in the subbasin. The location of the boundary head arc and elevation value was based on a regional groundwater elevation map (Figure 4 in the Feasibility Study report).

\section*{E2.3.4. Return Flow Recharge Boundary}

In addition to natural runoff from rainfall, inflow to the groundwater basin occurs via return flow from septic tanks. Return flows in the Pipes and Reche subbasins were simulated as a timevarying recharge boundary at the top of the model using the MODFLOW recharge package Water use over time for each BDVWA water customer and estimated net septic return flow rates were analyzed to accurately simulate the rate and distribution of aerial recharge.

Monthly water use rates for each assessor parcel number for the period 1995-2009 was obtained from BDVWA. Figure E7 shows the locations of the BDVWA water customer parcels and recharge areas. Monthly water use rates were converted to recharge rates using a consumptive use factor of 20 percent, or a return flow rate of 80 percent of water use. The relatively high consumptive use factor was selected, since water use in the area is predominantly indoor, and because water use as metered at each customer site is considered under-reported by 10 to 20 percent by BDVWA. Historic water use of HDWD customers in the Mesa area was not available for this study but is relatively small compared to natural recharge estimates and water use of BDVWA customers in the study area.

To account for travel time from the near-surface septic systems to groundwater, the vadose zone flow model CHEMFLO \({ }^{\text {TM }}\)-2000 (USEPA, 2003) was used. Input parameters for the vadose zone model include soil hydraulic properties, initial soil water conditions, and assignment of appropriate boundary conditions at the top and bottom of the soil profile. A vertical hydraulic conductivity of 3 centimeters per hour ( \(\mathrm{cm} / \mathrm{hr}\) ) (or about 2.4 feet per day) was selected for use in the model. This was initially based on an average horizontal hydraulic conductivity of about 30 \(\mathrm{cm} / \mathrm{hr}\) (or about 24 feet per day) for existing wells in the Pipes and Reche subbasins and an assumed 10-to-1 ratio for horizontal-to-vertical hydraulic conductivity. The estimate is on the lower end of the range of vertical hydraulic conductivities from soil cores collected from the recently installed monitoring well (MW1) in Pipes Wash. Other required soil hydraulic properties for the model (vanGenuchten coefficients) are provided in CHEMFLO for various soils. These

\footnotetext{
Bighorn-Desert View Water Agency
}
hydraulic properties were estimated based on interpolation between sandy loam and loam soils with vertical hydraulic conductivity of 4.0 and \(1.0 \mathrm{~cm} / \mathrm{hr}\), respectively. The hydraulic boundary condition at the point of applied water was simulated by applying a soil matric potential of zero at the top of the soil profile (i.e., saturated conditions). This approach assumes that the amount of indoor water use by parcel is positively correlated with the number of septic tanks required to treat the water (i.e., as such, vadose zone travel times are considered similar for smaller and larger water use parcels). A uniform volumetric water content of 11 percent (matric potential of -300 mm ) was assigned to the soil profile to simulate initial conditions, and a free drainage boundary condition was applied to the bottom of the soil profile.

Results of the vadose zone model were applied to the average depth to water beneath all return flow parcels in the model area ( 233 feet below ground surface) to estimate the average travel time of septic return flows through the vadose zone. Results of the model suggest that return flows require an average of about one year to travel through the vadose zone. Accordingly, return flow rates for each parcel were lagged by one year prior to introducing recharge to the MODFLOW model. Field and laboratory confirmation of vadose zone hydraulic properties are needed to further refine estimated vadose zone travel times. However, for the purposes of the groundwater model, the one-year travel time is considered reasonable.

Time-varying recharge rates were used during the transient model simulations. For the steadystate simulations representing 1994 and 2007 conditions, representative return flow rates corresponding to the average rate over the three-year period prior to and during the calibration period were used. Figure E8 shows the average return flow recharge rates by parcel over time.

\section*{E2.4 Groundwater Production}

Groundwater pumping from all existing BDVWA, HDWD, and CSA No. 70 W-1 production wells were simulated using the MODFLOW Well Package. Production well locations are shown on Figure E7. Time-varying pumping rates were used during the transient model simulations. For the steady-state simulations representing 1994 and 2007 conditions, representative flow rates corresponding to the average rate over the three years period prior to and during the calibration period were used. Pumping rates are tabulated and plotted in Table E2 and Figure E9.

\section*{E2.5 Aquifer Hydraulic Properties}

The model grid and aquifer hydraulic properties were simulated using the LPF Package. Heterogeneous hydraulic conductivities were assigned to polygons representing wash and nonwash areas and fault zone hydraulic barriers. Based on evaluation of the aquifer pumping test results and geologic mapping of alluvium, the aquifer permeability distribution appears to be controlled by the extent of relatively high permeability alluvium in the wash areas, and by the faults crossing the study area, which represent partial barriers to groundwater flow. Therefore,
\begin{tabular}{lrr}
\hline Bighorn-Desert View Water Agency & & Todd Engineers \\
Recharge Feasibility Study & February 2011
\end{tabular}
hydraulic conductivity polygons were constructed to represent the more permeable areas along Pipes Wash, Whalen's Wash, and Ruby Mountain Wash, the areas between the washes, and the fault zones. Figure E10 shows the polygon distribution.

Initial values of hydraulic conductivity were developed based on the mapped distribution of geologic materials and aquifer pumping testing data and were adjusted during model calibration. Analysis of existing pumping test data was performed in the 2007 study of the Ames Basin. In addition, a constant-rate pumping test of Well HDWD 24 was performed in October 2010, and the results of this test were applied in the vicinity of Well HDWD 24.

During model calibration, trial-and-error and PEST simulations were performed and permeabilities for the alluvium and faults were adjusted relative to the initial estimated values. The following Sections discuss the initial and final simulated properties of the alluvium and fault barriers.

\section*{E2.5.1. Alluvium Hydraulic Properties}

Forty-four permeability polygons were ultimately used to simulate the alluvium and faults. The polygons were constructed on the basis of the mapped distribution of the wash and non-wash areas, with the wash areas assumed to have the highest permeabilities. During calibration, additional polygons were constructed to provide detail and flexibility to increase calibration quality. For the initial model setup and runs, relatively higher permeabilities of 20 to 100 feet per day were assigned to wash areas and lower permeabilities of 10 feet per day were assigned to areas between the washes.

Based on the results of the pumping test performed on HDWD 24, the hydraulic conductivity polygon representing the eastern portion of Pipes Wash between the proposed recharge site and HDWD 24 was assigned a fixed hydraulic conductivity of 150 feet per day (ft/day). Hydraulic conductivities for all other polygons were optimized using PEST. Figure E10 shows the final hydraulic conductivities used in the calibrated model. In general, the final hydraulic conductivity values used in the model are consistent with the site conceptual model with higher permeability in the washes and lower permeability in non-wash (more clay-rich) areas. The PEST results are also consistent with the range of hydraulic conductivities estimated from reported production well specific capacities. The highest permeabilities were simulated in the wash channels. Lower hydraulic conductivities were calculated for non-wash areas. The simulated hydraulic conductivity values are consistent with the site conceptual model and available aquifer property data.

\section*{E2.5.2. Fault Barrier Hydraulic Properties}

Narrow hydraulic conductivity polygons were constructed to simulate the fault barriers including the Johnson Valley Fault and Pipes Barrier, separating the Pipes and Reche subbasins, and the Homestead Valley Fault, separating the Reche and Giant Rock subbasins (Figure E10). Hydraulic conductivity zones were used to represent the fault barriers (rather than the MODFLOW Horizontal Flow Barrier Package), because the polygons better represented the multiple en-echelon fault splays associated with each fault zone rather than a single fault alignment. Horizontal hydraulic conductivities for the fault polygons calculated by PEST ranged from 0.0012 to 100 feet/day. Higher permeabilities were estimated for the Johnson Valley Fault segment crossing Pipes Wash than for the other fault segments. These results are consistent with the site conceptual model, which indicates significant groundwater flow occurs through the Pipes Wash area, while more resistance to flow is created by the Pipes Barrier, just west of the proposed recharge site.

\section*{E2.5.3. Aquifer Storage Properties}

For the transient flow simulations, specific storage was defined to account for release of water from aquifer storage. Specific storage is equivalent to the aquifer storage coefficient divided by the aquifer thickness. For the preliminary simulations, a uniform specific storage of \(0.001 \mathrm{ft}^{-1}\) was used. During the transient PEST simulation, an optimal specific storage of 0.0021 foot \(^{-1}\) was estimated. Although the aquifer saturated thickness varies, on average it is around 150 feet, which yields a storage coefficient of approximately 30 percent.

\section*{E3. MODEL RESULTS}

This section presents the model results, including calibration quality, simulated groundwater elevations, volumetric mass budgets for the model inflow and outflow components, and flowpath results. The results presented in this Section focuses on the 1994 through 2009 transient calibration.

The final model was developed after calibration runs based on the initial results and modified based on observed model response to input parameter changes. After construction and specification of model depth, boundaries, pumping well flow rates, and septic return flows, the PEST program was used to adjust net hydraulic conductivities and specific storage. For the 1994-2009 auto-calibration run, hydraulic conductivities and specific storage values were optimized with good results. Final manual adjustments were then made to some of the parameter values, including certain hydraulic conductivity zones.

Over the course of model development, numerous modifications of the values and distribution of input parameters were made in attempts to improve model calibration. Due to uncertainties in the actual distribution of hydraulic conductivity, and the inherent limitations of groundwater model approximations, perfect calibration in space and time is difficult or impossible to achieve. However, the Pipes/Reche MODFLOW model was reasonably well calibrated with respect to observed and simulated groundwater elevations in both space and time.

\section*{E3.1 Calibration Results}

To assess model accuracy, simulated heads were compared with observed heads. Model calibration also focused on simulating flow through the groundwater subbasins in accordance with the basin conceptual model. The final calibrated models simulate flow conditions which are consistent with the basin conceptual model.

Charts E1 through E15 present observed versus simulated groundwater elevations between 1994 and 2009. As illustrated on the charts, the simulated and actual groundwater elevations and fluctuations over time are well-correlated. In particular, the overall water-level declines observed in many of the wells between 1994 and 2009 accurately simulated.

Observed and simulated heads at each calibration point were compared and calibration was assessed quantitatively through head residuals. Overall calibration of the model meets the calibration criteria defined in Section 2.0. As shown on Table E3, correlation between observed and simulated heads is good. The mean head residual and RMS error are significantly less than the ASTM guideline of five and ten percent of the model area groundwater elevation range.

Because the simulated groundwater elevations across the study area are well calibrated with observed elevations in both space and time, the model calibration is judged to be acceptable.

Accordingly, the model can be applied confidently to assess groundwater flow paths and flow rates and used to predict effects of recharge at the proposed spreading grounds.

\section*{E3.2 Simulated Heads}

Model-simulated groundwater elevation contour maps and charts of observed and simulated elevations over time were constructed (Figures E11 and E12). For the 1994 through 2009 transient calibration, simulated groundwater elevations within the entire model domain range from around 3,600 feet above mean sea level (feet msl) at the eastern flux boundary in Pipes Wash to 2,600 feet msl in Giant Rock Subbasin.

The final calibrated model simulates flow conditions that are consistent with the basin conceptual model. Groundwater inflow occurs via the western boundary conditions along the mountain front. Within the model area, the groundwater elevation contour patterns reflect the boundary conditions, recharge sources and pumping sinks, and permeability zones, which cause changes in gradient magnitudes and directions. The low-permeability zones associated with the fault barriers result in groundwater elevation drops across the faults, particularly across the Pipes Barrier, where the water table difference across the fault is about 100 feet.

Groundwater elevation contour patterns for 1994 (Figure E11) are generally similar to patterns for 2009 (Figure E12), but 2009 groundwater elevations are lower reflecting the observed declines in basin wells. Figure E13 shows the simulated differences in groundwater elevations between 1994 and 2009. In the area of the proposed Reche spreading grounds, water levels declined between 20 and 30 feet from 1994 to 2009.

\section*{E3.3 Flowpath Results}

Using the calibrated model, forward and reverse flowpaths were simulated using the USGS particle track code MODPATH. MODPATH uses flow budget files generated by MODFLOW and calculates groundwater flow paths and travel times for particles in the groundwater flow system. MODPATH was used to determine ultimate discharge points for particles entering the groundwater system as recharge as well as the capture zones of production wells. Forward flowpaths were simulated by generating single particles in selected individual model cells along the western model boundaries, which move advectively through the flow field. Reverse flowpaths were simulated by generating a series of particles in an arc around each pumping well which move advectively backward through the flow field to the sources of inflow contributing to the extraction point.

Figure E14 shows the forward flowpaths for particles generated along the western model boundaries. Forward particles track through the flow field and ultimately discharge to the production wells or into the Giant Rock Subbasin. Most of the flowpaths originating along the
mountain front between Pipes and Ruby Mountain washes are captured by BDVWA production wells \(2,3,4\), and 8 . The sources of water pumped from BDVWA wells 6,7 , and 9 include both inflow from Ruby Mountain Wash and adjacent mountain-front areas and septic return flows. The sources of water to production wells HDWD 24 and CSA No. 70 W-1 1, 2, and 3 are inflow via Pipes Wash and septic return flows. Figure E15 shows reverse track flowpaths or "capture zones" of the production wells.

\section*{E3.4 Water Balance and Volumetric Fluxes}

Volumetric inflow and pumping data used as model input and subsurface outflow and change in storage rates generated by MODFLOW were plotted and evaluated to determine the magnitudes of water balance components within the model domain. Tables E4 and E5 summarize the annual and cumulative water balance results for the 1994-2009 transient simulation; water balance components over time are charted on Figure E16. The overall water balances for the model simulation had very low net error, and the magnitudes of inflows (through recharge and boundary conditions) and outflows (through boundaries and wells) are consistent and in accordance with the rates assigned in the basin conceptual model.

\section*{E3.5 Predicted Mounding and Flowpaths from Reche Spreading Grounds}

To determine the fate of water recharged via the proposed spreading grounds, additional MODFLOW and forward MODPATH simulations were made using a future recharge scenario of three recharge events of 1,500 AF recharged over 6 months in alternating years. A six-acre recharge area was simulated in Pipes Wash, and transient flow was simulated in response to the multiple recharge events. Groundwater elevations and flowpaths were simulated over time and used to assess performance of the recharge facility and groundwater basin response.

For a surface recharge project, water levels rise beneath the recharge area creating a groundwater mound. The height and lateral extent of the mound varies over time as a function of aquifer hydraulic properties, recharge rate, and recharge area. The development of a groundwater mound beneath the spreading grounds was evaluated using the MODFLOW model. The model estimates the groundwater elevations and corresponding height of the groundwater recharge mound as a function of time and distance from the recharge area.

The calculated shape of the mound at the end of the first six-month recharge period is illustrated on Figure E17. The mound height directly beneath the spreading grounds over time is illustrated on Figure E18. As shown on the figures, the maximum mound height beneath the spreading grounds is approximately 19 feet after the first six-month recharge period, 20 feet after the second six-month recharge period, and 22 feet after the third six-month recharge period. Groundwater levels are expected to increase 1 foot or more up to 8,000 feet to the northwest of the spreading grounds. As shown on Figure 15, water levels contours stack up against Pipes
\begin{tabular}{llr}
\hline Bighorn-Desert View Water Agency & & Todd Engineers \\
Recharge Feasibility Study & Fage 15 & February 2011
\end{tabular}

Barrier due to the low permeability of the fault zone. The predicted maximum groundwater level rise is approximately 5 feet at HDWD 24 (4,300 feet from the center of the spreading grounds).

To assess the fate of recharged water, MODPATH particles were started at the water table beneath the spreading grounds and forward-tracked to their downgradient discharge locations. Figure E19 shows the simulated groundwater flowpaths from the Reche Spreading Grounds after three 6 -month recharge events. As shown on the figure, recharge water diverges radially away from the recharge area before trending northeast in the general direction of HDWD 24. The travel time between the recharge site and HDWD 24 is approximately 2 to 3 years.

\section*{E4. REFERENCES}

Kennedy/Jenks/Todd LLC (2007) Basin Conceptual Model and Assessment of Water Supply and Demand for the Ames Valley, Johnson Valley, and Means Valley Groundwater Basins. April.

Lewis, R.E. (1972) Ground-water Resources of the Yucca Valley-Joshua Tree Area, San Bernardino County, California. USGS Open File Report.

United States Environmental Protection Agency (USEPA) (2003) CHEMFLO \({ }^{\text {TM }}\)-2000: Interactive Software for Simulating Water and Chemical Movement in Unsaturated Soils. National Risk Management Research Laboratory (by D.L. Nofziger and Jinqaun Wu, Department of Plant and Soil Sciences, Oklahoma State University).

\section*{Tables}

Table E1
Boundary Condition Specified Flux Rates
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \\
\hline Flux Arc & North of Ruby Mountain Wash (+ return flow) & Ruby Mountain Wash & \[
\begin{gathered}
\text { South of } \\
\text { Ruby Wash } \\
\text { (+ return flow) }
\end{gathered}
\] & North of Whalen's Wash (no return flow) & Whalen's Wash & South of Whalen's Wash (no return flow) & \begin{tabular}{l}
South of \\
Whalen's Wash (+ return flow)
\end{tabular} & \begin{tabular}{l}
North of Pipes Wash \\
(no return flow)
\end{tabular} & \begin{tabular}{l}
Pipes \\
Wash
\end{tabular} & Total Influx Western Model Boundary \\
\hline Water Year & & & & & & & & & & \\
\hline 1994-95 & 17 & 106 & 15 & 12 & 194 & 8 & 21 & 11 & 690 & 1,073 \\
\hline 1995-96 & 17 & 136 & 15 & 12 & 252 & 8 & 21 & 11 & 893 & 1,366 \\
\hline 1996-97 & 19 & 84 & 16 & 12 & 159 & 8 & 21 & 11 & 559 & 890 \\
\hline 1997-98 & 21 & 45 & 17 & 12 & 84 & 8 & 21 & 11 & 296 & 515 \\
\hline 1998-99 & 20 & 115 & 14 & 12 & 212 & 8 & 20 & 11 & 756 & 1,168 \\
\hline 1999-00 & 25 & 69 & 16 & 12 & 125 & 8 & 21 & 11 & 450 & 736 \\
\hline 2000-01 & 27 & 42 & 19 & 12 & 77 & 8 & 22 & 11 & 275 & 493 \\
\hline 2001-02 & 29 & 34 & 20 & 12 & 63 & 8 & 22 & 11 & 224 & 424 \\
\hline 2002-03 & 25 & 15 & 20 & 12 & 29 & 8 & 23 & 11 & 101 & 244 \\
\hline 2003-04 & 23 & 62 & 20 & 12 & 115 & 8 & 22 & 11 & 406 & 680 \\
\hline 2004-05 & 23 & 54 & 18 & 12 & 100 & 8 & 23 & 11 & 355 & 604 \\
\hline 2005-06 & 22 & 157 & 16 & 12 & 288 & 8 & 22 & 11 & 1,028 & 1,564 \\
\hline 2006-07 & 24 & 105 & 17 & 12 & 191 & 8 & 23 & 11 & 676 & 1,066 \\
\hline 2007-08 & 24 & 41 & 18 & 12 & 74 & 8 & 24 & 11 & 266 & 477 \\
\hline 2008-09 & 21 & 59 & 18 & 12 & 108 & 8 & 24 & 11 & 379 & 640 \\
\hline Average & 23 & 75 & 17 & 12 & 138 & 8 & 22 & 11 & 490 & 796 \\
\hline
\end{tabular}

Values in acre-feet

Table E2
Well Production
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{7}{|c|}{BDVWA} & HDWD & \multicolumn{3}{|c|}{CSA 70 W-1} & \multirow[t]{2}{*}{BDVWA Total} & \multirow[t]{2}{*}{\begin{tabular}{l}
HDWD \\
Total
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { CSA } 70 \mathrm{~W}-1 \\
\text { Total }
\end{gathered}
\]} & \multirow[t]{2}{*}{Total Well Production} \\
\hline & Well 2 & Well 3 & Well 4 & Well 6 & Well 7 & Well 8 & Well 9 & Well 24 & Well 1 & Well 2 & Well 3 & & & & \\
\hline Water Year & & & & & & & & & & & & & & & \\
\hline 1994-95 & 88 & 112 & 124 & 109 & 79 & 404 & 20 & 495 & 67 & 71 & 0 & 935 & 495 & 138 & 1,568 \\
\hline 1995-96 & 88 & 231 & 219 & 99 & 80 & 305 & 89 & 815 & 107 & 98 & 166 & 1,112 & 815 & 370 & 2,297 \\
\hline 1996-97 & 79 & 77 & 80 & 156 & 190 & 77 & 78 & 511 & 149 & 99 & 40 & 737 & 511 & 288 & 1,537 \\
\hline 1997-98 & 87 & 90 & 82 & 156 & 156 & 110 & 135 & 851 & 94 & 86 & 55 & 815 & 851 & 235 & 1,901 \\
\hline 1998-99 & 37 & 38 & 39 & 51 & - & 57 & 168 & 773 & 77 & 67 & 117 & 391 & 773 & 261 & 1,424 \\
\hline 1999-00 & 27 & 0 & 109 & 41 & 22 & 72 & 135 & 532 & 45 & 38 & 116 & 406 & 532 & 198 & 1,135 \\
\hline 2000-01 & 45 & 0 & 50 & 33 & 28 & 66 & 175 & 706 & 60 & 40 & 91 & 398 & 706 & 191 & 1,296 \\
\hline 2001-02 & 60 & 39 & 79 & 51 & 40 & 42 & 202 & 755 & 35 & 30 & 56 & 515 & 755 & 120 & 1,390 \\
\hline 2002-03 & 34 & 37 & 20 & 47 & 35 & 110 & 184 & 549 & 28 & 24 & 79 & 468 & 549 & 131 & 1,148 \\
\hline 2003-04 & 41 & 30 & 81 & 39 & 52 & 49 & 171 & 723 & 30 & 29 & 77 & 464 & 723 & 136 & 1,322 \\
\hline 2004-05 & 10 & 17 & 58 & 28 & 34 & 116 & 180 & 473 & 43 & 42 & 63 & 442 & 473 & 149 & 1,064 \\
\hline 2005-06 & 35 & 35 & 48 & 12 & 73 & 113 & 175 & 255 & 48 & 47 & 61 & 490 & 255 & 155 & 899 \\
\hline 2006-07 & 65 & 49 & 42 & 33 & 91 & 73 & 145 & 514 & 48 & 48 & 48 & 499 & 514 & 144 & 1,156 \\
\hline 2007-08 & 54 & 39 & 27 & 145 & 98 & 100 & 13 & 599 & 48 & 150 & 48 & 476 & 599 & 246 & 1,321 \\
\hline 2008-09 & 50 & 64 & - & 118 & 73 & 96 & 62 & 640 & 51 & 63 & 69 & 462 & 640 & 183 & 1,285 \\
\hline Average & 53 & 57 & 71 & 74 & 70 & 119 & 129 & 613 & 62 & 62 & 72 & 574 & 613 & 196 & 1,383 \\
\hline
\end{tabular}

Values in acre-feet
BDVWA = Bighorn-Desert View Water Agency
HDWD = Hi-Desert Water District
CSA 70 W-1 = San Bernardino County Service Area 70 W-1

Table E3
Model Calibration Summary
\begin{tabular}{|c|c|c|c|c|}
\hline Well & \begin{tabular}{c} 
Measured \\
Nov-1994 \\
Groundwater \\
Elevation \\
(feet msl)
\end{tabular} & \begin{tabular}{c} 
Measured \\
Sep/Oct-2009 \\
Groundwater \\
Elevation \\
(feet msl)
\end{tabular} & \begin{tabular}{c} 
Mean Error \\
Measured \\
minus \\
Simulated
\end{tabular} & \begin{tabular}{c} 
Root Mean Error \\
Measured \\
minus \\
Simulated
\end{tabular} \\
\hline BDVWA 1 & 3247.50 & \begin{tabular}{c} 
Dry
\end{tabular} & -0.60 & 2.35 \\
BDVWA 2 & 3245.48 & 3225.01 & -2.10 & 3.55 \\
BDVWA 3 & 3245.34 & 3224.84 & -2.55 & 3.77 \\
BDVWA 4 & 3245.17 & 3230.27 & -2.59 & 3.32 \\
BDVWA 6 & 2912.85 & 2895.05 & 2.20 & 4.40 \\
BDVWA 7 & 2913.88 & 2895.71 & 2.43 & 4.45 \\
BDVWA 8 & 3242.88 & 3222.28 & -2.26 & 4.22 \\
BDVWA 9 & 2923.47 & 2909.00 & 0.68 & 3.02 \\
HDWD 24 & 3009.00 & 2985.73 & -7.41 & 8.61 \\
CSA 70 W-1 1 & 2867.00 & 2834.00 & -9.37 & 10.80 \\
CSA 70 W-1 2 & 2867.50 & 2849.50 & -7.86 & 9.38 \\
1N/5E-2N1 & \(3462.73^{\text {a }}\) & 3465.52 & 7.83 & 16.79 \\
USGS Monitoring & 3246.80 & 3228.10 & -1.49 & 3.16 \\
Gubler Farm 1G1 & 2897.60 & 2906.10 & -0.23 & 1.87 \\
Gubler Farm 1K1 & 2897.60 & 2903.92 & -5.54 & 5.93 \\
\hline Average & & & -1.92 & 5.71 \\
\hline
\end{tabular}
\({ }^{\text {a }}\) May-1994 measurement

Table E4
Annual Water Budget
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Subsurface Inflow & Return Flow & Pumping & Subsurface Outflow \({ }^{1}\) & Annual Storage Change \\
\hline Water Year & & & & & \\
\hline 1994-95 & 1,051 & 204 & -1,568 & -579 & -834 \\
\hline 1995-96 & 1,344 & 204 & -2,297 & -579 & -1,270 \\
\hline 1996-97 & 864 & 238 & -1,537 & -579 & -955 \\
\hline 1997-98 & 486 & 240 & -1,901 & -579 & -1,695 \\
\hline 1998-99 & 1,144 & 243 & -1,424 & -579 & -557 \\
\hline 1999-00 & 705 & 268 & -1,135 & -579 & -682 \\
\hline 2000-01 & 456 & 297 & -1,296 & -579 & -1,063 \\
\hline 2001-02 & 382 & 293 & -1,390 & -579 & -1,234 \\
\hline 2002-03 & 207 & 304 & -1,148 & -579 & -1,157 \\
\hline 2003-04 & 645 & 270 & -1,322 & -579 & -927 \\
\hline 2004-05 & 570 & 265 & -1,064 & -579 & -749 \\
\hline 2005-06 & 1,534 & 252 & -899 & -579 & 367 \\
\hline 2006-07 & 1,033 & 273 & -1,156 & -579 & -370 \\
\hline 2007-08 & 442 & 295 & -1,321 & -579 & -1,104 \\
\hline 2008-09 & 608 & 273 & -1,285 & -579 & -925 \\
\hline Average & 765 & 261 & -1,383 & -579 & -877 \\
\hline
\end{tabular}

Values in acre-feet
\({ }^{1}\) Value represents average based on steady-state simulation
Table E5
Cumulative Water Budget
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Cumulative Subsurface Inflow & Cumulative Return Flow & Cumulative Pumping & Cumulative Subsurface Outflow & Cumulative Annual Storage Change \\
\hline Water Year & & & & & \\
\hline 1994-95 & 1,051 & 204 & -1,568 & -579 & -834 \\
\hline 1995-96 & 2,394 & 407 & -3,865 & -1,159 & -2,104 \\
\hline 1996-97 & 3,258 & 646 & -5,402 & -1,738 & -3,059 \\
\hline 1997-98 & 3,744 & 886 & -7,303 & -2,317 & -4,754 \\
\hline 1998-99 & 4,888 & 1,129 & -8,727 & -2,896 & -5,311 \\
\hline 1999-00 & 5,593 & 1,397 & -9,863 & -3,476 & -5,993 \\
\hline 2000-01 & 6,049 & 1,694 & -11,159 & -4,055 & -7,056 \\
\hline 2001-02 & 6,431 & 1,987 & -12,548 & -4,634 & -8,290 \\
\hline 2002-03 & 6,638 & 2,291 & -13,696 & -5,213 & -9,447 \\
\hline 2003-04 & 7,282 & 2,562 & -15,018 & -5,793 & -10,374 \\
\hline 2004-05 & 7,853 & 2,827 & -16,082 & -6,372 & -11,122 \\
\hline 2005-06 & 9,387 & 3,079 & -16,981 & -6,951 & -10,755 \\
\hline 2006-07 & 10,419 & 3,352 & -18,137 & -7,530 & -11,125 \\
\hline 2007-08 & 10,861 & 3,647 & -19,458 & -8,110 & -12,230 \\
\hline 2008-09 & 11,469 & 3,920 & -20,743 & -8,689 & -13,154 \\
\hline
\end{tabular}

Values in acre-feet

Figures


















\begin{tabular}{|c|c|}
\hline February 2011 & \begin{tabular}{c} 
Figure E18 \\
Simulated Water Levels \\
over Time from \\
TODD ENGINEERS \\
Alameda, California
\end{tabular} \\
\begin{tabular}{c} 
Recharge of 1,500 AF \\
in Alternating Years
\end{tabular} \\
\hline
\end{tabular}


\section*{Charts}

\begin{tabular}{|c|c|}
\hline February 2011 & Chart E1 \\
\cline { 1 - 1 } \begin{tabular}{c} 
TODD ENGINEERS \\
Alameda, California
\end{tabular} & \begin{tabular}{c} 
and Simulated \\
aroundwater Elevations, \\
Well BDVWA 1
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline February 2011 & Chart E2 \\
\cline { 1 - 1 } \begin{tabular}{c} 
TODD ENGINEERS \\
Alameda, California
\end{tabular} & \begin{tabular}{c} 
2009 -200 Observed \\
and Simulated \\
Groundwater Elevations, \\
Well BDVWA 2
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline February 2011 & Chart E3 \\
\cline { 1 - 1 } \begin{tabular}{c} 
TODD ENGINEERS \\
Alameda, California
\end{tabular} & \begin{tabular}{c} 
2009 Observed \\
and Simulated \\
Groundwater Elevations, \\
Well BDVWA 3
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline February 2011 & \begin{tabular}{c} 
Chart E4 \\
1994-2009 Observed \\
and Simulated
\end{tabular} \\
\cline { 1 - 2 } \begin{tabular}{c} 
TODD ENGINEERS \\
Alameda, California
\end{tabular} & \begin{tabular}{c} 
Gundwater Elevations, \\
Well BDVWA 4
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline February 2011 & Chart E5 \\
\cline { 1 - 1 } \begin{tabular}{c} 
TODD ENGINEERS \\
Alameda, California
\end{tabular} & \begin{tabular}{c} 
and Simulated \\
Groundwater Elevations, \\
Well BDVWA 6
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline February 2011 & Chart E6 \\
\cline { 1 - 1 } \begin{tabular}{c} 
TODD ENGINEERS \\
Alameda, California
\end{tabular} & \begin{tabular}{c} 
2009 -200 Observed \\
and Simulated \\
Groundwater Elevations, \\
Well BDVWA 7
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline February 2011 & \begin{tabular}{c} 
Chart E7 \\
1994-2009 Observed \\
and Simulated
\end{tabular} \\
\cline { 1 - 2 } \begin{tabular}{c} 
TODD ENGINEERS \\
Alameda, California
\end{tabular} & \begin{tabular}{c} 
Gundwater Elevations, \\
Well BDVWA 8
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline February 2011 & Chart E8 \\
\cline { 1 - 1 } \begin{tabular}{c} 
TODD ENGINEERS \\
Alameda, California
\end{tabular} & \begin{tabular}{c} 
2009 Observed \\
and Simulated \\
Groundwater Elevations, \\
Well BDVWA 9
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline February 2011 & Chart E9 \\
\cline { 1 - 1 } \begin{tabular}{c} 
TODD ENGINEERS \\
Alameda, California
\end{tabular} & \begin{tabular}{c} 
2009 Observed \\
and Simulated \\
Groundwater Elevations, \\
Well HDWD 24
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline February 2011 & Chart E10 \\
\cline { 1 - 1 } \begin{tabular}{c} 
TODD ENGINEERS \\
Alameda, California
\end{tabular} & \begin{tabular}{c} 
and Simulated \\
ard \\
andwater Elevations, \\
Well CSA 1
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline February 2011 & Chart E11 \\
\cline { 1 - 1 } \begin{tabular}{c} 
TODD ENGINEERS \\
Alameda, California
\end{tabular} & \begin{tabular}{c} 
2009 Observed \\
and Simulated \\
Groundwater Elevations, \\
Well CSA 2
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline February 2011 & Chart E12 \\
\cline { 1 - 1 } \begin{tabular}{c} 
TODD ENGINEERS \\
Alameda, California
\end{tabular} & \begin{tabular}{c} 
and Simulated \\
aroundwater Elevations, \\
Well 2N1
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline February 2011 & \begin{tabular}{c} 
Chart E13 \\
1994-2009 Observed \\
and Simulated
\end{tabular} \\
\cline { 1 - 2 } \begin{tabular}{c} 
TODD ENGINEERS \\
Alameda, California
\end{tabular} & \begin{tabular}{c} 
Groundwater Elevations, \\
Well USGS Monitoring
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline February 2011 & Chart E14 \\
\cline { 1 - 1 } \begin{tabular}{c} 
TODD ENGINEERS \\
Alameda, California
\end{tabular} & \begin{tabular}{c} 
2009 Observed \\
and Simulated \\
Groundwater Elevations, \\
Well Gubler 1K1
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline February 2011 & Chart E15 \\
\cline { 1 - 1 } \begin{tabular}{c} 
TODD ENGINEERS \\
Alameda, California
\end{tabular} & \begin{tabular}{c} 
2009 Observed \\
and Simulated \\
Groundwater Elevations, \\
Well Gubler 1G1
\end{tabular} \\
\hline
\end{tabular}

\section*{Appendix F}

\section*{Water Quality Laboratory Report}

\section*{Clinical Laboratory of San Bernardino, Inc.}

\begin{tabular}{|lll|}
\hline Todd Engineers & Project: Routine & Work Order: 10 I 1785 \\
2490 Mariner Square Loop, Ste 215 & Sub Project: Bighorn - Desert View Water & Received: \(09 / 24 / 1016: 00\) \\
Alameda CA, 94501 & Project Manager: Daniel J. Craig & Reported: \(10 / 15 / 10\) \\
\hline
\end{tabular}
BDVWA - MW1 \(\quad\) 10I1785-01 (Water) Sample Date: 09/23/10 14:10 Sampler: Not Listed
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Result & Units & Rep. Limit & MCL & Prepared & Analyzed & Batch & Qualifier \\
\hline \multicolumn{10}{|l|}{Field Analyses} \\
\hline Temperature (Field) & Field & 20.0 & \({ }^{\circ} \mathrm{C}\) & & & 09/24/10 & 09/24/10 & 1040127 & \\
\hline \multicolumn{10}{|l|}{General Physical Analyses} \\
\hline Apparent Color & SM 2120B & 10.0 & Color Units & 3.0 & 15 & 09/25/10 & 09/25/10 & 1039421 & \\
\hline Odor Threshold & EPA 140.1M & 1 & TON & 1 & 3 & 09/25/10 & 09/25/10 & 1039421 & HT-06 \\
\hline Turbidity & EPA 180.1 & 6.4 & NTU & 0.1 & 5 & 09/25/10 & 09/25/10 & 1039421 & \\
\hline \multicolumn{10}{|l|}{General Chemical Analyses} \\
\hline Alkalinity, Total (as CaCO3) & SM 2320 B & 190 & \(\mathrm{mg} / \mathrm{L}\) & 5.0 & & 09/28/10 & 09/28/10 & 1040120 & \\
\hline Bicarbonate (HCO3) & SM 2320 B & 230 & \(\mathrm{mg} / \mathrm{L}\) & 5.0 & & 09/28/10 & 09/28/10 & 1040121 & \\
\hline Calcium (Ca) & SM3500CaD & 49 & \(\mathrm{mg} / \mathrm{L}\) & 1.0 & & 09/28/10 & 09/28/10 & 1040119 & \\
\hline Carbonate (CO3) & SM 2320B & ND & \(\mathrm{mg} / \mathrm{L}\) & 5.0 & & 09/28/10 & 09/28/10 & 1040122 & \\
\hline Chloride (Cl) & EPA 300.0 & 17 & \(\mathrm{mg} / \mathrm{L}\) & 1.0 & 500 & 09/24/10 & 09/25/10 & 1040117 & \\
\hline Langelier Index at Source Tmp & SM 203 & 0.11 & & & & 09/24/10 & 09/28/10 & 1040124 & \\
\hline Langelier Index at 60 C & SM 203 & 0.81 & & & & 09/24/10 & 09/28/10 & 1040124 & \\
\hline Aggressive Index & SM 203 & 12.06 & & & & 09/24/10 & 09/28/10 & 1040124 & \\
\hline Cyanide (CN) & SM4500CNF & ND & ug/L & 100 & 150 & 09/27/10 & 09/27/10 & 1040037 & \\
\hline Specific Conductance (E.C.) & SM 2510B & 530 & umhos/cm & 2.0 & 1600 & 09/28/10 & 09/28/10 & 1040115 & \\
\hline Fluoride (F) & EPA 300.0 & 0.83 & \(\mathrm{mg} / \mathrm{L}\) & 0.10 & 2 & 09/24/10 & 09/25/10 & 1040117 & \\
\hline Hardness, Total (as CaCO3) & SM 2340 C & 140 & \(\mathrm{mg} / \mathrm{L}\) & 5.0 & & 09/28/10 & 09/28/10 & 1040118 & \\
\hline Hydroxide (OH) & SM 2320B & ND & \(\mathrm{mg} / \mathrm{L}\) & 5.0 & & 09/28/10 & 09/28/10 & 1040128 & \\
\hline MBAS (LAS Mole. Wt 326.5) & SM 5540C & ND & \(\mathrm{mg} / \mathrm{L}\) & 0.10 & 0.5 & 09/24/10 & 09/24/10 & 1039404 & \\
\hline Nitrate (NO3) & EPA 353.2 & 2.5 & \(\mathrm{mg} / \mathrm{L}\) & 2.0 & 45 & 09/28/10 & 09/28/10 & 1040137 & HT-05 \\
\hline Nitrate + Nitrite (as \(\mathbf{N}\) ) & EPA 353.2 & 580 & ug/L & 400 & 10000 & 09/28/10 & 09/28/10 & 1040137 & HT-05 \\
\hline Nitrite as N (NO2-N) & EPA 353.2 & ND & ug/L & 400 & 1000 & 09/28/10 & 09/28/10 & 1040137 & HT-05 \\
\hline Perchlorate (ClO4) & EPA 314.0 & ND & ug/L & 4.0 & 6 & 09/28/10 & 09/28/10 & 1040187 & \\
\hline pH (Lab) & SM 4500HB & 7.7 & pH Units & & & 09/24/10 & 09/24/10 & 1039406 & \\
\hline Sulfate (SO4) & EPA 300.0 & 21 & mg/L & 0.50 & 500 & 09/24/10 & 09/25/10 & 1040117 & \\
\hline Total Filterable Residue/TDS & SM 2540C & 270 & \(\mathrm{mg} / \mathrm{L}\) & 5.0 & 1000 & 09/28/10 & 09/30/10 & 1040065 & \\
\hline \multicolumn{10}{|l|}{Metals} \\
\hline Aluminum (Al) & EPA 200.7 & 400 & ug/L & 50 & 200 & 09/28/10 & 09/29/10 & 1040156 & \\
\hline Antimony (Sb) & SM3113-B & ND & ug/L & 6.0 & 6 & 09/29/10 & 09/29/10 & 1040211 & \\
\hline Arsenic (As) & SM3113-B & ND & ug/L & 2.0 & 10 & 10/01/10 & 10/04/10 & 1040367 & \\
\hline Barium (Ba) & EPA 200.7 & ND & ug/L & 100 & 1000 & 09/28/10 & 09/29/10 & 1040156 & \\
\hline Beryllium (Be) & SM3113-B & ND & \(\mathrm{ug} / \mathrm{L}\) & 1.0 & 4 & 09/27/10 & 09/27/10 & 1040036 & \\
\hline Boron (B) & EPA 200.7 & 180 & ug/L & 100 & & 09/28/10 & 09/29/10 & 1040156 & \\
\hline Cadmium (Cd) & SM3113-B & ND & ug/L & 1.0 & 5 & 09/27/10 & 09/27/10 & 1040030 & \\
\hline Chromium (Total Cr) & SM3113-B & ND & ug/L & 10 & 50 & 09/27/10 & 09/27/10 & 1040038 & \\
\hline Copper ( Cu ) & EPA 200.7 & ND & ug/L & 50 & 1000 & 09/28/10 & 09/29/10 & 1040156 & \\
\hline Iron (Fe) & EPA 200.7 & 300 & \(\mathrm{ug} / \mathrm{L}\) & 100 & 300 & 09/28/10 & 09/29/10 & 1040156 & \\
\hline Lead (Pb) & SM3113-B & ND & ug/L & 5.0 & & 10/05/10 & 10/05/10 & 1041069 & \\
\hline
\end{tabular}

\section*{Clinical Laboratory of San Bernardino, Inc.}

\begin{tabular}{|lll|}
\hline Todd Engineers & Project: Routine & Work Order: 10 I 1785 \\
2490 Mariner Square Loop, Ste 215 & Sub Project: Bighorn - Desert View Water & Received: \(09 / 24 / 1016: 00\) \\
Alameda CA, 94501 & Project Manager: Daniel J. Craig & Reported: \(10 / 15 / 10\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline BDVWA - MW1 & & \multicolumn{3}{|l|}{10I1785-01 (Water)} & \multicolumn{2}{|l|}{Sample Date: 09/23/10} & 14:10 & Sampler: & Not Listed \\
\hline Analyte & Method & Result & Units & Rep. Limit & MCL & Prepared & Analyzed & Batch & Qualifier \\
\hline \multicolumn{10}{|l|}{Metals} \\
\hline Magnesium (Mg) & EPA 200.7 & 9.3 & \(\mathrm{mg} / \mathrm{L}\) & 1.0 & & 09/29/10 & 09/29/10 & 1040206 & \\
\hline Manganese (Mn) & EPA 200.7 & 220 & ug/L & 20 & 50 & 09/28/10 & 09/29/10 & 1040156 & \\
\hline Mercury (Hg) & EPA 245.1 & ND & ug/L & 1.0 & 2 & 09/29/10 & 09/29/10 & 1040184 & \\
\hline Nickel (Ni) & SM3113-B & ND & ug/L & 10 & 100 & 09/27/10 & 09/27/10 & 1040066 & \\
\hline Potassium (K) & EPA 200.7 & 4.6 & \(\mathrm{mg} / \mathrm{L}\) & 1.0 & & 09/29/10 & 09/29/10 & 1040206 & \\
\hline Selenium (Se) & SM3113-B & ND & ug/L & 5.0 & 50 & 09/29/10 & 09/29/10 & 1040188 & \\
\hline Silver (Ag) & SM3113-B & ND & ug/L & 10 & 100 & 09/27/10 & 09/28/10 & 1040068 & \\
\hline Sodium (Na) & EPA 200.7 & 63 & \(\mathrm{mg} / \mathrm{L}\) & 1.0 & & 09/29/10 & 09/29/10 & 1040206 & \\
\hline Thallium (Tl) & EPA 200.9 & ND & ug/L & 1.0 & 2 & 09/28/10 & 09/28/10 & 1040064 & \\
\hline Vanadium (V) & EPA 200.9 & 4.2 & ug/L & 3.0 & & 09/28/10 & 09/29/10 & 1040104 & \\
\hline Zinc (Zn) & EPA 200.7 & ND & ug/L & 50 & 5000 & 09/28/10 & 09/29/10 & 1040156 & \\
\hline \multicolumn{10}{|l|}{Anion / Cation Balance} \\
\hline Total Anions & Calculated & 4.77 & meq/L & 0.62 & & 10/01/10 & 09/28/10 & [CALC] & \\
\hline Total Cations & Calculated & 6.07 & meq/L & 0.20 & & 10/01/10 & 10/01/10 & [CALC] & \\
\hline \multicolumn{10}{|l|}{Radiochemistry Analyses} \\
\hline Gross Alpha & EPA 900.0 & 11 & \(\mathrm{pCi} / \mathrm{L}\) & 3.0 & 15 & 09/27/10 & 09/29/10 & 1039357 & \\
\hline Gross Alpha Counting Error & EPA 900.0 & 2.3 & \(\mathrm{pCi} / \mathrm{L}\) & & & 09/27/10 & 09/29/10 & 1039357 & \\
\hline Gross Alpha Min Det Activity & EPA 900.0 & 1.4 & \(\mathrm{pCi} / \mathrm{L}\) & & & 09/27/10 & 09/29/10 & 1039357 & \\
\hline Gross Beta & EPA 900.0 & ND & \(\mathrm{pCi} / \mathrm{L}\) & 4.0 & 50 & 09/27/10 & 09/29/10 & 1039357 & \\
\hline Gross Beta Counting Error & EPA 900.0 & 1.5 & \(\mathrm{pCi} / \mathrm{L}\) & & & 09/27/10 & 09/29/10 & 1039357 & \\
\hline Gross Beta Min Det Activity & EPA 900.0 & 1.3 & \(\mathrm{pCi} / \mathrm{L}\) & & & 09/27/10 & 09/29/10 & 1039357 & \\
\hline Uranium & EPA 900.0 & 14 & \(\mathrm{pCi} / \mathrm{L}\) & 1.0 & 20 & 10/05/10 & 10/07/10 & 1041049 & \\
\hline Uranium Counting Error & EPA 900.0 & 1.6 & \(\mathrm{pCi} / \mathrm{L}\) & & & 10/05/10 & 10/07/10 & 1041049 & \\
\hline Uranium Min Det Activity & EPA 900.0 & 0.87 & pCi/L & & & 10/05/10 & 10/07/10 & 1041049 & \\
\hline \multicolumn{10}{|l|}{Volatile Organic Analyses} \\
\hline Vinyl Chloride (VC) & EPA 524.2 & ND & ug/L & 0.50 & 0.5 & 09/28/10 & 09/28/10 & 1040063 & \\
\hline Trichlorofluoromethane (FREON 11) & EPA 524.2 & ND & ug/L & 5.0 & 150 & 09/28/10 & 09/28/10 & 1040063 & \\
\hline 1,1-Dichloroethylene (1,1-DCE) & EPA 524.2 & ND & ug/L & 0.50 & 6 & 09/28/10 & 09/28/10 & 1040063 & \\
\hline 1,1,2-Trichloro-1,2,2-trifluoroethane & EPA 524.2 & ND & ug/L & 10 & 1200 & 09/28/10 & 09/28/10 & 1040063 & \\
\hline Dichloromethane (Methylene Chloride) & EPA 524.2 & ND & ug/L & 0.50 & 5 & 09/28/10 & 09/28/10 & 1040063 & \\
\hline trans-1,2-Dichloroethylene (t-1,2-DCE) & EPA 524.2 & ND & ug/L & 0.50 & 10 & 09/28/10 & 09/28/10 & 1040063 & \\
\hline Methyl tert-Butyl Ether & EPA 524.2 & ND & ug/L & 3.0 & 13 & 09/28/10 & 09/28/10 & 1040063 & \\
\hline 1,1-Dichloroethane (1,1-DCA) & EPA 524.2 & ND & ug/L & 0.50 & 5 & 09/28/10 & 09/28/10 & 1040063 & \\
\hline cis-1,2-Dichloroethylene (c-1,2-DCE) & EPA 524.2 & ND & ug/L & 0.50 & 6 & 09/28/10 & 09/28/10 & 1040063 & \\
\hline Chloroform (Trichloromethane) & EPA 524.2 & ND & ug/L & 1.0 & & 09/28/10 & 09/28/10 & 1040063 & \\
\hline Carbon Tetrachloride & EPA 524.2 & ND & ug/L & 0.50 & 0.5 & 09/28/10 & 09/28/10 & 1040063 & \\
\hline 1,1,1-Trichloroethane (1,1,1-TCA) & EPA 524.2 & ND & ug/L & 0.50 & 200 & 09/28/10 & 09/28/10 & 1040063 & \\
\hline Benzene & EPA 524.2 & ND & ug/L & 0.50 & 1 & 09/28/10 & 09/28/10 & 1040063 & \\
\hline 1,2-Dichloroethane (1,2-DCA) & EPA 524.2 & ND & ug/L & 0.50 & 0.5 & 09/28/10 & 09/28/10 & 1040063 & \\
\hline
\end{tabular}

\title{
Clinical Laboratory of San Bernardino, Inc.
}

\begin{tabular}{|lll|}
\hline Todd Engineers & Project: Routine & Work Order: 10 I 1785 \\
2490 Mariner Square Loop, Ste 215 & Sub Project: Bighorn - Desert View Water & Received: \(09 / 24 / 1016: 00\) \\
Alameda CA, 94501 & Project Manager: Daniel J. Craig & Reported: \(10 / 15 / 10\) \\
\hline
\end{tabular}
BDVWA - MW1 \(\quad\) 1011785-01 (Water) \(\quad\) Sample Date: 09/23/10 14:10 \(\quad\) Sampler: Not Listed
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Analyte & Method & Result & Units & Rep. Limit & MCL & Prepared & Analyzed & Batch & Qualifier \\
\hline \multicolumn{10}{|l|}{Volatile Organic Analyses} \\
\hline Trichloroethylene (TCE) & EPA 524.2 & 0.57 & ug/L & 0.50 & 5 & 09/28/10 & 09/28/10 & 1040063 & \\
\hline 1,2-Dichloropropane & EPA 524.2 & ND & ug/L & 0.50 & 5 & 09/28/10 & 09/28/10 & 1040063 & \\
\hline Bromodichloromethane & EPA 524.2 & ND & ug/L & 1.0 & & 09/28/10 & 09/28/10 & 1040063 & \\
\hline Toluene & EPA 524.2 & ND & ug/L & 0.50 & 150 & 09/28/10 & 09/28/10 & 1040063 & \\
\hline Tetrachloroethylene (PCE) & EPA 524.2 & 3.5 & ug/L & 0.50 & 5 & 09/28/10 & 09/28/10 & 1040063 & \\
\hline 1,1,2-Trichloroethane (1,1,2-TCA) & EPA 524.2 & ND & ug/L & 0.50 & 5 & 09/28/10 & 09/28/10 & 1040063 & \\
\hline Dibromochloromethane & EPA 524.2 & ND & ug/L & 1.0 & & 09/28/10 & 09/28/10 & 1040063 & \\
\hline Monochlorobenzene (Chlorobenzene) & EPA 524.2 & ND & ug/L & 0.50 & 70 & 09/28/10 & 09/28/10 & 1040063 & \\
\hline Ethyl Benzene & EPA 524.2 & ND & ug/L & 0.50 & 300 & 09/28/10 & 09/28/10 & 1040063 & \\
\hline m,p-Xylene & EPA 524.2 & ND & ug/L & 1.0 & & 09/28/10 & 09/28/10 & 1040063 & \\
\hline cis-1,3-Dichloropropene & EPA 524.2 & ND & ug/L & 0.50 & & 09/28/10 & 09/28/10 & 1040063 & \\
\hline trans-1,3-Dichloropropene & EPA 524.2 & ND & ug/L & 0.50 & & 09/28/10 & 09/28/10 & 1040063 & \\
\hline o-Xylene & EPA 524.2 & ND & ug/L & 0.50 & & 09/28/10 & 09/28/10 & 1040063 & \\
\hline Styrene & EPA 524.2 & ND & ug/L & 0.50 & 100 & 09/28/10 & 09/28/10 & 1040063 & \\
\hline Bromoform & EPA 524.2 & ND & ug/L & 1.0 & & 09/28/10 & 09/28/10 & 1040063 & \\
\hline 1,1,2,2-Tetrachloroethane & EPA 524.2 & ND & ug/L & 0.50 & & 09/28/10 & 09/28/10 & 1040063 & \\
\hline 1,4-Dichlorobenzene (p-DCB) & EPA 524.2 & ND & ug/L & 0.50 & 5 & 09/28/10 & 09/28/10 & 1040063 & \\
\hline 1,2-Dichlorobenzene (o-DCB) & EPA 524.2 & ND & ug/L & 0.50 & 600 & 09/28/10 & 09/28/10 & 1040063 & \\
\hline 1,2,4-Trichlorobenzene & EPA 524.2 & ND & ug/L & 0.50 & 5 & 09/28/10 & 09/28/10 & 1040063 & \\
\hline Total 1,3-Dichloropropene & EPA 524.2 & ND & ug/L & 0.50 & 0.5 & 09/28/10 & 09/28/10 & 1040063 & \\
\hline Total Trihalomethanes (TTHM) & EPA 524.2 & ND & ug/L & 1.0 & 80 & 09/28/10 & 09/28/10 & 1040063 & \\
\hline Total Xylenes (m,p \& o) & EPA 524.2 & ND & ug/L & 0.50 & 1750 & 09/28/10 & 09/28/10 & 1040063 & \\
\hline Surrogate: Bromofluorobenzene & EPA 524.2 & \(97 \%\) & & & & 09/28/10 & 09/28/10 & 1040063 & \\
\hline Surrogate: 1,2-Dichlorobenzene-d4 & EPA 524.2 & 98\% & & & & 09/28/10 & 09/28/10 & 1040063 & \\
\hline \multicolumn{10}{|l|}{Volatile Organic Analyses / EPA 504} \\
\hline Ethylene Dibromide (EDB) & EPA 504.1 & ND & ug/L & 0.019 & 0.05 & 09/28/10 & 09/28/10 & 1040056 & \\
\hline Dibromochloropropane (DBCP) & EPA 504.1 & ND & ug/L & 0.0097 & 0.2 & 09/28/10 & 09/28/10 & 1040056 & \\
\hline \multicolumn{10}{|l|}{Semi-Volatile Organic Analyses} \\
\hline Endrin & EPA 508.1 & ND & ug/L & 0.10 & 2 & 09/29/10 & 09/29/10 & 1040205 & \\
\hline Lindane (gamma-BHC) & EPA 508.1 & ND & ug/L & 0.20 & 0.2 & 09/29/10 & 09/29/10 & 1040205 & \\
\hline Methoxychlor & EPA 508.1 & ND & ug/L & 10 & 30 & 09/29/10 & 09/29/10 & 1040205 & \\
\hline Toxaphene & EPA 508.1 & ND & ug/L & 1.0 & 3 & 09/29/10 & 09/29/10 & 1040205 & \\
\hline Chlordane & EPA 508.1 & ND & ug/L & 0.10 & 0.1 & 09/29/10 & 09/29/10 & 1040205 & \\
\hline Heptachlor & EPA 508.1 & ND & ug/L & 0.010 & 0.01 & 09/29/10 & 09/29/10 & 1040205 & \\
\hline Heptachlor Epoxide & EPA 508.1 & ND & ug/L & 0.010 & 0.01 & 09/29/10 & 09/29/10 & 1040205 & \\
\hline Hexachlorobenzene & EPA 508.1 & ND & ug/L & 0.50 & 1 & 09/29/10 & 09/29/10 & 1040205 & \\
\hline Hexachlorocyclopentadiene & EPA 508.1 & ND & ug/L & 1.0 & 50 & 09/29/10 & 09/29/10 & 1040205 & \\
\hline Polychlorinated Biphenyls (PCBs) & EPA 508.1 & ND & ug/L & 0.50 & 0.5 & 09/29/10 & 09/29/10 & 1040205 & \\
\hline Surrogate: Dibutylchlorendate & EPA 508.1 & 86\% & & & & 09/29/10 & 09/29/10 & 1040205 & \\
\hline Dalapon & EPA 515.4 & ND & ug/L & 10 & 200 & 09/29/10 & 09/29/10 & 1040257 & \\
\hline
\end{tabular}

\section*{Clinical Laboratory of San Bernardino, Inc.}
\begin{tabular}{|lll|}
\hline Todd Engineers & Project: Routine & Work Order: 1011785 \\
2490 Mariner Square Loop, Ste 215 & Sub Project: Bighorn - Desert View Water & Received: \(09 / 24 / 1016: 00\) \\
Alameda CA, 94501 & Project Manager: Daniel J. Craig & Reported: \(10 / 15 / 10\) \\
\hline
\end{tabular}
BDVWA - MW1 1011785-01 (Water) Sample Date: 09/23/10 14:10 Sampler: Not Listed
\begin{tabular}{|lllllllllllllll}
\hline Analyte & Method & Result & Units & Rep. Limit & MCL & Prepared & Analyzed & Batch & Qualifier \\
\hline
\end{tabular}

\section*{Semi-Volatile Organic Analyses}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 2,4,5-TP (SILVEX) & EPA 515.4 & ND & ug/L & 1.0 & 50 & 09/29/10 & 09/29/10 & 1040257 & \\
\hline Bentazon (BASAGRAN) & EPA 515.4 & ND & ug/L & 2.0 & 18 & 09/29/10 & 09/29/10 & 1040257 & \\
\hline Picloram & EPA 515.4 & ND & ug/L & 1.0 & 500 & 09/29/10 & 09/29/10 & 1040257 & \\
\hline 2,4-D & EPA 515.4 & ND & ug/L & 10 & 70 & 09/29/10 & 09/29/10 & 1040257 & \\
\hline Pentachlorophenol (PCP) & EPA 515.4 & ND & ug/L & 0.20 & 1 & 09/29/10 & 09/29/10 & 1040257 & \\
\hline Dinoseb (DNBP) & EPA 515.4 & ND & ug/L & 2.0 & 7 & 09/29/10 & 09/29/10 & 1040257 & \\
\hline Surrogate: 2,4-Dichlorophenylacetic acid & EPA 515.4 & 88\% & & & & 09/29/10 & 09/29/10 & 1040257 & \\
\hline Alachlor (ALANEX) & EPA 525.2 & ND & ug/L & 1.0 & 2 & 09/28/10 & 10/01/10 & 1040103 & \\
\hline Atrazine (AATREX) & EPA 525.2 & ND & ug/L & 0.50 & 1 & 09/28/10 & 10/01/10 & 1040103 & \\
\hline Benzo(a)pyrene & EPA 525.2 & ND & ug/L & 0.10 & 0.2 & 09/28/10 & 10/01/10 & 1040103 & \\
\hline Diethylhexylphthalate (DEHP) & EPA 525.2 & ND & ug/L & 3.0 & 4 & 09/28/10 & 10/01/10 & 1040103 & \\
\hline Di(2-ethylhexyl) adipate & EPA 525.2 & ND & ug/L & 5.0 & 400 & 09/28/10 & 10/01/10 & 1040103 & \\
\hline Molinate (ORDRAM) & EPA 525.2 & ND & ug/L & 2.0 & 20 & 09/28/10 & 10/01/10 & 1040103 & \\
\hline Simazine (PRINCEP) & EPA 525.2 & ND & ug/L & 1.0 & 4 & 09/28/10 & 10/01/10 & 1040103 & \\
\hline Thiobencarb (BOLERO) & EPA 525.2 & ND & ug/L & 1.0 & 70 & 09/28/10 & 10/01/10 & 1040103 & \\
\hline Surrogate: 1,3-dimethyl-2-nitrobenzene & EPA 525.2 & \(93 \%\) & & & & 09/28/10 & 10/01/10 & 1040103 & \\
\hline Surrogate: Perylene-d12 & EPA 525.2 & 118\% & & & & 09/28/10 & 10/01/10 & 1040103 & \\
\hline Surrogate: Triphenylphosphate & EPA 525.2 & \(193 \%\) & & & & 09/28/10 & 10/01/10 & 1040103 & QM-08 \\
\hline Oxamyl (VYDATE) & EPA 531.1 & ND & ug/L & 20 & 50 & 10/01/10 & 10/01/10 & 1040411 & \\
\hline Carbofuran (FURADAN) & EPA 531.1 & ND & ug/L & 5.0 & 18 & 10/01/10 & 10/01/10 & 1040411 & \\
\hline Glyphosate & EPA 547 & ND & ug/L & 25 & 700 & 10/01/10 & 10/01/10 & 1040407 & \\
\hline
\end{tabular}

\section*{Clinical Laboratory of San Bernardino, Inc.}

\begin{tabular}{|lll|}
\hline Todd Engineers & Project: Routine & Work Order: 10 I 1785 \\
2490 Mariner Square Loop, Ste 215 & Sub Project: Bighorn - Desert View Water & Received: \(09 / 24 / 1016: 00\) \\
Alameda CA, 94501 & Project Manager: Daniel J. Craig & Reported: \(10 / 15 / 10\) \\
\hline
\end{tabular}

\section*{BDVWA - MW2 10I1785-02 (Water) Sample Date: 09/24/10 12:05 Sampler: Not Listed}
\begin{tabular}{|llllllllllllllll}
\hline Analyte & Method & Result & Units & Rep. Limit & MCL & Prepared & Analyzed & Batch & Qualifier \\
\hline
\end{tabular}

\section*{General Chemical Analyses}
Alkalinity, Total (as CaCO3)
Bicarbonate (HCO3)
Calcium (Ca)
Carbonate (CO3)
Chloride (Cl)
Cyanide (CN)
Specific Conductance (E.C.)
Fluoride (F)

Hardness, Total (as CaCO3)
Hydroxide (OH)
MBAS (LAS Mole. Wt 326.5)
Nitrate (NO3)
Nitrate + Nitrite (as \(\mathbf{N}\) )
Nitrite as N (NO2-N)
Perchlorate (ClO4)
pH (Lab)
Sulfate (SO4)
Total Filterable Residue/TDS

\section*{Metals}
Aluminum (Al)
Antimony (Sb)
Arsenic (As)
Barium (Ba)
Beryllium (Be)
Boron (B)
Cadmium (Cd)
Chromium (Total Cr)
Copper (Cu)
Iron (Fe)
Lead (Pb)
Magnesium (Mg)
Manganese (Mn)
Mercury (Hg)
Nickel (Ni)
Potassium (K)
Selenium (Se)
Silver (Ag)
Sodium (Na)
Thallium (Tl)
Vanadium (V)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline SM 2320 B & 170 & \(\mathrm{mg} / \mathrm{L}\) & 5.0 & & 09/28/10 & 09/28/10 & 1040120 \\
\hline SM 2320 B & 210 & \(\mathrm{mg} / \mathrm{L}\) & 5.0 & & 09/28/10 & 09/28/10 & 1040121 \\
\hline SM3500CaD & 43 & \(\mathrm{mg} / \mathrm{L}\) & 1.0 & & 09/28/10 & 09/28/10 & 1040119 \\
\hline SM 2320B & ND & \(\mathrm{mg} / \mathrm{L}\) & 5.0 & & 09/28/10 & 09/28/10 & 1040122 \\
\hline EPA 300.0 & 34 & \(\mathrm{mg} / \mathrm{L}\) & 1.0 & 500 & 09/24/10 & 09/25/10 & 1040117 \\
\hline SM4500CNF & ND & ug/L & 100 & 150 & 09/27/10 & 09/27/10 & 1040037 \\
\hline SM 2510B & 440 & umhos/cm & 2.0 & 1600 & 09/28/10 & 09/28/10 & 1040115 \\
\hline EPA 300.0 & 1.1 & \(\mathrm{mg} / \mathrm{L}\) & 0.10 & 2 & 09/24/10 & 09/25/10 & 1040117 \\
\hline SM 2340 C & 130 & \(\mathrm{mg} / \mathrm{L}\) & 5.0 & & 09/28/10 & 09/28/10 & 1040118 \\
\hline SM 2320B & ND & \(\mathrm{mg} / \mathrm{L}\) & 5.0 & & 09/28/10 & 09/28/10 & 1040128 \\
\hline SM 5540C & ND & \(\mathrm{mg} / \mathrm{L}\) & 0.10 & 0.5 & 09/24/10 & 09/24/10 & 1039404 \\
\hline EPA 300.0 & 2.2 & \(\mathrm{mg} / \mathrm{L}\) & 2.0 & 45 & 09/24/10 & 09/25/10 & 1040117 \\
\hline EPA 300.0 & 500 & ug/L & 400 & 10000 & 09/24/10 & 09/25/10 & 1040117 \\
\hline EPA 300.0 & ND & ug/L & 400 & 1000 & 09/24/10 & 09/25/10 & 1040117 \\
\hline EPA 314.0 & ND & ug/L & 4.0 & 6 & 09/28/10 & 09/28/10 & 1040187 \\
\hline SM 4500HB & 7.9 & pH Units & & & 09/24/10 & 09/24/10 & 1039406 \\
\hline EPA 300.0 & 35 & \(\mathrm{mg} / \mathrm{L}\) & 0.50 & 500 & 09/24/10 & 09/25/10 & 1040117 \\
\hline SM 2540C & 320 & \(\mathrm{mg} / \mathrm{L}\) & 5.0 & 1000 & 09/28/10 & 09/30/10 & 1040065 \\
\hline EPA 200.7 & 610 & ug/L & 50 & 200 & 09/28/10 & 09/29/10 & 1040156 \\
\hline SM3113-B & ND & ug/L & 6.0 & 6 & 09/29/10 & 09/29/10 & 1040211 \\
\hline SM3113-B & ND & ug/L & 2.0 & 10 & 10/01/10 & 10/04/10 & 1040367 \\
\hline EPA 200.7 & ND & ug/L & 100 & 1000 & 09/28/10 & 09/29/10 & 1040156 \\
\hline SM3113-B & ND & ug/L & 1.0 & 4 & 09/27/10 & 09/27/10 & 1040036 \\
\hline EPA 200.7 & 160 & ug/L & 100 & & 09/28/10 & 09/29/10 & 1040156 \\
\hline SM3113-B & ND & ug/L & 1.0 & 5 & 09/27/10 & 09/27/10 & 1040030 \\
\hline SM3113-B & ND & ug/L & 10 & 50 & 09/27/10 & 09/27/10 & 1040038 \\
\hline EPA 200.7 & ND & ug/L & 50 & 1000 & 09/28/10 & 09/29/10 & 1040156 \\
\hline EPA 200.7 & 490 & ug/L & 100 & 300 & 09/28/10 & 09/29/10 & 1040156 \\
\hline SM3113-B & ND & ug/L & 5.0 & & 10/05/10 & 10/05/10 & 1041069 \\
\hline EPA 200.7 & 8.8 & \(\mathrm{mg} / \mathrm{L}\) & 1.0 & & 09/29/10 & 09/29/10 & 1040206 \\
\hline EPA 200.7 & 110 & ug/L & 20 & 50 & 09/28/10 & 09/29/10 & 1040156 \\
\hline EPA 245.1 & ND & ug/L & 1.0 & 2 & 09/29/10 & 09/29/10 & 1040184 \\
\hline SM3113-B & ND & \(\mathrm{ug} / \mathrm{L}\) & 10 & 100 & 09/27/10 & 09/27/10 & 1040066 \\
\hline EPA 200.7 & 4.8 & \(\mathrm{mg} / \mathrm{L}\) & 1.0 & & 09/29/10 & 09/29/10 & 1040206 \\
\hline SM3113-B & ND & ug/L & 5.0 & 50 & 09/29/10 & 09/29/10 & 1040188 \\
\hline SM3113-B & ND & ug/L & 10 & 100 & 09/27/10 & 09/28/10 & 1040068 \\
\hline EPA 200.7 & 45 & \(\mathrm{mg} / \mathrm{L}\) & 1.0 & & 09/29/10 & 09/29/10 & 1040206 \\
\hline EPA 200.9 & ND & ug/L & 1.0 & 2 & 09/28/10 & 09/28/10 & 1040064 \\
\hline EPA 200.9 & 3.1 & ug/L & 3.0 & & 09/28/10 & 09/29/10 & 1040104 \\
\hline
\end{tabular}

\section*{Clinical Laboratory of San Bernardino, Inc.}

\begin{tabular}{|lll|}
\hline Todd Engineers & Project: Routine & Work Order: 10 I 1785 \\
2490 Mariner Square Loop, Ste 215 & Sub Project: Bighorn - Desert View Water & Received: \(09 / 24 / 1016: 00\) \\
Alameda CA, 94501 & Project Manager: Daniel J. Craig & Reported: \(10 / 15 / 10\) \\
\hline
\end{tabular}
BDVWA - MW2 \(\quad\) 1011785-02 (Water) Sample Date: 09/24/10 12:05 Sampler: Not Listed



\section*{Bob Glaubig}

\section*{Laboratory Director}

\section*{Certificate of Analysis}

Report Date: Monday, October 4, 2010
Received Date: Monday, September 27, 2010
Received Time: 12:30 pm
Turnaround Time: Normal

Client: Clinical Laboratory of San Bernardino, Inc. 21881 Barton Road Grand Terrace, CA 92313

Phones: (909) 825-7693
Fax: (909) 825-7696
P.O. \#:

Attn: Bob Glaubig
Project: 1011785
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lab Sample ID: 0127030-01 & \multicolumn{2}{|l|}{Sample ID:} & \multicolumn{3}{|l|}{BDVWA-MW1/1011785} & \multirow[b]{3}{*}{Method} & \multirow[b]{3}{*}{Prepared} & \multicolumn{2}{|l|}{\multirow[b]{3}{*}{Analyzed}} & \multicolumn{2}{|r|}{Matrix: Water} \\
\hline Sampled by: Client & Sample & 09/23 & 14:10 & & & & & & & & \\
\hline Analyte & Result & MDL & MRL & Units & Dil & & & & & Batch & Qualifier \\
\hline Endothall & ND & 3.5 & 45 & ug/l & 1x1 & EPA 548.1 & 9/27/10 & 9/30/10 & 19:12 & W010994 & \\
\hline Diquat & .. ND & 0.90 & 4.0 & ug/l & 1x1 & EPA 549.2 & 9/27/10 & 9/28/10 & 14:49 & W0I1017 & \\
\hline
\end{tabular}

\section*{Certificate of Analysis}

\section*{Quality Control Section}

Diquat and Paraquat by EPA 549.2-Quality Control
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Blank (W0I1017-BLK1) & & & & \multicolumn{6}{|c|}{Prepared: 09/27/10 Analyzed: 09/28/10 14:49} \\
\hline Analyte & \begin{tabular}{l}
Sample \\
Result
\end{tabular} & \begin{tabular}{l}
QC \\
Result
\end{tabular} & Qualifier & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} \\
\hline Diquat & & ND & & ug/l & & & & & \\
\hline LCS (W0I1017-BS1) & & & & & \multicolumn{2}{|l|}{Prepared: 09/27/10} & \multicolumn{3}{|l|}{Analyzed: 09/28/10 14:49} \\
\hline Analyte & Sample Result & \begin{tabular}{l}
QC \\
Result
\end{tabular} & Qualifier & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} \\
\hline Diquat & & 15.1 & & ug/l & 20.0 & 76 & 54-135 & & \\
\hline Matrix Spike (W0I1017-MS1) & \multicolumn{3}{|c|}{Source: 0I24025-01} & & \multicolumn{2}{|l|}{Prepared: 09/27/10} & \multicolumn{3}{|l|}{Analyzed: 09/28/10 14:49} \\
\hline Analyte & \begin{tabular}{l}
Sample \\
Result
\end{tabular} & \[
\begin{gathered}
\text { QC } \\
\text { Result } \\
\hline
\end{gathered}
\] & Qualifier & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} \\
\hline Diquat & ND . & 16.7 & & ug/l & 20.0 & 84 & 52-130 & & \\
\hline Matrix Spike Dup (W0I1017-MSD1) & \multicolumn{3}{|c|}{Source: 0I24025-01} & & \multicolumn{2}{|l|}{Prepared: 09/27/10} & Analyzed: 09/ & 0 14:4 & \\
\hline Analyte & Sample Result & \[
\begin{gathered}
\text { QC } \\
\text { Result }
\end{gathered}
\] & Qualifier & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} \\
\hline Diquat .................................. & ....ND .... & 16.1 & & ug/l & 20.0 & 81 & \[
52-130
\] & 4 & 30 \\
\hline
\end{tabular}

\section*{Endothall By EPA 548.1-Quality Control}

Batch W0I0994-EPA 548.1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Blank (W0I0994-BLK1) & & & & \multicolumn{6}{|c|}{Prepared: 09/27/10 Analyzed: 09/30/10 14:00} \\
\hline Analyte & Sample Result & \begin{tabular}{l}
QC \\
Result
\end{tabular} & Qualifier & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} \\
\hline Endothall & - & ND & & ug/l & & & & & \\
\hline LCS (W0I0994-BS1) & & & & & \multicolumn{2}{|l|}{Prepared: 09/27/10} & \multicolumn{3}{|l|}{Analyzed: 09/30/10 14:19} \\
\hline Analyte & Sample Result & \[
\begin{gathered}
\text { QC } \\
\text { Result }
\end{gathered}
\] & Qualifier & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} \\
\hline Endothall & & 62.0 & & ug/l & 100 & 62 & 3.5-143 & & \\
\hline Matrix Spike (W0I0994-MS1) & \multicolumn{3}{|c|}{Source: 0I24032-01} & & \multicolumn{2}{|l|}{Prepared: 09/27/10} & \multicolumn{3}{|l|}{Analyzed: 09/30/10 14:38} \\
\hline Analyte & Sample Result & \[
\begin{gathered}
\text { QC } \\
\text { Result }
\end{gathered}
\] & Qualifier & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} \\
\hline Endothall & ND . & 5.13 & & ug/l & 100 & 5 & 3.5-137 & & \\
\hline Matrix Spike Dup (W0I0994-MSD1) & \multicolumn{3}{|c|}{Source: 0124032-01} & & \multicolumn{2}{|l|}{Prepared: 09/27/10} & \multicolumn{2}{|l|}{Analyzed: 09/30/10 14:58} & \\
\hline Analyte & Sample Result & \[
\begin{gathered}
\text { QC } \\
\text { Result }
\end{gathered}
\] & Qualifier & Units & \begin{tabular}{l}
Spike \\
Level
\end{tabular} & \%REC & \begin{tabular}{l}
\%REC \\
Limits
\end{tabular} & RPD & \begin{tabular}{l}
RPD \\
Limit
\end{tabular} \\
\hline Endothall .......................... & ...ND ... & 3.45 & MS-01 & ug/l & 100 & 3 & 3.5-137 & 39 & 30 \\
\hline
\end{tabular}

\section*{Certificate of Analysis}

\section*{Notes:}

The Chain of Custody document is part of the analytical report.
Any remaining sample(s) for testing will be disposed of one month from the final report date unless other arrangements are made in advance.
All results are expressed on wet weight basis unless otherwise specified.

An Absence of Total Coliform meets the drinking water standards as established by the State of California Department of Health Services. The Reporting Limit (RL) is referenced as laboratory's Practical Quantitation Limit (PQL).
For Potable water analysis, the Reporting Limit (RL) is referenced as Detection Limit for reporting purposes (DLRs) defined by EPA.
If sample collected by Weck Laboratories, sampled in accordance to lab SOP MIS002


The results in this report apply to the samples analyzed in accordance with the chain of custody document. Weck Laboratories certifies that the test results meet all requirements of NELAC unless noted in the Case Narrative. This analytical report must be reproduced in its entirety.
Flags for Data Qualifiers:
MS-01 The spike recovery for this QC sample is outside of established control limits possibly due to sample matrix interference. ND NOT DETECTED at or above the Reporting Limit. If J-value reported, then NOT DETECTED at or above the Method Detection Limit (MDL).
Sub Subcontracted analysis, original report enclosed.
\(\mathrm{Dil} \quad\) The total dilution factor is expressed as a multiplication between the preparation dilution factor (a) and the analysis dilution factor (b) as "a x b". (a) and (b) are indicated as whole numbers with rounding up for \(\geq 0.5\) and off for \(<0.5\)

DL Method Detection Limit
RL Method Reporting Limit
MDA Minimum Detectable Activity
www.pacelabs.com

\section*{Report Prepared for:}

Bob Glaubig
Clinical Lab of San Bernardino
21881 Barton Road
Grand Terrace CA 92313
\(\square\)

\section*{Report Summary:}

This report contains results of one drinking water sample analyzed to determine 2,3,7,8-TCDD content. This sample was analyzed according to Method 1613 by High Resolution Gas Chromatography/High Resolution Mass Spectrometry.

\section*{Report Information:}

Pace Project \#: 10139161
Sample Receipt Date: 09/28/2010
Client Project \#: 1011785
Client Sub PO \#: N/A
State Cert \#: 01155CA

\section*{Invoicing \& Reporting Options:}

The report provided has been invoiced as a Level 2 Drinking Water Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Colin Schuft, your Pace Project Manager.

This report has been reviewed by:

\section*{Natant}

October 12, 2010
Nate Habte, Project Manager
(612) 607-6407
(612) 607-6444 (fax)
natnael.habte@pacelabs.com


\section*{Report of Laboratory Analysis}

This report should not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

The results relate only to the samples included in this report.

\section*{Minnesota Laboratory Certifications}
\begin{tabular}{llll} 
Authority & Certificate \# & Authority & Certificate \# \\
\hline \hline Alabama & 40770 & Montana & 92 \\
Alaska & MN00064 & Nebraska & \\
Arizona & AZ0014 & Nevada & MN000642010 \\
Arkansas & \(88-0680\) & New Jersey (N & MN002 \\
California & 01155 CA & New Mexico & MN00064 \\
Colorado & MN00064 & New York (NEL & 11647 \\
Connecticut & PH-0256 & North Carolina & 27700 \\
EPA Region 5 & WD-15J & North Dakota & R-036 \\
EPA Region 8 & 8 TMS-Q & Ohio & 4150 \\
Florida (NELAP & E87605 & Ohio VAP & CL101 \\
Georgia (DNR) & 959 & Oklahoma & D9922 \\
Guam & \(09-019 r\) & Oregon (ELAP) & MN200001-005 \\
Hawaii & SLD & Oregon (OREL & MN200001-005 \\
Idaho & MNO0064 & Pennsylvania & \(68-00563\) \\
Illinois & 200012 & Saipan & MP0003 \\
Indiana & C-MN-01 & South Carolina & 74003001 \\
Indiana & C-MN-01 & Tennesee & 2818 \\
lowa & 368 & Tennessee & 02818 \\
Kansas & E-10167 & Texas & T104704192-08 \\
Kentucky & 90062 & Utah (NELAP) & PAM \\
Louisiana & LA0900016 & Virginia & 00251 \\
Maine & 2007029 & Washington & C755 \\
Maryland & 322 & West Virginia & \(9952 C\) \\
Michigan & 9909 & Wisconsin & 999407970 \\
Minnesota & \(027-053-137\) & Wyoming & 8 MMS-Q \\
Mississippi & MN00064 & & \\
& & &
\end{tabular}

\section*{REPORT OF LABORATORY ANALYSIS}

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

\section*{Reporting Flags}
\(A=\) Reporting Limit based on signal to noise
\(B=\) Less than 10x higher than method blank level
\(C=\) Result obtained from confirmation analysis
D = Result obtained from analysis of diluted sample
\(E=\) Exceeds calibration range
I = Interference present
\(J=\) Estimated value
\(\mathrm{Nn}=\) Value obtained from additional analysis
\(P=P C D E\) Interference
\(\mathrm{R}=\) Recovery outside target range
\(S=\) Peak saturated
\(\mathrm{U}=\) Analyte not detected
\(\mathrm{V}=\) Result verified by confirmation analysis
X = \%D Exceeds limits
Y = Calculated using average of daily RFs
* \(=\) See Discussion

\section*{REPORT OF LABORATORY ANALYSIS}

\section*{Clinical Laboratory of San Bernardino}

1011785

\section*{SENDING LABORATORY:}

Clinical Laboratory of San Bernardino
21881 Barton Road
Grand Terrace, CA 92313
Phone: 909.825.7693
Fax: 909.825.7696
Project Manager: Bob Glaubig

\section*{RECEIVING LABORATORY:}

Pace Analytical
1700 Elm St
Minneapolis, MN 55414
Phone :(612) 607-1700
Fax: (612) 607-6444

Please email results to Project Manager: Bob Glaubig
[ ]benart@clinical-lab.com [ฟ(laubig@clinical-lab.com [ ] kavousy@clinical-lab.com [ ] styles@clinical-lab.com
Please California EDT transfer those samples with PS codes provided [ ] Yes [ CNo
Turn Around Time [ 10 Days [ ] 5 Days [ ] Other ___ Days

Subcontract Comments: Drinking water
\[
2,3,7,8 \text { TCDD Only }
\]



Client Name: Clinical Lab S.B.

Packing Materiel: \(\square\) Bubble Wrap A Bubble Bags \(\square\) None \(\square\) Other No Blank Yes



Client Notification/ Resolution:
Field Data Required?
\(Y / N\)
Person Contacted: \(\qquad\) Date/Time: \(\qquad\)
Comments/ Resolution: \(\qquad\)
\(\qquad\)

 F-L213Rev.00, 05Aug2009
Report No.....10139161_1613DW
1700 Elm Street SE, Suite 200, Minneapolis, MN 55414
Page 5 of 6

\title{
Drinking Water Analysis Results
}

Sample ID........... 10I1785-01
Client. \(\qquad\) Clinical Lab of San Bernardino
Lab Sample ID..... 10139161001

Date Collected.....09/23/2010
Date Received......09/28/2010
Date Extracted.....09/30/2010
\begin{tabular}{lcccc}
\hline & \begin{tabular}{c} 
Sample \\
\(\mathbf{1 0 I 1 7 8 5 - 0 1}\)
\end{tabular} & \begin{tabular}{c} 
Method \\
Blank
\end{tabular} & \begin{tabular}{c} 
Lab \\
Spike
\end{tabular} & \begin{tabular}{c} 
Lab \\
Spike Dup
\end{tabular} \\
\hline\([2,3,7,8-\mathrm{TCDD}]\) & ND & ND & -- & -- \\
KL & \(5.0 \mathrm{pg} / \mathrm{L}\) & \(5.0 \mathrm{pg} / \mathrm{L}\) & -- & -- \\
\hline \(2,3,7,8-\mathrm{TCDD}\) Recovery & -- & -- & \(105 \%\) & \(108 \%\) \\
Spike Recovery Limit & -- & -- & \(73-146 \%\) & \(73-146 \%\) \\
RPD & & & \(2.9 \%\) & \\
\hline
\end{tabular}
\begin{tabular}{lcccc}
\hline IS Recovery & \(\mathbf{7 8 \%}\) & \(85 \%\) & \(87 \%\) & \(85 \%\) \\
IS Recovery Limits & \(31-137 \%\) & \(31-137 \%\) & \(25-141 \%\) & \(25-141 \%\) \\
\hline CS Recovery & \(\mathbf{7 7 \%}\) & \(84 \%\) & \(87 \%\) & \(86 \%\) \\
CS Recovery Limits & \(42-164 \%\) & \(42-164 \%\) & \(37-158 \%\) & \(37-158 \%\) \\
\hline Filename & & & & \\
Analysis Date & R101002A_10 & R101002A_05 & R101002A_03 & R101002A_04 \\
Analysis Time & \(10 / 02 / 2010\) & \(10 / 02 / 2010\) & \(10 / 02 / 2010\) & \(10 / 02 / 2010\) \\
Analyst & \(12: 06\) & \(07: 31\) & \(06: 23\) & \(06: 57\) \\
Volume & CVS & CVS & CVS & CVS \\
Dilution & 0.905 L & 1.019 L & 1.008 L & 0.995 L \\
ICAL Date & NA & NA & NA & NA \\
CCAL Filename & \(08 / 28 / 2010\) & \(08 / 28 / 2010\) & \(08 / 28 / 2010\) & \(08 / 28 / 2010\) \\
& R101002A_02 & R101002A_02 & R101002A_02 & R101002A_02
\end{tabular}
\begin{tabular}{ll}
\(!\) & \(=\) Outside the Control Limits \\
ND & \(=\) Not Detected \\
RD & \(=\) Reporting Limit \\
Limits & = Control Limits from Method 1613 (10/94 Revision), Tables 6A and 7A \\
RD & = Relative Percent Difference of Lab Spike Recoveries \\
IS & \(=\) Internal Standard \(\left[2,3,7,8-\mathrm{TCDD}{ }^{-13} \mathrm{C}_{12}\right]\) \\
CS & \(=\) Cleanup Standard \(\left[2,3,7,8-\mathrm{TCDD}-{ }^{37} \mathrm{Cl}_{4}\right]\)
\end{tabular}


Analytical Chemists
October 14, 2010

Clinical Lab of San Bernardino
P.O. Box 329

San Bernardino, CA 92402

Lab ID : SP 1010046
Customer : 2-1747

\section*{Laboratory Report}

Introduction: This report package contains total of 4 pages divided into 3 sections:
Case Narrative
(2 pages) : An overview of the work performed at FGL.
Sample Results
(1 page) : Results for each sample submitted.
Quality Control
(1 page) : Supporting Quality Control (QC) results.

\section*{Case Narrative}

This Case Narrative pertains to the following samples:
\begin{tabular}{||c|c|c|c|c|}
\hline Sample Description & \begin{tabular}{c} 
Date \\
Sampled
\end{tabular} & \begin{tabular}{c} 
Date \\
Received
\end{tabular} & FGL Lab ID \# & Matrix \\
\hline BDVWA-MW1/1011785-01 & \(09 / 23 / 2010\) & \(09 / 30 / 2010\) & SP 1010046-001 & DW \\
\hline
\end{tabular}

Sampling and Receipt Information: The sample was received, prepared and analyzed within the method specified holding times. All samples arrived on ice. All samples were checked for pH if acid or base preservation is required (except for VOAs). For details of sample receipt information, please see the attached Chain of Custody and Condition Upon Receipt Form.

Quality Control: All samples were prepared and analyzed according to the following tables:

\section*{Radio QC}
\begin{tabular}{||l|l||}
\hline \hline 903.0 & \(10 / 07 / 2010: 212657\) All analysis quality controls are within established criteria. \\
\cline { 2 - 6 } & \(10 / 05 / 2010: 210355\) All preparation quality controls are within established criteria. \\
\hline 905.0 & \(10 / 07 / 2010: 212656\) All analysis quality controls are within established criteria. \\
\cline { 2 - 4 } & \begin{tabular}{l}
\(10 / 06 / 2010: 210424\) All preparation quality controls are within established criteria, except: \\
The following note applies to Total Strontium: \\
410 Relative Percent Difference (RPD) not within Maximum Allowable Value (MAV). Data was accepted \\
based on the LCS or CCV recovery.
\end{tabular} \\
\hline 906.0 & \(10 / 12 / 2010: 212886\) All analysis quality controls are within established criteria. \\
\cline { 2 - 4 } & \(10 / 11 / 2010: 210579\) All preparation quality controls are within established criteria. \\
\hline Ra - 05 & \(10 / 10 / 2010: 212880\) All analysis quality controls are within established criteria. \\
\hline
\end{tabular}
\begin{tabular}{llll} 
Corporate Offices \& Laboratory & Office \& Laboratory & Office \& Laboratory \\
853 Corporation Street & 2500 Stagecoach Road & Field Office \\
Santa Paula, CA 93060 & Stockton, CA 95215 & V63 E. Lindo Avenue \\
TEL: 805/392-2000 & TEL: 209/942-0182 & Chico, CA 95926 \\
FAX: 805/525-4172 & FAX: 209/942-0423 & TEL: 530/343-5818 & TEL: \(559 / 734-9473\) \\
CA NELAP Certification No. 01110CA & CA ELAP Certification No. 1563 & FAX: 530/343-3807 & Mobile: 559/737-2399 \\
CA ELAP Certification No. 2670
\end{tabular}
\begin{tabular}{lll} 
October 14, 2010 & Lab ID & \(:\) SP 1010046 \\
Clinical Lab of San Bernardino & Customer & \(: 2-1747\)
\end{tabular}

\section*{Radio QC}
\begin{tabular}{||l|l||}
\hline Ra -05 & \(10 / 09 / 2010: 210383\) All preparation quality controls are within established criteria. \\
\hline
\end{tabular}

Certification:: I certify that this data package is in compliance with NELAC standards, both technically and for completeness, except for any conditions listed above. Release of the data contained in this data package is authorized by the Laboratory Director or his designee, as verified by the following electronic signature.

KD:DMB

Description : BDVWA-MW1 / 10I1785-01
Project : 10I1785

Analytical Chemists
Clinical Lab of San Bernardino
P.O. Box 329

San Bernardino, CA 92402
\begin{tabular}{ll} 
Lab ID & \(:\) SP 1010046-001 \\
Customer ID & \(: 2-1747\) \\
& \\
Sampled On & \(:\) September 23, 2010-14:10 \\
Sampled By & \(:\) Not Available \\
Received On & : September 30, 2010-16:15 \\
Matrix & : Drinking Water
\end{tabular}

Lab ID : SP 1010046-001
Customer ID : 2-1747

Sampled On : September 23, 2010-14:10
Sampled By : Not Available
Matrix : Drinking Water

\section*{Sample Result - Radio}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Constituent} & \multirow[t]{2}{*}{Result \(\pm\) Error} & \multirow[t]{2}{*}{MDA} & \multirow[t]{2}{*}{Units} & \multirow[t]{2}{*}{MCL/AL} & \multicolumn{2}{|l|}{Sample Preparation} & \multicolumn{2}{|l|}{Sample Analysis} \\
\hline & & & & & Method & Date/ID & Method & Date/ID \\
\hline Radio Chemistry \({ }^{\text {P:15 }}\) & & & & & & & & \\
\hline Strontium 90 & \(1.33 \pm 0.747\) & 1.06 & \(\mathrm{pCi} / \mathrm{L}\) & 8 & 905.0 & 10/06/10:210424 & 905.0 & 10/07/10:212656 \\
\hline Total Alpha Radium & \(0.000 \pm 0.340\) & 0.549 & \(\mathrm{pCi} / \mathrm{L}\) & 3 & 903.0 & 10/05/10:210355 & 903.0 & 10/07/10:212657 \\
\hline Tritium & \(0.000 \pm 222\) & 386 & \(\mathrm{pCi} / \mathrm{L}\) & 20000 & 906.0 & 10/11/10:210579 & 906.0 & 10/12/10:212886 \\
\hline Ra 228 & \(0.000 \pm 0.653\) & 0.279 & \(\mathrm{pCi} / \mathrm{L}\) & 2 & \(\mathrm{Ra}-05\) & 10/09/10:210383 & Ra-05 & 10/10/10:212880 \\
\hline
\end{tabular}

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (P) Plastic Preservatives: HNO3 pH < 2
MDA \(=\) Minimum Detectable Activity (Calculated at the \(95 \%\) confidence level) \(=\) Data utilized by DHS to determine matrix interference.
MCL / AL = Maximum Contamination Level / Action Level. Alpha's Action Level of \(5 \mathrm{pCi} / \mathrm{L}\) is based on the Assigned Value (AV).
\(\mathrm{AV}=(\) Gross Alpha Result \(+(0.84 \times\) Error \())\). CCR Section 64442: Drinking Water Compliance Note: Do the following
If Gross Alpha's (AV) exceeds \(5 \mathrm{pCi} / \mathrm{L}\) run Uranium. If Gross Alpha's (AV) minus Uranium exceeds \(5 \mathrm{pCi} / \mathrm{L}\) run Radium 226.
Drinking Water Compliance:
Gross Alpha (AV) minus Uranium is less than or equal to \(15 \mathrm{pCi} / \mathrm{L}\)
Uranium is less than or equal to \(20 \mathrm{pCi} / \mathrm{L}\)
Radium 226 + Radium 228 is less than or equal to \(5 \mathrm{pCi} / \mathrm{L}\)
Note: Samples are held for 3-6 months prior to disposal.
\begin{tabular}{|c|c|c|c|}
\hline Corporate Offices \& Laboratory & Office \& Laboratory & Office \& Laboratory & Field Office \\
\hline 853 Corporation Street & 2500 Stagecoach Road & 563 E. Lindo Avenue & Visalia, California \\
\hline Santa Paula, CA 93060 & Stockton, CA 95215 & Chico, CA 95926 & TEL: 559/734-9473 \\
\hline TEL: 805/392-2000 & TEL: 209/942-0182 & TEL: 530/343-5818 & Mobile: 559/737-2399 \\
\hline FAX: 805/525-4172 & FAX: 209/942-0423 & FAX: 530/343-3807 & FAX: 559/734-8435 \\
\hline CA NELAP Certification No. 01110CA & CA ELAP Certification No. 1563 & CA ELAP Certification No. 2670 & \\
\hline
\end{tabular}

\section*{Analytical Chemists}

October 14, 2010
Clinical Lab of San Bernardino
Lab ID
: SP 1010046
Customer

\section*{Quality Control - Radio}


Page 4 of 4
\begin{tabular}{|c|c|c|c|}
\hline Corporate Offices \& Laboratory & Office \& Laboratory & Office \& Laboratory & Field Office \\
\hline 853 Corporation Street & 2500 Stagecoach Road & 563 E. Lindo Avenue & Visalia, California \\
\hline Santa Paula, CA 93060 & Stockton, CA 95215 & Chico, CA 95926 & TEL: 559/734-9473 \\
\hline TEL: 805/392-2000 & TEL: 209/942-0182 & TEL: 530/343-5818 & Mobile: 559/737-2399 \\
\hline FAX: 805/525-4172 & FAX: 209/942-0423 & FAX: 530/343-3807 & FAX: 559/734-8435 \\
\hline CA NELAP Certification No. 01110CA & CA ELAP Certification No. 1563 & CA ELAP Certification No. 2670 & \\
\hline
\end{tabular}

\section*{SUBCONTRACT ORDER}

\section*{Clinical Laboratory of San Bernardino}

1011785

\section*{SENDING LABORATORY:}

Clinical Laboratory of San Bernardino
21881 Barton Road
Grand Terrace, CA 92313
Phone: 909.825 .7693
Fax: 909.825.7696
Project Manager: Bob Glaubig

\section*{RECEIVING LABORATORY:}

FGL Environmental
853 Corporation St
Santa Paula, CA 93060
Phone :(805) 392-2000
Fax: (805) 525-4172

Please email results to Project Manager: Bob Glaubig
[ ] benart@clinical-lab.com [V glaubig@clinical-lab.com [ ] kavousy@clinical-lab.com [] styles@clinical-lab.com Please California EDT transfer those samples with PS codes provided [] Yes [ \(V\) No Turn Around Time [ ] 10 Days [ ] 5 Days [ ] Other __Days
Subcontract Comments:

Analysis Due

Comments
\begin{tabular}{lll} 
Sample ID: BDVWA - MW1 / 1011785-01 & \multicolumn{1}{c}{ Water } & Sampled:09/23/10 14:10 PS Code: \\
\hline Tritium EPA 906.0 & \(10 / 06 / 1017: 00\) \\
Strontium 90 EPA 905.0 & \(10 / 06 / 1017: 00\) \\
Radium 228 EPA Ra-05 & \(10 / 06 / 1017: 00\) \\
Radium 226 EPA 903.1 & \(10 / 06 / 1017: 00\) \\
Containers Supplied: & & \\
1/2 Gallon Plastic (A) & I/2 Gallon Plastic (B) & 1/2 Gallon Plastic (C)
\end{tabular}\(\quad\) 250 mL Amber Glass (I) \begin{tabular}{l} 
\\
\hline
\end{tabular}


\section*{Santa Paula - Condition Upon Receipt (Attach to COC)}

\section*{pt}
of ice chests/packages received:


OTC if received over the counter unpackaged.
2. Were samples received in a chilled condition? Temps:

\(\qquad\) 1 \(\qquad\) 1 1 Acceptable is \(2^{\circ}\) to \(6^{\circ} \mathrm{C}\). Also acceptable is received on ice (ROI) for the same day of sampling or receive temperature (RRT) if sampled within one hour of receipt. Clime check for tests/H.T.'s/rushes/Bacti's to prioritize documented below. If many packages are received at immediately of bacti samples received. further review. Please notify Microbiology per
3. Do the number of bottles received agree with the COC ?
4. Were samples received intact? (i.e. no broken bottles, leaks etc.)
5. Were sample custody seals intact?


Sign and date the COC, obtain LIMS sample numbers, select methods/tests and print labels.
Sample Verification, Labeling and Distribution:
1. Were all requested analyses understood and acceptable?

2. Did bottle labels correspond with the client's ID's?
3. Were all bottles requiring sample preservation properly preserved?
4. VOA checked for Headspace?
5. Were all analyses within holding times at time of receipt?


Yes No


GL
6. Have rush or project due dates been checked and accepted?


Attach labels to the containers and include a copy of the COC for lab delivery.
Sample Receipt, Login and Verification completed by (initials):


Discrepancy Documentation:
Any items above which are "No" or do not meet specifications (ie. temps) must be resolved. 1. Person Contacted: \(\qquad\) Phone Number: \(\qquad\)
Date: \(\qquad\)
Initiated By: \(\qquad\)
Problem:
Resolution:
2. Person Contacted:

Initiated By:
Problem:

\section*{Resolution:}

LA Testing
520 Mission Street South Pasadena, CA 91030
Phone: (323) 254-9960 Fax: (323) 254-9982 Web: http://www.latesting.com Email:pasadenalab@latesting.com
Attn: Bob Glaubig
Clinical Labs
21881 Barton Road
Grand Terrace, CA 92313

Fax: (909) 825-7696
Phone: (909) 825-7693
\begin{tabular}{ll} 
EMSL Order: & 321013201 \\
Customer ID: & 32 CLIN51 \\
Customer PO: & \\
EMSL Project ID: & \\
Received: & \(9 / 27 / 2010\) \\
Analyzed: & \(10 / 01 / 2010\)
\end{tabular}

Project: 1011785

\section*{Test Report: Determination of Asbestos Structures \(>10 \mu \mathrm{~m}\) in Drinking Water Performed by the 100.2 Method (EPA 600/R-94/134)}
\begin{tabular}{lccccccccccc} 
\\
& Sample \\
Sample ID \\
Client/EMSL
\end{tabular}

Samples received out of 48 hour hold time. UV Ozonated.
\(\frac{\text { Analyst(s) }}{\text { Sherrie Ahmad }}\)


Any questions please contact Jerry Drapala.

Sample collection and containers provided by the client, acceptable bottle blank level is defined as \(\leq 0.01 \mathrm{MFL}>10 \mathrm{um}\). ND=None Detected. This report relates only to those items tested. This report may not be reproduced, except in full, without written permission by LA Testing. Samples received in good condition unless othenwise noted.

Samples analyzed by LA Testing 520 Mission Street, South Pasadena CA CA ELAP 2283

\section*{SENDING LABORATORY:}

Clinical Laboratory of San Bernardino
21881 Barton Road
Grand Terrace, CA 92313
Phone: 909.825.7693
Fax: 909.825.7696
Project Manager: Bob Glaubig

\section*{RECEIVING LABORATORY:}

LA Testing
520 Mission Street
South Pasadena, CA 91030
Phone :(323) 254-9960
Fax: (323) 254-9982

Please email results to Project Manager: Bob Glaubig
[ ]benart@clinical-lab.com [V glaubig@clinical-lab.com [ ] kavousy@clinical-lab.com [ ] styles@clinical-lab.com
Please California EDT transfer those samples with PS codes provided [ ] Yes [ \(\backslash\) No
Turn Around Time [ ] 10 Days [ \(\sqrt{5}\) Days [ ] Other __Days
Subcontract Comments: Extra charge for old samples is authorized

Analysis Due Comments
\begin{tabular}{l}
\hline \\
Sample ID: BDVWA - MW1 / 1011785-01 \\
\hline Asbestos EPA 100.2 \\
Containers Supplied: \\
I Quart Plastic (D)
\end{tabular}


Geneeral Mreeral Panel, Irorganic Ohemicul Panel, Gross Alphan only

\section*{Appendix G}

\section*{Regulatory Permits and Permit Applications}

July 27, 2010
\begin{tabular}{ll} 
Addressee: & \begin{tabular}{l} 
Bighorn Desert View Water Agency \\
\\
\\
622 S. Jemez Trail \\
Yucca Valley, CA 92284 \\
Marina D. West, PG \\
General Manager
\end{tabular} \\
& File: 6-000/2.04 \\
Activity: & \begin{tabular}{l} 
Proposed construction of an infiltration basin to percolate water into the Recce \\
Groundwater Basin
\end{tabular} \\
\begin{tabular}{ll} 
Facility: & None \\
Location: & East of State Highway 247 and south of Reche Road \\
City/Community: & Unincorporated area of San Bernardino County
\end{tabular}
\end{tabular}

The District is in receipt of your letter dated July 14, 2010, advising the District of the Water Agency's proposed construction of an infiltration basin at the above noted location within an unincorporated area of San Bernardino County.

Please be advised the District has no facilities or right-of-way in this area that could be impacted by your proposed construction of an infiltration basin. Therefore, a permit from the District will not be required, and the District has no further comments to offer regarding this matter.

If you have any questions regarding the above, please contact the undersigned at (909) 387-7995.
Sincerely,


GRANT C. MANN, PE.
Permit Engineer
San Bernardino County
Department of Public Works
GCM:MM:jh
cc: Kevin Blakeslee


\section*{BIGHORN-DESERT VIEW WATER AGENCY}

622 S. JEMEZ TRAIL
YUCCA VALLEY, CA. 92284-1440
Re: Application for an Excavation Permit, to construct a water pipeline along Winters Road from Warren vista Ave to Valley Vista Ave in the Yucca Valley area.

Gentlemen:
In reply to your request of an Excavation Permit, consider this the County Department of Public Works letter of non-objection for your proposed encroachment within public right-of-way at the above noted location, for the purpose of installing a water pipeline.

The proposed work lies within the right of way of Winters Road which is not included within the Maintained System. The County Department of Public Works does not issue permit requirements in this case. We strongly recommend, however, all construction be in a workmanlike manner consistent with currently accepted practices. This letter is issued in order to advise you of County rights within the right-of-way should the County Department of Public Works desire to perform work there in the future.

This letter of non-objection is valid only to the extent of County Department of Public Works interest. It shall be your responsibility to obtain permits required by other interested agencies.

You may be required to remove or relocate the facility at your own cost should the improvement need to be widened or reconstructed or for any other reason as determined by the County Department of Public Works. The removal and/or relocation of said improvements shall be accomplished at no expense to San Bernardino County Department of Public Works.

This letter is non-transferable and will expire if work has not started within one year from the date of this letter. Once the work has started, it shall be completed within sixty ( 60 ) days.

If you have any questions regarding the above, please contact the undersigned at (909) 387-8046.


> Sincerely,

\(\qquad\)
 \(\qquad\) DOLLARS Silty and 1100

\(\qquad\)
\(\qquad\)


01-188A-123 Rev. 日/00 \(10326 \quad 7 / 16 / 10\)
FR: Rick Lucas

Board of Directors
Terry Burkhart, President J. Larry Coulombe, Vice President Michael McBride, Director David Larson, Director Martha Oswalt, Director

760/364-2315 Phone
760/364-3412 Fax

Marina D West, P.G., General Manager Joanne L Keiter, Board Secretary

\author{
A Public Agency
}

July 14, 2010
Mr. Erwin Fogerson, Chief
San Bernardino County Public Works Department
Transportation Operations Division
Transportation Permit Section
825 East Third Street
San Bernardino, CA 92415
Subject: "No Objection Permit"
Reche Groundwater Basin Recharge Project
Dear Mr. Fogerson:
The Bighorn-Desert View Water Agency (BDVWA) wishes to implement a Reche Groundwater Basin Recharge Project located in San Bernardino County, California. One of the requirements of this project is the construction of an infiltration basin to percolate water into the Reche Groundwater Basin. The project proposed to be located on Bureau of Land Management (BLM) lands in the Pipes Wash located at Township 2 North, Range 5 East, Section 24, San Bernardino Base \& Meridian. (T2N, R5E, S.B.B.\& M.). As part of the construction of this infiltration basin, the BDVWA will need to construct a pipeline along the northern right of way of Winters Road from Warren Vista Avenue to Pipes Wash. Note: Winters road is also known as Tracy Blvd. Figure 1 shows the location of the proposed pipeline construction.

In discussion between Mr. Rick Lucas and Raymond E. Ouellette with Kennedy/Jenks Consultants, Mr. Lucas indicated that the road identified as Winters Road is a "nonpaved dedicated road" between Warren Vista Avenue up to the junction with Valley Vista Avenue. The portion identified as Tracy Blvd from Valley Vista Avenue west to Pipes Wash is not dedicated. Since this portion of the pipeline construction is not in a County Dedicated Road, it is our understanding that a "no objection permit" is required from the County. The BDVWA requests that a "no objection permit" be issued for this Right-of-Way work in this portion of the road.

Because we feel the project qualifies for a "no objection permit" and a formal encroachment permit is not necessary, we have not included detailed engineering plans with this submittal. However, a check in the amount of \(\$ 60.00\) for processing is
enclosed. If you have any questions about this request, please contact me at \(760-364\) 2315.

Very truly yours,


Marina D. West, PG
General Manager

\section*{Enclosure}
cc: Kennedy/Jenks Consultants, Ventura, CA.


Image Source:(c)2009 Microsoft Corporation Source: Bureau of Land Managment

Kennedy/Jenks Consultants
Bighorn-Desert View Water Agency San Bernardino County, California

Present Owner Information

Board of Directors
Terry Burkhart, President J. Larry Coulombe, Vice President Michael McBride, Director David Larson, Director Martha Oswalt, Director

760/364-2315 Phone
760/364-3412 Fax

Marina D West, P.G., General Manager Joanne L Keiter, Board Secretary

\author{
A Public Agency
}

July 14, 2010
Mr. Erwin Fogerson, Chief
San Bernardino County Public Works Department
Transportation Operations Division
Transportation Permit Section
825 East Third Street
San Bernardino, CA 92415
Subject: "No Objection Permit"
Reche Groundwater Basin Recharge Project
Dear Mr. Fogerson:
The Bighorn-Desert View Water Agency (BDVWA) wishes to implement a Reche Groundwater Basin Recharge Project located in San Bernardino County, California. One of the requirements of this project is the construction of an infiltration basin to percolate water into the Reche Groundwater Basin. The project proposed to be located on Bureau of Land Management (BLM) lands in the Pipes Wash located at Township 2 North, Range 5 East, Section 24, San Bernardino Base \& Meridian. (T2N, R5E, S.B.B.\& M.). As part of the construction of this infiltration basin, the BDVWA will need to construct a pipeline along the northern right of way of Winters Road from Warren Vista Avenue to Pipes Wash. Note: Winters road is also known as Tracy Blvd. Figure 1 shows the location of the proposed pipeline construction.

In discussion between Mr. Rick Lucas and Raymond E. Ouellette with Kennedy/Jenks Consultants, Mr. Lucas indicated that the road identified as Winters Road is a "nonpaved dedicated road" between Warren Vista Avenue up to the junction with Valley Vista Avenue. The portion identified as Tracy Blvd from Valley Vista Avenue west to Pipes Wash is not dedicated. Since this portion of the pipeline construction is not in a County Dedicated Road, it is our understanding that a "no objection permit" is required from the County. The BDVWA requests that a "no objection permit" be issued for this Right-of-Way work in this portion of the road.

Because we feel the project qualifies for a "no objection permit" and a formal encroachment permit is not necessary, we have not included detailed engineering plans with this submittal. However, a check in the amount of \(\$ 60.00\) for processing is
enclosed. If you have any questions about this request, please contact me at \(760-364\) 2315.

Very truly yours,


Marina D. West, PG
General Manager

\section*{Enclosure}
cc: Kennedy/Jenks Consultants, Ventura, CA.


Image Source:(c)2009 Microsoft Corporation Source: Bureau of Land Managment

Kennedy/Jenks Consultants
Bighorn-Desert View Water Agency San Bernardino County, California

Present Owner Information

Board of Directors
Terry Burkhart, President J. Larry Coulombe, Vice President Michael McBride, Director David Larson, Director
Martha Oswalt, Director


Agency Office 622 S. Jemez Trail Yucca Valley, CA 92284-1440

760/364-2315 Phone 760/364-3412 Fax

Marina D West, P.G., General Manager Joanne L Keiter, Board Secretary

\author{
A Public Agency
}

July 14, 2010
Mr. Kevin Blakeslee, Deputy Chief
San Bernardino County Public Works Department
Transportation Operations Division
Flood Control Section
825 East Third Street
San Bernardino, CA 92415

\section*{Subject: "Right of Way" Permit \\ Reche Groundwater Basin Recharge Project}

Dear Mr. Blakeslee:
The Bighorn-Desert View Water Agency (BDVWA) wishes to implement a Ames/Reche Groundwater Basin Recharge Project located in San Bernardino County, California. One of the requirements of this project is the construction of an infiltration basin to percolate water into the Reche Groundwater Basin. The project proposed to be located on Bureau of Land Management (BLM) lands in the Pipes Wash located at Township 2 North, Range 5 East, Section 24, San Bernardino Base \& Meridian. (T2N, R5E, S.B.B.\& M.). As part of the construction of this infiltration basin, the BDVWA will need to construct the infiltration basin within the Pipes Wash.

In discussions between Mr. Tom Williams, Cindy Beck and Raymond E. Ouellette with Kennedy/Jenks Consultants, it was indicated that a "Right of Way" permit for this activity would not be required. We have enclosed three figures which identify the location of the proposed project and would like written confirmation that a "Right-of-Way" permit is not required for us to proceed.

If you have any questions about this project, please call me at 760-364-2315.
Very truly yours,


General Manager

\section*{Enclosure}
cc: Kennedy/Jenks Consultants, Ventura, CA.
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{5}{|c|}{ FOR DEPARTMENT USE ONLY } \\
\hline Date Recerved & Amount Recerved & Amount Due & Date Complete & Notification No \\
\hline & \(\$\) & \(\$\) & & \\
\hline
\end{tabular}


\section*{STATE OF CALIFORNIA DEPARTMENT OF FISH AND GAME \\ NOTIFICATION OF LAKE OR STREAMBED ALTERATION}

Complete EACH field, unless otherwise indicated, following the enclosed instructions and submit ALL required enclosures. Attach additional pages, if necessary.

\section*{1. APPLICANT PROPOSING PROJECT}

2. CONTACT PERSON (Complete only if different from applicant)
\begin{tabular}{|c|c|c|c|}
\hline Name & \multicolumn{3}{|l|}{same as above} \\
\hline Street Address & \multicolumn{3}{|l|}{} \\
\hline City, State, Zip & \multicolumn{3}{|l|}{} \\
\hline Telephone & & Fax & \\
\hline Email & \multicolumn{3}{|l|}{} \\
\hline
\end{tabular}
3. PROPERTY OWNER (Complete only if different from applicant)
\begin{tabular}{|l|l|l|l|}
\hline Name & Bureau of Land Management Palm Springs South Coast Field Office \\
\hline Street Address & 1201 Bird Center Drive \\
\hline City, State, Zip & Palm Springs, California 92262 & \multicolumn{2}{l|}{} \\
\hline Telephone & \((760) 833-7100\) & Fax & \((760) 833-7199\) \\
\hline Email & \multicolumn{3}{|l|}{} \\
\hline
\end{tabular}

\section*{4. PROJECT NAME AND AGREEMENT TERM}
\begin{tabular}{|c|c|c|c|c|}
\hline A. Project Name & & \multicolumn{3}{|l|}{Ames/Reche Groundwater Storage} \\
\hline \multicolumn{2}{|l|}{B. Agreement Term Requested} & \multicolumn{3}{|l|}{】. Regular (5 years or less)
Long-term (greater than 5 years)} \\
\hline \multicolumn{2}{|l|}{C. Project Term} & \multicolumn{2}{|l|}{D. Seasonal Work Period} & \multirow[t]{2}{*}{E. Number of Work Days} \\
\hline Beginning (year) & Ending (year) & Start Date (month/day) & End Date (month/day) & \\
\hline
\end{tabular}

\section*{5. AGREEMENT TYPE}

Check the applicable box. If box B, C, D, or E is checked, complete the specified attachment.
A. \(\square\) Standard (Most construction projects, excluding the categories listed below)
B. \(\square\) Gravel/Sand/Rock Extraction (Attachment A)

Mine I.D. Number:
C. \(\square\) Timber Harvesting (Attachment B)

THP Number:
D. \(\square\) Water Diversion/Extraction/Impoundment (Attachment \(C\) ) SWRCB Number: Water from Mojave Water Agency
E. \(\square\) Routine Maintenance (Attachment D)
F. \(\square\) DFG Fisheries Restoration Grant Program (FRGP)

FRGP Contract Number:
G. \(\square\) Master
H. \(\square\) Master Timber Harvesting

\section*{6. FEES}

Please see the current fee schedule to determine the appropriate notification fee. Itemize each project's estimated cost and corresponding fee. Note: The Department may not process this notification until the correct fee has been received.
\begin{tabular}{|l|c|r|r|r|}
\hline \multicolumn{7}{|c|}{ A. Project } & B. Project Cost & C. Project Fee \\
\hline 1 & Ames/Reche Groundwater Storage & \(\$ 30,000.00\) & \(\$ 750.00\) \\
\hline 2 & & & \\
\hline 3 & & & \\
\hline 4 & & & \\
\hline 5 & & \begin{tabular}{l} 
D. Base Fee \\
(if applicable)
\end{tabular} & \\
\hline & \begin{tabular}{l} 
E. TOTAL FEE \\
ENCLOSED
\end{tabular} & \(\$ 750.00\) \\
\hline
\end{tabular}

\section*{7. PRIOR NOTIFICATION OR ORDER}
A. Has a notification previously been submitted to, or a Lake or Streambed Alteration Agreement previously been issued by, the Department for the project described in this notification?
\(\square\) Yes (Provide the information below)

\section*{- No}

Applicant: \(\qquad\) Notification Number: Date:
B. Is this notification being submitted in response to an order, notice, or other directive ("order") by a court or administrative agency (including the Department)?

No \(\square \mathrm{Yes}\) (Enclose a copy of the order, notice, or other directive. If the directive is not in writing, identify the person who directed the applicant to submit this notification and the agency he or she represents, and describe the circumstances relating to the order.)

\section*{8. PROJECT LOCATION}
A. Address or description of project location.
(Include a map that marks the location of the project with a reference to the nearest city or town, and provide driving directions from a major road or highway)
Located within the Pipes Wash northwest of the intersection of Winters Road and Warren Vista Avenue. Site is within the unincorporated community of Flamingo Heights in south San Bernardino County near the town of Yucca Valley. See Exhibit 1 attached for map.

Driving directions:
From 29 Palms Highway (62) turn north onto Old Woman Springs Road (247). Turn right on Buena Vista Drive. Turn left on Warren Vista Avenue. Turn left on Winters Road. Four wheel drive vehicle required to access Pipes Wash down an undeveloped dirt road. Site will be on right beginning at the base of slope.

Continued on additional page(s)


\section*{NOTIFICATION OF LAKE OR STREAMBED ALTERATION}
9. PROJECT CATEGORY AND WORK TYPE (Check each box that applies)
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ PROJECT CATEGORY } & \begin{tabular}{c} 
REW \\
CONSTRUCTION
\end{tabular} & \begin{tabular}{c} 
REPAIR/MAINTAIN \\
EXISTING STRUCTURE
\end{tabular} \\
\hline Bank stabilization - bioengineering/recontouring & \(\square\) & \(\square\) & \(\square\) \\
\hline Bank stabilization - rip-rap/retaining wall/gabion & \(\square\) & \(\square\) & \(\square\) \\
\hline Boat dock/pier & \(\square\) & \(\square\) & \(\square\) \\
\hline Boat ramp & \(\square\) & \(\square\) & \(\square\) \\
\hline Bridge & \(\square\) & \(\square\) & \(\square\) \\
\hline Channel clearing/vegetation management & \(\square\) & \(\square\) & \(\square\) \\
\hline Culvert & \(\square\) & \(\square\) & \(\square\) \\
\hline Debris basin & \(\square\) & \(\square\) & \(\square\) \\
\hline Dam & \(\square\) & \(\square\) & \(\square\) \\
\hline Diversion structure - weir or pump intake & \(\square\) & \(\square\) & \(\square\) \\
\hline Filling of wetland, river, stream, or lake & \(\square\) & \(\square\) & \(\square\) \\
\hline Geotechnical survey & \(\square\) & \(\square\) & \(\square\) \\
\hline Habitat enhancement - revegetation/mitigation & \(\square\) & \(\square\) & \(\square\) \\
\hline Levee & \(\square\) & \(\square\) & \(\square\) \\
\hline Low water crossing & \(\square\) & \(\square\) & \(\square\) \\
\hline Road/trail & \(\square\) & \(\square\) & \(\square\) \\
\hline Sediment removal - pond, stream, or marina & \(\square\) & \(\square\) & \(\square\) \\
\hline Storm drain outfall structure & \(\square\) & \(\square\) & \(\square\) \\
\hline Temporary stream crossing & \(\square\) & \(\square\) & \(\square\) \\
\hline Utility crossing : Horizontal Directional Drilling & \(\square\) & \(\square\) & \(\square\) \\
\hline & \(\square\) & \(\square\) & \(\square\) \\
\hline Jack/bore & \(\square\) & \(\square\) & \(\square\) \\
\hline Other (specify): Spreading Grounds \& Monitoring Wells & \(\square\) & \(\square\) & \(\square\) \\
\hline & \(\square\) & \(\square\) & \(\square\) \\
\hline
\end{tabular}

\section*{10. PROJECT DESCRIPTION}
A. Describe the project in detail. Photographs of the project location and immediate surrounding area should be included.
- Include any structures (e.g., rip-rap, culverts, or channel clearing) that will be placed, built, or completed in or near the stream, river, or lake.
- Specify the type and volume of materials that will be used.
- If water will be diverted or drafted, specify the purpose or use.

Enclose diagrams, drawings, plans, and/or maps that provide all of the following: site specific construction details; the dimensions of each structure and/or extent of each activity in the bed, channel, bank or floodplain; an overview of the entire project area (i.e., "bird's-eye view") showing the location of each structure and/or activity, significant area features, and where the equipment/machinery will enter and exit the project area.

This project includes construction of approximately 15 acres of spreading grounds within the Pipes Wash for storage and recovery of imported State Water Project water by Bighorn Desert View Water Agency to help increase the reliability of the overall water supply in the region. Construction activities will include the following: 1 . Minor grading and vegetation removal for creation of small earthen berms to minimize surface runoff (and evaporation) and maximize infiltration through the floor of the spreading grounds to the underlying groundwater table. 2. Construction of a small concrete outlet and diffusion structure from the SWP feed pipeline into the spreading grounds (structure will be approximately 8.5 feet long by 5 feet wide, by 2 feet tall). 3. Construction of two or three monitoring wells northeast of spreading grounds (within the Pipes Wash).

Exhibit 3 attached show the preferred location of the spreading grounds in red. However, pre-design testing will be done to determine the best location for the spreading ground boundaries, so a 39 acre area is shown in yellow to indicate possible alternative locations of the spreading grounds.

Photographs are included on page 26 of the MND attached.
B. Specify the equipment and machinery that will be used to complete the project.
a. One to two personnel for execution of on-site mitigation monitoring program (an expected output from CEQA/NEPA)
b. Up to two personnel
c. Up to four light-duty four-wheel drive vehicles
d. One JD D4 Track dozer
e. One paddlewheel scraper

Continued on additional page(s) \({ }^{\text {t }}\)
C. Will water be present during the proposed work period (specified in box 4.D) in the stream, river, or lake (specified in box 8.B).

Yes \(\quad \mathrm{No}\) (Skip to box 11)
D. Will the proposed project require work in the wetted portion Yes (Enclose a plan to divert water around work site) of the channel?

\section*{11. PROJECT IMPACTS}
A. Describe impacts to the bed, channel, and bank of the river, stream, or lake, and the associated riparian habitat. Specify the dimensions of the modifications in length (linear feet) and area (square feet or acres) and the type and volume of material (cubic yards) that will be moved, displaced, or otherwise disturbed, if applicable.

Per the Draft MND for this project, impacts of this project to the riparian habitat are less than significant. A raparian vegetation mitigation and monitoring plan for disturbed riparian vegetation will be developed and the project will comply with all applicable provisions of the San Bernardino County Development Code Section 88.01 .06 which addresses Desert Native Plant Protection.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|r|}{\(\square\) Continued on additional page(s)} \\
\hline B. Will the project affect any vegetation? & \multicolumn{4}{|l|}{\(\square\) Yes (Complete the tables below) \(\square\) No} \\
\hline Vegetation Type & \multicolumn{2}{|l|}{Temporary Impact} & \multicolumn{2}{|l|}{Permanent Impact} \\
\hline \multirow[t]{2}{*}{Protected plant species within spreading ground area listed on add'I pgs} & Linear feet: Total area: & unknown & Linear feet: Total area: & unknown \\
\hline & \begin{tabular}{l}
Linear feet: \\
Total area:
\end{tabular} &  & Linear feet: Total area: &  \\
\hline
\end{tabular}
\begin{tabular}{|l|c|l|}
\hline Tree Species & Number of Trees to be Removed & Trunk Diameter (range) \\
\hline None & 0 & \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}
C. Are any special status animal or plant species, or habitat that could support such species, known to be present on or near the project site?
\(\square \mathrm{Yes}\) (List each species and/or describe the habitat below)
\(\square\) No
Unknown
See attached

Continued on additional page(s)
D. Identify the source(s) of information that supports a "yes" or "no" answer above in Box 11.C.

CEQA Initial Study and Draft Mitigated Negative Declaration for Water Infrastructure Restoration Program ... (May 2010)
\(\square\) Continued on additional page(s)
E. Has a biological study been completed for the project site?
\(\square\) Yes (Enclose the biological study) \(\square\) No

Note: A biological assessment or study may be required to evaluate potential project impacts on biological resources.
F. Has a hydrological study been completed for the project or project site?
\(\square\) Yes (Enclose the hydrological study) \(\square\) No
Note: A hydrological study or other information on site hydraulics (e.g., flows, channel characteristics, and/or flood recurrence intervals) may be required to evaluate potential project impacts on hydrology.

\section*{12. MEASURES TO PROTECT FISH, WILDIFE, AND PLANT RESOURCES}
A. Describe the techniques that will be used to prevent sediment from entering watercourses during and after construction.

All water/sediment discharges during and after construction will fall under the requirements of an approved discharge permit from the Colorado River Regional Water Quality Control Board (Region 7). These requirements will minimize impacts to the Pipes Wash.
B. Describe project avoidance and/or minimization measures to protect fish, wildlife, and plant resources.

Mitigation measures and local ordinances will be followed per the Draft MND to minimize impacts to wildlife and plant resources within the project area. Note that this is a dry wash so no impacts to fish will occur.
C. Describe any project mitigation and/or compensation measures to protect fish, wildlife, and plant resources.

Mitigation measures as described in the MND will be followed.

\section*{13. PERMITS}

List any local, state, and federal permits required for the project and check the corresponding box(es). Enclose a copy of each permit that has been issued.
A. Colorado River Basin Regional Water Quality Control Board (See Attached)
B. US Fish and Wildlife Service (See Attached)
C. US Army Corp of Engineers (See Attached)
\begin{tabular}{ll}
\(\square\) Applied & \(\square\) Issued \\
\(\square\) Applied & \(\square\) Issued \\
\(\square\) Applied & \(\square\) Issued
\end{tabular}
D. Unknown whether \(\square\) local, \(\square\) state, or \(\square\) federal permit is needed for the project. (Check each box that applies)

\section*{14. ENVIRONMENTAL REVIEW}
A. Has a draft or final document been prepared for the project pursuant to the California Environmental Quality Act (CEQA), National Environmental Protection Act (NEPA), California Endangered Species Act (CESA) and/or federal Endangered Species Act (ESA)?

7 Yes (Check the box for each CEQA, NEPA, CESA, and ESA document that has been prepared and enclose a copy of each)
\(\square\) No (Check the box for each CEQA, NEPA, CESA, and ESA document listed below that will be or is being prepared)


\section*{15. SITE INSPECTION}

\section*{Check one box only.}
\(\square\) In the event the Department determines that a site inspection is necessary, I hereby authorize a Department representative to enter the property where the project described in this notification will take place at any reasonable time, and hereby certify that I am authorized to grant the Department such entry.

I request the Department to first contact (insert name)
Marina West
at (insert telephone number) \(\qquad\) (760) 364-2315 to schedule a date and time to enter the property where the project described in this notification will take place. I understand that this may delay the Department's determination as to whether a Lake or Streambed Alteration Agreement is required and/or the Department's issuance of a draft agreement pursuant to this notification.

\section*{16. DIGITAL FORMAT}

Is any of the information included as part of the notification available in digital format (ie., CD, DVD, etc.)?
\(\square\) Yes (Please enclose the information via digital media with the completed notification form)
\(\square\) No

\section*{17. SIGNATURE}

I hereby certify that to the best of my knowledge the information in this notification is true and correct and that I am authorized to sign this notification as, or on behalf of, the applicant. I understand that if any information in this notification is found to be untrue or incorrect, the Department may suspend processing this notification or suspend or revoke any draft or final Lake or Streambed Alteration Agreement issued pursuant to this notification. I understand also that if any information in this notification is found to be untrue or incorrect and the project described in this notification has already begun, I and/or the applicant may be subject to civil or criminal prosecution. I understand that this notification applies only to the project(s) described herein and that I and/or the applicant may be subject to civil or criminal prosecution for undertaking any project not described herein unless the Department has been separately notified of that project in accordance with Fish and Game Code section 1602 or 1611.


Signature of Applicant or Applicant's Authorized Representative


Date

Marina D. West
Print Name
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{4}{|c|}{ FOR DEPARTMENT USE ONLY } \\
\hline Date Received & Amount Received & Amount Due & Date Complete & Notification No. \\
\hline & \(\$\) & \(\$\) & & \\
\hline
\end{tabular}


\section*{STATE OF CALIFORNIA DEPARTMENT OF FISH AND GAME NOTIFICATION OF LAKE OR STREAMBED ALTERATION}

Complete EACH field, unless otherwise indicated, following the enclosed instructions and submit ALL required enclosures. Attach additional pages, if necessary.
1. APPLICANT PROPOSING PROJECT
\begin{tabular}{|l|l|l|}
\hline Name & Marina D. West, General Manager & \multicolumn{2}{|l|}{} \\
\hline Business/Agency & Bighorn Desert View Water Agency & \\
\hline Street Address & 622 S. Jemez Trail & \multicolumn{2}{|l|}{} \\
\hline City, State, Zip & Yucca Valley, CA 92284-1440 & Fax \\
\hline Telephone & (760) 364-2315 & \\
\hline Email & bdvwa2@mindspring.com & \\
\hline
\end{tabular}
2. CONTACT PERSON (Complete only if different from applicant)
\begin{tabular}{|l|l|l|l|}
\hline Name & same as above \\
\hline Street Address & & \multicolumn{2}{l|}{} \\
\hline City, State, Zip & & \multicolumn{2}{l|}{} \\
\hline Telephone & \multicolumn{3}{l|}{} \\
\hline Email & \multicolumn{4}{l|}{} \\
\hline
\end{tabular}
3. PROPERTY OWNER (Complete only if different from applicant)
\begin{tabular}{|l|l|l|l|}
\hline Name & Bureau of Land Management Palm Springs South Coast Field Office \\
\hline Street Address & 1201 Bird Center Drive \\
\hline City, State, Zip & Palm Springs, California 92262 & \multicolumn{2}{l|}{} \\
\hline Telephone & \((760) 833-7100\) & Fax & \((760) 833-7199\) \\
\hline Email & \multicolumn{3}{|l|}{} \\
\hline
\end{tabular}
4. PROJECT NAME AND AGREEMENT TERM


\section*{5. AGREEMENT TYPE}

Check the applicable box. If box \(B, C, D\), or \(E\) is checked, complete the specified attachment.
\begin{tabular}{|l|ll|}
\hline A. & \(\square\) Standard (Most construction projects, excluding the categories listed below) \\
\hline B. & \(\square\) Gravel/Sand/Rock Extraction (Attachment A) & Mine I.D. Number: \(\quad\) \\
\hline C. & \(\square\) Timber Harvesting (Attachment B) & THP Number: \(\quad\) \\
\hline D. & \(\square\) Water Diversion/Extraction/Impoundment (Attachment C) & SWRCB Number: \\
\hline E. & \(\square\) Routine Maintenance (Attachment D) & \\
\hline F. & \(\square\) DFG Fisheries Restoration Grant Program (FRGP) & FRGP Contract Number: \\
\hline G. & \(\square\) Master & \\
\hline H. & \(\square\) Master Timber Harvesting & \\
\hline
\end{tabular}

\section*{6. FEES}

Please see the current fee schedule to determine the appropriate notification fee. Itemize each project's estimated cost and corresponding fee. Note: The Department may not process this notification until the correct fee has been received.
\begin{tabular}{|l|c|l|l|}
\hline \multicolumn{2}{|c|}{ A. Project } & B. Project Cost & C. Project Fee \\
\hline 1 & Ames/Reche Groundwater Storage & & \\
\hline 2 & & & \\
\hline 3 & & & \\
\hline 4 & & \begin{tabular}{l} 
D. Base Fee \\
(if applicable)
\end{tabular} & \\
\hline 5 & & \begin{tabular}{l} 
E. TOTAL FEE \\
ENCLOSED
\end{tabular} & \\
\hline
\end{tabular}

\section*{7. PRIOR NOTIFICATION OR ORDER}
A. Has a notification previously been submitted to, or a Lake or Streambed Alteration Agreement previously been issued by, the Department for the project described in this notification?
\(\square\) Yes (Provide the information below)
Applicant: \(\qquad\) Notification Number: \(\qquad\) Date:
B. Is this notification being submitted in response to an order, notice, or other directive ("order") by a court or administrative agency (including the Department)?
\(\square\) No \(\square\) Y (Enclose a copy of the order, notice, or other directive. If the directive is not in writing, identify the person who directed the applicant to submit this notification and the agency he or she represents, and describe the circumstances relating to the order.)

\section*{8. PROJECT LOCATION}
A. Address or description of project location.
(Include a map that marks the location of the project with a reference to the nearest city or town, and provide driving directions from a major road or highway)

Located within the Pipes Wash northwest of the intersection of Winters Road and Warren Vista Avenue. Site is within the unincorporated community of Flamingo Heights in south San Bernardino County near the town of Yucca Valley. See Exhibit 1 attached for map.

Driving directions:
From 29 Palms Highway (62) turn north onto Old Woman Springs Road (247). Turn right on Buena Vista Drive. Turn left on Warren Vista Avenue. Turn left on Winters Road. Site will be on right.

Continued on additional page(s)
B. River, stream, or lake affected by the project. Pipes Wash
C. What water body is the river, stream, or lake tributary to? None
D. Is the river or stream segment affected by the project listed in the state or federal Wild and Scenic Rivers Acts?
\(\square\) Yes \(\quad \square\) No \(\quad \square\) Unknown
\begin{tabular}{|l|c|c|c|c|}
\hline E. County San Bernardino & G. Township & H. Range & I. Section & J. \(1 / 4\) Section \\
\hline F. USGS 7.5 Minute Quad Map Name & 2 North & 5 East & 24 & NE \\
\hline Yucca Valley North & & & & \\
\hline & & & & \\
\hline & & & & \\
\hline & \(\square\) Continued on additional page(s)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{K. Meridian (check one)} & \(\square\) Humboldt & \(\square\) Mt. Diablo & San Bernardino & \\
\hline \multicolumn{6}{|l|}{L. Assessor's Parcel Number(s)} \\
\hline \multicolumn{6}{|l|}{062922201 and 062921121} \\
\hline \multicolumn{6}{|r|}{\(\square\) Continued on additional page(s)} \\
\hline \multicolumn{6}{|l|}{M. Coordinates (If available, provide at least latitude/longitude or UTM coordinates and check appropriate boxes)} \\
\hline \multirow[b]{2}{*}{Latitude/Longitude} & Latitude: & 1162 & 57.93 W & Longitude: & 341421.55 N \\
\hline & \multicolumn{3}{|r|}{\(\square\) Degrees/Minutes/Seconds} & \(\square\) Decimal Degrees & \(\square\) Decimal Minutes \\
\hline UTM & Easting: & & Northing: & & \(\square\) Zone \(10 \square\) Zone 11 \\
\hline \multicolumn{3}{|l|}{Datum used for Latitude/Longitude or UTM} & \multicolumn{2}{|r|}{\(\square\) NAD 27} & DNAD 83 or WGS 84 \\
\hline
\end{tabular}
9. PROJECT CATEGORY AND WORK TYPE (Check each box that applies)
\begin{tabular}{|c|c|c|c|}
\hline PROJECT CATEGORY & NEW
CONSTRUCTION & REPLACE
EXISTING STRUCTURE & REPAIR/MAINTAIN EXISTING STRUCTURE \\
\hline Bank stabilization - bioengineering/recontouring & \(\square\) & \(\square\) & \(\square\) \\
\hline Bank stabilization - rip-rap/retaining wall/gabion & \(\square\) & \(\square\) & \(\square\) \\
\hline Boat dock/pier & \(\square\) & \(\square\) & \(\square\) \\
\hline Boat ramp & \(\square\) & \(\square\) & \(\square\) \\
\hline Bridge & \(\square\) & \(\square\) & \(\square\) \\
\hline Channel clearing/vegetation management & \(\square\) & \(\square\) & \(\square\) \\
\hline Culvert & \(\square\) & \(\square\) & \(\square\) \\
\hline Debris basin & \(\square\) & \(\square\) & \(\square\) \\
\hline Dam & \(\square\) & \(\square\) & \(\square\) \\
\hline Diversion structure - weir or pump intake & \(\square\) & \(\square\) & \(\square\) \\
\hline Filling of wetland, river, stream, or lake & \(\square\) & \(\square\) & \(\square\) \\
\hline Geotechnical survey & \(\square\) & \(\square\) & \(\square\) \\
\hline Habitat enhancement - revegetation/mitigation & \(\square\) & \(\square\) & \(\square\) \\
\hline Levee & \(\square\) & \(\square\) & \(\square\) \\
\hline Low water crossing & \(\square\) & \(\square\) & \(\square\) \\
\hline Road/trail & \(\square\) & \(\square\) & \(\square\) \\
\hline Sediment removal - pond, stream, or marina & \(\square\) & \(\square\) & \(\square\) \\
\hline Storm drain outfall structure & \(\square\) & \(\square\) & \(\square\) \\
\hline Temporary stream crossing & \(\square\) & \(\square\) & \(\square\) \\
\hline Utility crossing : Horizontal Directional Drilling & \(\square\) & \(\square\) & \(\square\) \\
\hline Jack/bore & \(\square\) & \(\square\) & \(\square\) \\
\hline Open trench & \(\square\) & \(\square\) & \(\square\) \\
\hline Other (specify): Spreading Grounds \& Monitoring & Wells \(\square\) & \(\square\) & \(\square\) \\
\hline
\end{tabular}

\section*{10. PROJECT DESCRIPTION}
A. Describe the project in detail. Photographs of the project location and immediate surrounding area should be included.
- Include any structures (e.g., rip-rap, culverts, or channel clearing) that will be placed, built, or completed in or near the stream, river, or lake.
- Specify the type and volume of materials that will be used.
- If water will be diverted or drafted, specify the purpose or use.

Enclose diagrams, drawings, plans, and/or maps that provide all of the following: site specific construction details; the dimensions of each structure and/or extent of each activity in the bed, channel, bank or floodplain; an overview of the entire project area (i.e., "bird's-eye view") showing the location of each structure and/or activity, significant area features, and where the equipment/machinery will enter and exit the project area.

This project includes construction of approximately 15 acres of spreading grounds within the Pipes Wash for storage and recovery of imported State Water Project water by Bighorn Desert View Water Agency to help increase the reliability of the overall water supply in the region. Construction activities will include the following: 1. Minor grading and vegetation removal for creation of small earthen berms to minimize surface runoff (and evaporation) and maximize infiltration through the floor of the spreading grounds to the underlying groundwater table. 2. Construction of a small concrete outlet and diffusion structure from the SWP feed pipeline into the spreading grounds (structure will be approximately 8.5 feet long by 5 feet wide, by 2 feet tall). 3. Installation of fencing around the spreading grounds for site/public safety. 4. Construction of two or three monitoring wells northeast of spreading grounds (within the Pipes Wash).

Exhibit 3 attached show the preferred location of the spreading grounds in red. However, pre-design testing will be done to determine the best location for the spreading ground boundaries, so a 39 acre area is shown in yellow to indicate possible alternative locations of the spreading grounds.

Photographs are included on page 26 of the MND attached.
B. Specify the equipment and machinery that will be used to complete the project.

1 - Forklift, 1 - Loader, 1 - Excavator, 1- Water Tank
C. Will water be present during the proposed work period (specified in box 4.D) in the stream, river, or lake (specified in box 8.B).
D. Will the proposed project require work in the wetted portion of the channel?
\(\square\) Yes (Enclose a plan to divert water around work site)
\(\square\) No

\section*{11. PROJECT IMPACTS}
A. Describe impacts to the bed, channel, and bank of the river, stream, or lake, and the associated riparian habitat. Specify the dimensions of the modifications in length (linear feet) and area (square feet or acres) and the type and volume of material (cubic yards) that will be moved, displaced, or otherwise disturbed, if applicable.

Per the Draft MND for this project, impacts of this project to the riparian habitat are less than significant. A raparian vegetation mitigation and monitoring plan for disturbed riparian vegetation will be developed and the project will comply with all applicable provisions of the San Bernardino County Development Code Section 88.01 .06 which addresses Desert Native Plant Protection.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{\(\square\) Continued on additional page(s)} \\
\hline B. Will the project affect any vegetation? & \multicolumn{2}{|l|}{\(\square\) Yes (Complete the tables below) \(\square\) No} \\
\hline Vegetation Type & Temporary Impact & Permanent Impact \\
\hline Protected plant species within spreading ground area listed on add'l pgs & \begin{tabular}{l}
Linear feet: \\
Total area: \(\qquad\)
\end{tabular} & \begin{tabular}{l}
Linear feet: \\
Total area: \(\qquad\)
\end{tabular} \\
\hline & \begin{tabular}{l}
Linear feet: \(\qquad\) \\
Total area: \(\qquad\)
\end{tabular} & \begin{tabular}{l}
Linear feet: \(\qquad\) \\
Total area: \(\qquad\)
\end{tabular} \\
\hline Tree Species & Number of Trees to be Removed & Trunk Diameter (range) \\
\hline None & 0 & \\
\hline & & \\
\hline & & \\
\hline \multicolumn{3}{|r|}{\(\square\) Continued on additional page(s)} \\
\hline
\end{tabular}
C. Are any special status animal or plant species, or habitat that could support such species, known to be present on or near the project site?


\section*{12. MEASURES TO PROTECT FISH, WILDIFE, AND PLANT RESOURCES}
A. Describe the techniques that will be used to prevent sediment from entering watercourses during and after construction.

All water/sediment discharges during and after construction will fall under the requirements of an approved discharge permit from the Colorado River Regional Water Quality Control Board (Region 7). These requirements will minimize impacts to the Pipes Wash.
B. Describe project avoidance and/or minimization measures to protect fish, wildlife, and plant resources.

Mitigation measures and local ordinances will be followed per the Draft MND to minimize impacts to wildlife and plant resources within the project area. Note that this is a dry wash so no impacts to fish will occur.
C. Describe any project mitigation and/or compensation measures to protect fish, wildlife, and plant resources.

Mitigation measures as described in the MND will be followed.

\section*{13. PERMITS}

List any local, state, and federal permits required for the project and check the corresponding box(es). Enclose a copy of each permit that has been issued.
\(\begin{array}{lllll}\text { A. } & \text { Colorado River Basin Regional Water Quality Control Board (See Attached) } & & \square \text { Applied } & \square \text { Issued } \\ \text { B. } & \text { US Fish and Wildlife Service (See Attached) } & \square \text { Applied } & \square \text { Issued } \\ \text { C. } & \text { US Army Corp of Engineers (See Attached) } & \square \text { Applied } \\ \square \text { Issued }\end{array}\)
D. Unknown whetherlocal,state, or \(\qquad\) federal permit is needed for the project. (Check each box that applies)

\section*{14. ENVIRONMENTAL REVIEW}
A. Has a draft or final document been prepared for the project pursuant to the California Environmental Quality Act (CEQA), National Environmental Protection Act (NEPA), California Endangered Species Act (CESA) and/or federal Endangered Species Act (ESA)?
\(\boxed{\square}\) Yes (Check the box for each CEQA, NEPA, CESA, and ESA document that has been prepared and enclose a copy of each)
\(\square\) No (Check the box for each CEQA, NEPA, CESA, and ESA document listed below that will be or is being prepared)

\(\square\) Continued on additional page(s)
H. Has an environmental filing fee (Fish and Game Code section 711.4) been paid?
\(\square\) Yes (Enclose proof of payment) \(\square\) No (Briefly explain below the reason a filing fee has not been paid)

Note: If a filing fee is required, the Department may not finalize a Lake or Streambed Alteration Agreement until the filing fee is paid.

\section*{15. SITE INSPECTION}

\section*{Check one box only.}In the event the Department determines that a site inspection is necessary, I hereby authorize a Department representative to enter the property where the project described in this notification will take place at any reasonable time, and hereby certify that I am authorized to grant the Department such entry.

I request the Department to first contact (insert name) at (insert telephone number) to schedule a date and time to enter the property where the project described in this notification will take place. I understand that this may delay the Department's determination as to whether a Lake or Streambed Alteration Agreement is required and/or the Department's issuance of a draft agreement pursuant to this notification.

\section*{16. DIGITAL FORMAT}

Is any of the information included as part of the notification available in digital format (i.e., CD, DVD, etc.)?
Yes (Please enclose the information via digital media with the completed notification form)
\(\square N\) No

\section*{17. SIGNATURE}

I hereby certify that to the best of my knowledge the information in this notification is true and correct and that I am authorized to sign this notification as, or on behalf of, the applicant. I understand that if any information in this notification is found to be untrue or incorrect, the Department may suspend processing this notification or suspend or revoke any draft or final Lake or Streambed Alteration Agreement issued pursuant to this notification. I understand also that if any information in this notification is found to be untrue or incorrect and the project described in this notification has already begun, I and/or the applicant may be subject to civil or criminal prosecution. I understand that this notification applies only to the project(s) described herein and that I and/or the applicant may be subject to civil or criminal prosecution for undertaking any project not described herein unless the Department has been separately notified of that project in accordance with Fish and Game Code section 1602 or 1611.

Marina D. West
Print Name

\title{
NOTIFICATION OF LAKE OR STREAMBED ALTERATION
}

Applicant Name: Bighorn Desert View Water Agency
Project Name: Ames/Reche Groundwater Storage

\section*{ATTACHMENT C}

\section*{Water Diversion Questionnaire}

\section*{I. DIVERSION OR OBSTRUCTION}

Please provide the additional information below if the project is directly related to any diversion, obstruction, extraction, or impoundment of the natural flow of a river, stream, or lake. If you have a current or expired Lake or Streambed Alteration Agreement (LSAA) for some activity related to your project, provide the LSAA number in your project description below.
A. Attach plans of any diversion or water storage structure or facility that will be constructed or if no structures or facilities will be constructed, photographs of the project site, including any existing facilities or structures.
B. Please complete the water use table below. For diversion rate, use gallons per day (gpd) if rate is less than 0.025 cubic foot per second (cfs) (approximately 16,000 gallons per day).
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{SEASON OF DIVERSION} & \multirow[t]{2}{*}{PURPOSE OF USE} & \multirow[t]{2}{*}{DIVERSION RATE (cfs or gpm)} & \multicolumn{2}{|l|}{AMOUNT USED (acre feet)} \\
\hline \begin{tabular}{l}
BEGINNING DATE \\
(Mo. \& Day)
\end{tabular} & ENDING DATE (Mo. \& Day) & & & \[
\begin{gathered}
\text { FROM } \\
\text { STORAGE }
\end{gathered}
\] & \[
\begin{gathered}
\text { BY } \\
\text { DIVERSION }
\end{gathered}
\] \\
\hline & & Marina D. West, General Mar & Bighorn Desert View Water \(t\) & 622 S. Jemez Trail & Yucca Valley, CA \\
\hline (760) 364-2315 & & bdvwa2@mindspring.com & same as above & & \\
\hline & & & Bureau of Land Managemen & 1201 Bird Center Drive & Palm Springs, Cal \\
\hline (760) 833-7100 & (760) 833-7199 & & Ames/Reche Groundwate & & \\
\hline
\end{tabular}
C. Attach a topographic map that is labeled to show the following:
1. Source of the water
2. Points of diversion
3. Areas of use
4. Storage areas
D. Specify the maximum instantaneous rate of withdrawal (using proposed equipment) in cubic feet per second (cfs) or gallons per minute (gpm): \(\qquad\) _.
E. Check each box below that applies to the project water rights and attach supporting documents.
\(\square \quad\) Riparian. Attach the most recent statement of riparian rights filed with the State Water Resources Control Board (SWRCB).
\(\square\) Diversion for immediate use
\(\square \quad\) Diversion to storage (for less than 30 days)
\(\square \quad\) Appropriative
\(\square\) Pre-1914
\(\square\) Post-1914. Attach a copy of the applicant's water right application, permit, or license filed with or issued by the SWRCB.
\(\boxed{\square}\) Diversion for immediate use. Attach a copy of the applicant's water right application, permit, or license filed with or issued by the SWRCB.
\(\square\) Diversion to storage. Attach a copy of the applicant's water right application, permit, or license filed with or issued by the SWRCB.
\(\square\) Small domestic or livestock stockpond use. Attach a copy of the applicant's registration of water use form filed with the SWRCB. (See Water Code section 1228 et seq.)

Purchased or contracted water. Attach a copy of the applicant's contract or letter from the applicant's water provider.
\(\square\) Other. Describe below or attach separate page.
F. Approximate lowest level of flow in the river, stream, or lake at the point of diversion during the proposed season of diversion in gpm or cfs: \(\qquad\) .
G. Other information. After the Department reviews the project description, and based on the project's location and potential impacts to fish and wildlife resources, the Department will determine if additional information is needed to complete the notification. Such information could include more site-specific information to ensure that the terms and conditions in the Lake or Streambed Alteration Agreement issued to the applicant will be adequate to protect the fish and wildlife resources the diversion or obstruction could adversely affect. Site-specific information could include specific studies based on the season of diversion, the location of the diversion relative to other diversions in the watershed, the method of diversion, and the quantity of water to be diverted, such as the following:
1. Water Availability Analysis to determine if the water can be diverted without causing substantial adverse effects on downstream fish and wildlife resources. Water availability analyses are based on a comparison of flows without any diversions (unimpaired flows) and flows available when all known diversions are "subtracted" (impaired flows). The protocol for water availability analyses is available on request.
2. Instream Flow Study to determine the minimum bypass flows needed and maximum rates of withdrawal possible to provide adequate depths and velocities to protect habitat for all life stages of aquatic resources. The study plan, which must be prepared by a qualified fisheries biologist and approved by the Department, will determine the effects of the proposed diversion on flow depth and velocity.
3. Water Quality Study to assess the effects of the proposed water diversion or impoundment on water temperature and water quality at and downstream from the point of diversion.

\section*{II. PERMANENT OR TEMPORARY RESERVOIR}

Please provide the information below if the project includes the construction of a reservoir, whether permanent or temporary, and/or the filling of a reservoir by diverting or obstructing the flow of a river, stream, or lake.
A. Proposed use of the stored water:
drinking water
B. Construction plans for the reservoir and dam. (Attach plans)
C. A complete description of the reservoir and dam, including the methods and materials that will be used to construct the reservoir and dam and the following dimensions certified by a licensed professional: the width, length, depth, and total surface area of the reservoir pool; the volume of water in acre-feet that will be stored in the reservoir; and the height and length of the dam.
D. The amount of riparian land that will be inundated (i.e., upstream from the dam): \(\qquad\) .
E. Where vehicles will enter and exit the project site during construction and for maintenance purposes after construction. (Attach map)
F. The maximum distance of the disturbance that will occur upstream and downstream during construction: \(\qquad\) -
G. The methods that will be employed to ensure that the flow is maintained below the dam at all times when water is being diverted into the reservoir. \(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
H. Specify the time period when the area below the dam becomes dry, if at all. \(\qquad\) .
I. The methods that will be employed to ensure that adult and juvenile fish will be able to pass over or around the dam. \(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
J. If a fish ladder is necessary to enable adult and juvenile fish to pass over or around the dam, provide construction plans and an operation plan for the fish ladder. (Enclose, if applicable)
K. The methods that will be employed to monitor and maintain water quality (including temperature) within the reservoir. \(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{III. TEMPORARY RESERVOIR}

Please provide the information below if the project includes the construction of a temporary reservoir only within the stream zone.
A. Date of dam installation: \(\qquad\) .
B. Date of dam removal: \(\qquad\) .
C. Amount of time it will take to construct the dam: \(\qquad\) .
D. Amount of time it will take to remove the dam: \(\qquad\) .
E. Methods to ensure that the reservoir pool will be drained in a manner that does not strand or otherwise harm fish: Located within the Pipes Wash northwest of the intersection of Winters Road and Warren

Pipes Wash
None

\section*{NOTIFICATION OF LAKE OR STREAMBED ALTERATION}

Applicant Name: \(\qquad\)
Project Title: \(\qquad\)

\section*{ATTACHMENT D}

\section*{Routine Maintenance}

If the applicant is notifying the Department to obtain an agreement for routine maintenance activities, Section I must be completed and the information and documents described in Sections II and III must be submitted with the notification.

\section*{I. REGULARLY RE-OCCURRING MAINTENANCE ACTIVITIES}

These are generally activities designed to maintain channel capacity. Check each box that applies:
\(\square\) Sediment removal:
\(\square\) In and around bridges, culverts, storm drain outlets, and/or water diversion inlets
\(\square\) Stream channel bottom
\(\square\) Pond or lake
\(\square\) Marina basin
\(\square\) Other: \(\qquad\) .
\(\square\) Clearing trash and debris
\(\square\) Removing fallen trees
\(\square\) Removing dead (not dormant) trees and shrubs
\(\square\) Vegetation:
\(\square\) Limbing and/or trimming of branches and tree limbs
\(\square\) Vegetation removal under high power lines
\(\square\) Mowing levee slopes and stream banks
\(\square\) Mowing within stream and floodway channels
\(\square\) Removing emergent (e.g., bulrush and cattails) or other near water vegetation with:
\(\square\) hand tools
\(\square\) mechanical vegetation cutters and shreddersheavy equipment (soil disturbance)chemicals
\(\square\) Removing vegetation from the upper half of the bank with:
\(\square\) hand tools
\(\square\) mechanical vegetation cutters or shredders
\(\square\) heavy equipment (soil disturbance)
\(\square\) chemicals
\(\square\) Removing vegetation from the lower half of bank with:
\(\square\) hand tools
\(\square\) mechanical vegetation cutters or shredders
\(\square\) heavy equipment (soil disturbance)
\(\square\) chemicals
\(\square\) Removing vegetation within the channel with:
\(\square\) hand tools
\(\square\) mechanical vegetation cutters and shredders
\(\square\) heavy equipment (soil disturbance)
\(\square\) chemicalsRemoving invasive, non-native plants with:
\(\square\) hand toolsmechanical vegetation cutters and shredders
\(\square\) heavy equipment (soil disturbance)
\(\square\) chemicals
Other: \(\qquad\) .
\(\square\) Debris and brush pile burning
\(\square\) Burning levees
\(\square\) Minor erosion repair:
\(\square\) Repair at existing erosion control sites
\(\square\) New erosion repair
Revegetation with local, native plant species

Chemical application:
\(\square\) Herbicides
\(\square\) Rodenticides
\(\square\) Insecticides
Minor bridge work:
\(\square\) Reinforcing pilings
\(\square\) Reinforcing aprons
\(\square\) Bridge painting (access and falsework)
Materials to be used for reinforcement: \(\qquad\) .
\(\square\) Other: \(\qquad\) .
\(\square\) Other: \(\qquad\) .
\(\square\) Other: \(\qquad\) .

\section*{II. MAP OR MAPBOOK}

Maps must be of sufficient detail to assist in locating maintenance sites and should include the following:
A. The applicant's jurisdictional boundaries
B. All watercourses within the jurisdictional boundaries where maintenance will occur
C. A key to identify each watercourse and the maintenance activities and location (e.g., bridges, water control diversions, and large scale maintenance) of those activities that are likely to occur

\section*{III. SPECIAL STATUS SPECIES LOCATIONS}

A drawing, diagram, or map that shows the applicant's jurisdictional boundaries and the locations within that area where special status species are known to exist.

\section*{LAKE OR STREAMBED ALTERATION FEE SCHEDULE}

The Department may refuse to process a notification or a request for an extension or amendment until the department receives the proper fee or fees.

\section*{STANDARD AGREEMENT}

Any agreement other than an agreement for gravel, rock, or sand extraction, an agreement for timber harvesting, an agreement for routine maintenance, a master agreement, or a master agreement for timber operations.

\section*{Fee:}

If the term of the agreement is 5 years or less.
For each project the agreement covers:
\$200 if the project costs less than \$5,000.
\(\$ 250\) if the project costs from \(\$ 5,000\) to less than \(\$ 10,000\).
\(\$ 500\) if the project costs from \(\$ 10,000\) to less than \(\$ 25,000\).
\(\$ 750\) if the project costs from \(\$ 25,000\) to less than \(\$ 100,000\).
\(\$ 1,100\) if the project costs from \(\$ 100,000\) to less than \(\$ 200,000\).
\(\$ 1,500\) if the project costs from \(\$ 200,000\) to less than \(\$ 350,000\).
\(\$ 2,250\) if the project costs from \(\$ 350,000\) to less than \(\$ 500,000\).
\(\$ 4,000\) if the project costs \(\$ 500,000\) or more.
Project cost means the cost to complete each project for which notification is required.
As a general rule, a notification for a standard agreement should identify only one project. If an entity chooses to identify more than one project in a single notification, the department may require the entity to separately notify the department for one or more of the projects included in the original notification based on their type or location.

If the notification includes more than one project, the fee shall be calculated by adding the separate fees for each project. For example, if a notification identifies three projects, one of which will cost less than \(\$ 5,000\) to complete, one of which will cost \(\$ 7,500\) to complete, and one of which will cost \(\$ 17,500\) to complete, the fee for the first project would be \(\$ 200\), the fee for the second project would be \(\$ 250\), and the fee for the third project would be \(\$ 500\). Hence, the total fee the entity would need to submit with the notification that identifies those three projects would be \(\$ 950\).

An entity may not obtain a standard agreement for any project identified in the notification that qualifies for an agreement for gravel, rock, or sand extraction, an agreement for timber harvesting, an agreement for routine maintenance, a master agreement, or a master agreement for timber operations unless the department agrees otherwise.

Fee submittal: If the entity requests an agreement with a term of 5 years or less, the fee specified in the category for agreements with a term of 5 years or less must be submitted with the notification.

If the entity requests an agreement with a term longer than 5 years (Standard Long-term Agreement) the fee specified must be submitted with the notification.

\section*{STANDARD LONG-TERM AGREEMENT}

Any agreement other than an agreement for gravel, rock, or sand extraction, an agreement for timber harvesting, an agreement for routine maintenance, a master agreement, or a master agreement for timber operations.

Fee:
If the term of the agreement is longer than 5 years.
\(\$ 2,400\) base fee, plus
For each project the agreement covers:
\$200 if the project costs less than \$5,000.
\(\$ 250\) if the project costs from \$5,000 to less than \$10,000.
\(\$ 500\) if the project costs from \(\$ 10,000\) to less than \(\$ 25,000\).
\(\$ 750\) if the project costs from \(\$ 25,000\) to less than \(\$ 100,000\).
\(\$ 1,100\) if the project costs from \(\$ 100,000\) to less than \(\$ 200,000\).
\(\$ 1,500\) if the project costs from \(\$ 200,000\) to less than \(\$ 350,000\).
\(\$ 2,250\) if the project costs from \(\$ 350,000\) to less than \(\$ 500,000\).
\(\$ 4,000\) if the project costs \(\$ 500,000\) or more.
Project cost means the cost to complete each project for which notification is required.
As a general rule, a notification for a standard agreement should identify only one project. If an entity chooses to identify more than one project in a single notification, the department may require the entity to separately notify the department for one or more of the projects included in the original notification based on their type or location.

If the notification includes more than one project, the fee shall be calculated by adding the separate fees for each project. For example, if a notification identifies three projects, one of which will cost less than \(\$ 5,000\) to complete, one of which will cost \(\$ 7,500\) to complete, and one of which will cost \(\$ 17,500\) to complete, the fee for the first project would be \(\$ 200\), the fee for the second project would be \(\$ 250\), and the fee for the third project would be \(\$ 500\). Hence, the total fee the entity would need to submit with the notification that identifies those three projects would be \(\$ 950\).

An entity may not obtain a standard agreement for any project identified in the notification that qualifies for an agreement for gravel, rock, or sand extraction, an agreement for timber harvesting, an agreement for routine maintenance, a master agreement, or a master agreement for timber operations unless the department agrees otherwise.

Fee submittal: If the entity requests an agreement with a term of 5 years or less, the fee specified in the category for agreements with a term of 5 years or less must be submitted with the notification.

If the entity requests an agreement with a term longer than 5 years, the fee specified must be submitted with the notification.

\section*{SAND, ROCK AND GRAVEL EXTRACTION AGREEMENT}

Any agreement for commercial or non-commercial mining or extraction of gravel, sand, rock, or other aggregate material.

\section*{Fee:}

If the term of the agreement is 5 years or less:
\$500 if the annual extraction volume is less than 500 cubic yards.
\(\$ 1,000\) if the annual extraction volume is 500 to less than 1,000 cubic yards.
\(\$ 2,500\) if the annual extraction volume is 1,000 to less than 5,000 cubic yards.
\(\$ 5,000\) if the annual extraction volume is 5,000 or more cubic yards.

\section*{Fee:}

If the term of the agreement is longer than 5 years:
\(\$ 10,000\) base fee, plus
\$1,000 annual fee
Fee submittal: If the entity requests an agreement with a term of 5 years or less, the fee specified in paragraph (1) must be submitted with the notification.

If the entity requests an agreement with a term longer than 5 years, the base fee specified in paragraph (2) must be submitted with the notification.

\section*{TIMBER HARVESTING OPERATION AGREEMENT}

An agreement of five years or less that covers one or more projects that are included in a timber harvesting plan approved by the California Department of Forestry and Fire Protection.

\section*{Fee:}
\$1,200 base fee, plus
\(\$ 100\) for each project the agreement covers, and
Fee submittal: The fee specified must be submitted with the notification.

\section*{MASTER TIMBER HARVESTING OPERATION AGREEMENT}

An agreement with a term of greater than five years that covers timber operations on timberland that are not exclusively projects to extract gravel, sand, or rock; not exclusively projects that are included in a timber harvesting plan approved by the California Department of Forestry and Fire Protection; or not exclusively routine maintenance projects that the entity will need to complete separately at different time periods during the term of the agreement; and describes a procedure the entity must follow for construction, maintenance, or other projects the agreement covers.

\section*{Fee:}
\(\$ 7,500\) base fee, plus \(\$ 100\) for each project the agreement covers, and \$1,000 annual fee

Fee submittal: The base fee specified at a minimum must be submitted with the notification. The balance of all fees due must be paid prior to the issuance of the agreement.

Note: If an entity chooses to identify more than one project in a single notification, the total fee may exceed \(\$ 5,000\) regardless of the term of the agreement.

\section*{ROUTINE MAINTENANCE AGREEMENT}

An agreement that covers only multiple routine maintenance projects that the entity will complete at different time periods during the term of the agreement; and describes a procedure the entity must follow for any maintenance projects the agreement covers.

\section*{Fee:}

If the term of the agreement is 5 years or less:
\$1,200 base fee, plus
\$100 for each maintenance project completed per calendar year.

\section*{Fee:}

If the term of the agreement is longer than 5 years:
\(\$ 2,400\) base fee, plus
\$100 for each maintenance project completed per calendar year.
Fee submittal: If the entity requests an agreement with a term of 5 years or longer then 5 years, the base fee at a minimum must be submitted with the notification. The balance of all fees due must be paid prior to the issuance of the agreement.

\section*{MASTER AGREEMENT}

An agreement with a term of greater than five years that covers multiple projects that are not exclusively projects to extract gravel, sand, or rock; not exclusively projects that are included in a timber harvesting plan approved by the California Department of Forestry and Fire Protection; or not exclusively routine maintenance projects that the entity will need to complete separately at different time periods during the term of the agreement; and describes a procedure the entity must follow for construction, maintenance, or other projects the agreement covers.

\section*{Fee:}
\$30,000 base fee, plus:
\(\$ 250\) for each project the agreement covers, and
\$2,500 annual fee
Fee submittal: The base fee specified in paragraph (1) at a minimum must be submitted with the notification. The balance of all fees due must be paid prior to the issuance of the agreement.

An example of a project for which the department would issue a master agreement is a largescale development proposal comprised of multiple projects for which specific, detailed design plans have not been prepared at the time of the original notification. The master agreement will specify a process the department and entity will follow before each project begins and may identify various measures the entity will be required to incorporate as part of each project in order to protect fish and wildlife resources.

\section*{KennedylJenks Consultants}

8 June 2010

\section*{Memorandum}

To: State of California Department of Fish and Game
From: Bighorn Desert View Water Agency
Subject: Notification of Lake or Streambed Alteration - Supplemental Information
K/J ProjectNumber

\section*{Additional text for Item 11-B}

Protected plant species that exist within the spreading ground project area include:
Hedgehog cactus (Echinocereus enelmannii)
Beavertail cactus (Opuntia basilaris)
Silver cholla (Oputina echinocarpa)
Pencil cholla (Opuntia ramosissima)
Bear cactus (Opuntia ursine)
Catclaw acacia (Acacia greggii)
Joshua tree (Yucca brevifolia)
The impact to each species cannot be quantified until a final site location is chosen.

\section*{Additional text for Item 11-C}

Protected animal species found within the 39 acre spreading ground project area include:
Desert tortoise (Gopherus agassizii) - Note that according to the Draft MND for this project, as long as the spreading grounds are constructed during the winter and in the southern portion of the study area, impacts on the desert tortoise could be avoided.

Burrowing Owl (Athene cunicularia) - Three burrows were found within the survey area and all are located outside of the boundaries of the 15-acre spreading basin preferred site. As long as the preferred site is used no mitigation measures are required.

Le Conte's thrasher (Toxostoma lecontei) - Impacts will be mitigated by scheduling the construction between late August to late January to avoid breeding and nesting birds and minimizing the amount of disturbed LeConte's thrasher habitat.

\title{
KennedylJenks Consultants
}

\section*{Memorandum}

State of California Department of Fish and Game
8 June 2010
Page 2

\section*{Additional text for Item 13}

Permits known to be required for the spreading basin are as follows:
Colorado River Basin Regional Water Quality Control Board Region 7 (RWQCB) - For construction existing discharge permits may be able to be used. This is being evaluated and the correct permit will be applied for concurrently with this permit application. A permit will be also be required for the permanent facility but the type of permit will depend on future discussions with the RWQCB.

US Fish and Wildlife Service - Once the project is approved US Fish and Wildlife Service will require a formal request for the presence of Endangered and Threatened species within the project area.

US Army Corps of Engineers (ACOE) - Project is being submitted to ACOE to determine if the Pipes Wash is within ACOE "Jurisdictional Waters" or if it is "isolated waters". If it is the former a 404 Permit will be required from the ACOE.


Image Source:(c)2009 Microsoft Corporation
N
Kennedy/Jenks Consultants
Bighorn-Desert View Water Agency
San Bernardino County, California
\begin{tabular}{|l|}
\hline Legend \\
A \\
\hline
\end{tabular}

Project Location Map


Bighorn-Desert View Water Agency

CEQA I nitial Study and Draft Mitigated Negative Declaration for

Water I nfrastructure Restoration Program: AMES/ RECHE GROUNDWATER STORAGE and RECOVERY PROGRAM; and PI PELI NE I NSTALLATI ON/ REPLACEMENT PROJ ECT

May 2010

Prepared by:
Bighorn Desert View Water Agency 622 S. Jemez Trail Yucca Valley, CA 92284-1440

Assisted by:
Candida Neal, AI CP
A Land Use and Environmental Planning Consulting Firm
P.O. Box 1978

Claremont, CA 91711


\section*{APPLICATION/REPORT OF WASTE DISCHARGE GENERAL INFORMATION FORM FOR WASTE DISCHARGE REQUIREMENTS OR NPDES PERMIT}

\section*{A. Facility:}
I. FACILITY INFORMATION
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
Name: \\
Bighorn-Desert View Water Agency
\end{tabular}} \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
Address: \\
622 S. Jemez Trail
\end{tabular}} \\
\hline City: Yucca Valley, & \begin{tabular}{l}
County: \\
San Bernardinc
\end{tabular} & \begin{tabular}{l}
State: \\
CA
\end{tabular} & Zip Code:
\[
92284-1440
\] \\
\hline Contact Person: Marina D. West & & \[
\begin{aligned}
& \text { Telep } \\
& (760
\end{aligned}
\] & \\
\hline
\end{tabular}

\section*{B. Facility Owner:}

C. Facility Operator (The agency or business, not the person):
\begin{tabular}{|c|c|c|c|c|c|}
\hline Name: & & & & tor Type (Check On & \\
\hline Same as above & & & 1. & Individual & Corporation \\
\hline Address: & & & & Governmental 4. & Partnership \\
\hline City: & State: & Zip Code: & & & \\
\hline \multicolumn{2}{|l|}{Contact Person:} & \multicolumn{4}{|l|}{Telephone Number:} \\
\hline
\end{tabular}

\section*{D. Owner of the Land:}
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Name: \\
Bureau of Land Management
\end{tabular} & & & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{}} \\
\hline \begin{tabular}{l}
Address: \\
1201 Bird Center Drive
\end{tabular} & & & & \\
\hline City: Palm Springs & State: CA & \[
\begin{aligned}
& \text { Zip Code: } \\
& 92262 \\
& \hline
\end{aligned}
\] & & \\
\hline Contact Person: & & \multicolumn{3}{|l|}{Telephone Number:} \\
\hline
\end{tabular}

\section*{E. Address Where Legal Notice May Be Served:}
\begin{tabular}{|l|l|l|}
\hline \multicolumn{4}{|l|}{\begin{tabular}{l} 
Address: \\
622 S. Jemez Trail \\
\hline City: \\
Yucca Valley,
\end{tabular} \begin{tabular}{l} 
State: \\
CA
\end{tabular}} & \begin{tabular}{l} 
zip Code: \\
92284
\end{tabular} \\
\hline Contact Person: & & Telephone Number: \\
Marina D. West & 760) 364-2315 \\
\hline
\end{tabular}

\section*{F. Billing Address:}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l} 
Address: \\
Same as A. \\
\hline City: \\
Contact Person: \\
\hline
\end{tabular} & State: & Zip Code: \\
\hline
\end{tabular}
II. TYPE OF DISCHARGE

Check Type of Discharge(s) Described in this Application (A or B):
\(\square\) A. WASTE DISCHARGE TO LAND
B. WASTE DISCHARGE TO SURFACE WATER

\section*{Check all that apply:}

\(\square\)
Domestic/Municipal Wastewater Treatment and Disposal
Cooling Water
Mining
Waste Pile
Wastewater Reclamation


Animal Waste Solids
Land Treatment Unit
Dredge Material Disposal Surface Impoundment Industrial Process Wastewater
 Animal or Aquacultural Wastewater
Biosolids/Residual Hazardous Waste (see instructions)
Landfill (see instructions) Storm Water
\(\checkmark\) Other, please describe: State Water Project Water to Surface Impoundment

\section*{III. LOCATION OF THE FACILITY}

Describe the physical location of the facility.
```

1. Assessor's Parcel Number(s)
Facility: 062922201 and
Discharge Point: 062921121
```

\author{
2. Latitude \\ Facility: 11624 57W \\ Discharge Point:
}
```

3. Longitude
Facility: 34 14 21N
Discharge Point:
```

\section*{IV. REASON FOR FILING}
New Discharge or Facility
\(\square\) Changes in Ownership/Operator (see instructions)
Change in Design or Operation
\(\square\) Waste Discharge Requirements Update or NPDES Permit Reissuance
Change in Quantity/Type of Discharge \(\qquad\) Other:

\section*{V. CALIFORNIA ENVIRONMENTAL QUALITY ACT (CEQA)}

\section*{Name of Lead Agency: Bighorn-Desert View Water Agency}

Has a public agency determined that the proposed project is exempt from CEQA? \(\square\) Yes
If Yes, state the basis for the exemption and the name of the agency supplying the exemption on the line below. Basis for Exemption/Agency:

Has a "Notice of Determination" been filed under CEQA?

\section*{Yes} No
If Yes, enclose a copy of the CEQA document, Environmental Impact Report, or Negative Declaration. If no, identify the expected type of CEQA document and expected date of completion.

Expected CEQA Documents:
\(\square\) EIR
Negative Declaration
Expected CEQA Completion Date: Adopted 6/16/2010

\section*{VI. OTHER REQUIRED INFORMATION}

Please provide a COMPLETE characterization of your discharge. A complete characterization includes, but is not limited to, design and actual flows, a list of constituents and the discharge concentration of each constituent, a list of other appropriate waste discharge characteristics, a description and schematic drawing of all treatment processes, a description of any Best Management Practices (BMPs) used, and a description of disposal methods.

Also include a site map showing the location of the facility and, if you are submitting this application for an NPDES permit, identify the surface water to which you propose to discharge. Please try to limit your maps to a scale of \(1: 24,000\) (7.5' USGS Quadrangle) or a street map, if more appropriate.

\section*{VII. OTHER}

Attach additional sheets to explain any responses which need clarification. List attachments with titles and dates below: See enclosed Forms 1, 2D and 2E and attachments

\footnotetext{
You will be notified by a representative of the RWQCB within 30 days of receipt of your application. The notice will state if your application is complete or if there is additional information you must submit to complete your Application/Report of Waste Discharge, pursuant to Division 7, Section 13260 of the California Water Code.
}

\section*{VIII. CERTIFICATION}
\begin{tabular}{|l}
\hline "I certify under penalty of law that this document, including all attachments and supplemental information, were prepared under my \\
direction and supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the \\
information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for \\
gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware \\
that there are significant penalties for submitting false information, including the possibility of fine and imprisonment." \\
Print \(N\) ame: Marina D . West \\
Signature:
\end{tabular}

FOR OFFICE USE ONLY
\begin{tabular}{|l|l|l|l|}
\hline Date Form 200 Received: & Letter to Discharger: & Fee Amount Received: & Check \#: \\
\hline
\end{tabular}


LABEL ITEMS
I. EPA I.D. NUMBER
III. FACILITY NAME
V. FACILITY MAILING

ADDRESS
VI. FACILITY LOCATION
U.S. ENVIRONMENTAL PROTECTION AGENCY

GENERAL INFORMATION
Consolidated Permits Program
(Read the "General Instructions" before starting.)

Form Approved. OMB No. 2040-0086.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{I. EPA I.D. NUMBER} \\
\hline s & & & T/A & C \\
\hline F & & & & D \\
\hline 1 & 2 & 13 & 14 & 15 \\
\hline
\end{tabular}

\section*{GENERAL INSTRUCTIONS}

If a preprinted label has been provided, affix it in the designated space. Review the information carefully; if any of it is incorrect, cross through it and enter the correct data in the appropriate fill-in area below. Also, if any of the preprinted data is absent (the area to the left of the label space lists the information that should appear), please provide it in the proper fill-in area(s) below. If the label is complete and correct, you need not complete Items I, III, V, and VI (except VI-B which must be completed regardless). Complete all items if no label has been provided. Refer to the instructions for detailed item descriptions and for the legal authorizations under which this data is collected.

\section*{II. POLLUTANT CHARACTERISTICS}

INSTRUCTIONS: Complete A through J to determine whether you need to submit any permit application forms to the EPA. If you answer "yes" to any questions, you must submit this form and the supplemental form listed in the parenthesis following the question. Mark " \(X\) " in the box in the third column if the supplemental form is attached. If you answer "no" to each question, you need not submit any of these forms. You may answer "no" if your activity is excluded from permit requirements; see Section C of the instructions. See also, Section D of the instructions for definitions of bold-faced terms.


\section*{CONTINUED FROM THE FRONT}


Attach to this application a topographic map of the area extending to at least one mile beyond property boundaries. The map must show the outline of the facility, the location of each of its existing and proposed intake and discharge structures, each of its hazardous waste treatment, storage, or disposal facilities, and each well where it injects fluids underground. Include all springs, rivers, and other surface water bodies in the map area. See instructions for precise requirements.
XII. NATURE OF BUSINESS (provide a brief description)

Bighorn-Desert View Water Agency provides water service to 1,582 actively consuming customers and 320 non-consuming customers in portions of Yucca Valley, Landers, and Johnson Valley in San Bernardino County, California. The BDVWA is implementing a portion of system improvements contained in the Bighorn-Desert View Water Agency Water Infrastructure Restoration Program that requires the construction of spreading grounds or infiltration basins located within the Pipes Wash. These infiltration basins will be between 7 and 20 acres in size with the exact size determined upon completion of future hydrogeological assessments.
XIII. CERTIFICATION (see instructions)

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this application and all attachments and that, based on my inquiry of those persons immediately responsible for obtaining the information contained in the application, I believe that the information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment.


EPA Form 3510-1 (8-90)

B. Attach a line drawing showing the water flow through the facility. Indicate sources of intake water, operations contributing wastewater to the effluent, and treatment units labeled to correspond to the more detailed descriptions in Item III-A. Construct a water balance on the line drawing by showing average flows between intakes, operations, treatment units, and outfalls. If a water balance cannot be determined (e.g., for certain mining activities), provide a pictorial description of the nature and amount of any sources of water and any collection or treatment measures.
C. Except for storm runoff, leaks, or spills, will any of the discharges described in Items III-A be intermittent or seasonal?

. Production
If there is an applicable production-based effluent guideline or NSPS, for each outfall list the estimated level of production (projection of actual production level, not design), expressed in the terms and units used in the applicable effluent guideline or NSPS, for each of the first 3 years of operation. If production is likely to vary, you may also submit alternative estimates (attach a separate sheet).
\begin{tabular}{|c|c|c|c|}
\hline Year & A. Quantity Per Day & B. Units Of Measure & c. Operation, Product, Material, etc. (specify) \\
\hline & Ames /Reche Gro & & Not applicable \\
\hline & & & \\
\hline & & & \\
\hline
\end{tabular}



\section*{VII. Other Information (Optional)}

Use the space below to expand upon any of the above questions or to bring to the attention of the reviewer any other information you feel should be considered in establishing permit limitations for the proposed facility. Attach additional sheets if necessary.

This form is intended for process water discharges. However, Form 1, Section II line D requires a yes response and subsequently a Form 2D be supplied. We have tried to indicate, where appropriate, information to complete the form. We have also completed Form 2E which we believe is more appropriate for the type of discharge that is the subject of this permit application.

\section*{VIII. CERTIFICATION}

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.
\begin{tabular}{|l|l|}
\hline \begin{tabular}{c} 
A. Name and Official Title (type or print) \\
Marina D. West, General Manager
\end{tabular} & B. Phone No. \\
\hline C. Signature (760) 364-2315 \\
\hline
\end{tabular}


```

